Power4 Focuses on Memory Bandwidth IBM Confronts IA-64, Says ISA Not Important
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wind Rose Data Comes in the Form >200,000 Wind Rose Images
Making Wind Speed and Direction Maps Rich Stromberg Alaska Energy Authority [email protected]/907-771-3053 6/30/2011 Wind Direction Maps 1 Wind rose data comes in the form of >200,000 wind rose images across Alaska 6/30/2011 Wind Direction Maps 2 Wind rose data is quantified in very large Excel™ spreadsheets for each region of the state • Fields: X Y X_1 Y_1 FILE FREQ1 FREQ2 FREQ3 FREQ4 FREQ5 FREQ6 FREQ7 FREQ8 FREQ9 FREQ10 FREQ11 FREQ12 FREQ13 FREQ14 FREQ15 FREQ16 SPEED1 SPEED2 SPEED3 SPEED4 SPEED5 SPEED6 SPEED7 SPEED8 SPEED9 SPEED10 SPEED11 SPEED12 SPEED13 SPEED14 SPEED15 SPEED16 POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 WEIBC1 WEIBC2 WEIBC3 WEIBC4 WEIBC5 WEIBC6 WEIBC7 WEIBC8 WEIBC9 WEIBC10 WEIBC11 WEIBC12 WEIBC13 WEIBC14 WEIBC15 WEIBC16 WEIBK1 WEIBK2 WEIBK3 WEIBK4 WEIBK5 WEIBK6 WEIBK7 WEIBK8 WEIBK9 WEIBK10 WEIBK11 WEIBK12 WEIBK13 WEIBK14 WEIBK15 WEIBK16 6/30/2011 Wind Direction Maps 3 Data set is thinned down to wind power density • Fields: X Y • POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 • Power1 is the wind power density coming from the north (0 degrees). Power 2 is wind power from 22.5 deg.,…Power 9 is south (180 deg.), etc… 6/30/2011 Wind Direction Maps 4 Spreadsheet calculations X Y POWER1 POWER2 POWER3 POWER4 POWER5 POWER6 POWER7 POWER8 POWER9 POWER10 POWER11 POWER12 POWER13 POWER14 POWER15 POWER16 Max Wind Dir Prim 2nd Wind Dir Sec -132.7365 54.4833 0.643 0.767 1.911 4.083 -
Power4 Focuses on Memory Bandwidth IBM Confronts IA-64, Says ISA Not Important
VOLUME 13, NUMBER 13 OCTOBER 6,1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Power4 Focuses on Memory Bandwidth IBM Confronts IA-64, Says ISA Not Important by Keith Diefendorff company has decided to make a last-gasp effort to retain control of its high-end server silicon by throwing its consid- Not content to wrap sheet metal around erable financial and technical weight behind Power4. Intel microprocessors for its future server After investing this much effort in Power4, if IBM fails business, IBM is developing a processor it to deliver a server processor with compelling advantages hopes will fend off the IA-64 juggernaut. Speaking at this over the best IA-64 processors, it will be left with little alter- week’s Microprocessor Forum, chief architect Jim Kahle de- native but to capitulate. If Power4 fails, it will also be a clear scribed IBM’s monster 170-million-transistor Power4 chip, indication to Sun, Compaq, and others that are bucking which boasts two 64-bit 1-GHz five-issue superscalar cores, a IA-64, that the days of proprietary CPUs are numbered. But triple-level cache hierarchy, a 10-GByte/s main-memory IBM intends to resist mightily, and, based on what the com- interface, and a 45-GByte/s multiprocessor interface, as pany has disclosed about Power4 so far, it may just succeed. Figure 1 shows. Kahle said that IBM will see first silicon on Power4 in 1Q00, and systems will begin shipping in 2H01. Looking for Parallelism in All the Right Places With Power4, IBM is targeting the high-reliability servers No Holds Barred that will power future e-businesses. -
REPORT Compaq Chooses SMT for Alpha Simultaneous Multithreading
VOLUME 13, NUMBER 16 DECEMBER 6, 1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Compaq Chooses SMT for Alpha Simultaneous Multithreading Exploits Instruction- and Thread-Level Parallelism by Keith Diefendorff Given a full complement of on-chip memory, increas- ing the clock frequency will increase the performance of the As it climbs rapidly past the 100-million- core. One way to increase frequency is to deepen the pipeline. transistor-per-chip mark, the micro- But with pipelines already reaching upwards of 12–14 stages, processor industry is struggling with the mounting inefficiencies may close this avenue, limiting future question of how to get proportionally more performance out frequency improvements to those that can be attained from of these new transistors. Speaking at the recent Microproces- semiconductor-circuit speedup. Unfortunately this speedup, sor Forum, Joel Emer, a Principal Member of the Technical roughly 20% per year, is well below that required to attain the Staff in Compaq’s Alpha Development Group, described his historical 60% per year performance increase. To prevent company’s approach: simultaneous multithreading, or SMT. bursting this bubble, the only real alternative left is to exploit Emer’s interest in SMT was inspired by the work of more and more parallelism. Dean Tullsen, who described the technique in 1995 while at Indeed, the pursuit of parallelism occupies the energy the University of Washington. Since that time, Emer has of many processor architects today. There are basically two been studying SMT along with other researchers at Washing- theories: one is that instruction-level parallelism (ILP) is ton. Once convinced of its value, he began evangelizing SMT abundant and remains a viable resource waiting to be tapped; within Compaq. -
From Blue Gene to Cell Power.Org Moscow, JSCC Technical Day November 30, 2005
IBM eServer pSeries™ From Blue Gene to Cell Power.org Moscow, JSCC Technical Day November 30, 2005 Dr. Luigi Brochard IBM Distinguished Engineer Deep Computing Architect [email protected] © 2004 IBM Corporation IBM eServer pSeries™ Technology Trends As frequency increase is limited due to power limitation Dual core is a way to : 2 x Peak Performance per chip (and per cycle) But at the expense of frequency (around 20% down) Another way is to increase Flop/cycle © 2004 IBM Corporation IBM eServer pSeries™ IBM innovations POWER : FMA in 1990 with POWER: 2 Flop/cycle/chip Double FMA in 1992 with POWER2 : 4 Flop/cycle/chip Dual core in 2001 with POWER4: 8 Flop/cycle/chip Quadruple core modules in Oct 2005 with POWER5: 16 Flop/cycle/module PowerPC: VMX in 2003 with ppc970FX : 8 Flops/cycle/core, 32bit only Dual VMX+ FMA with pp970MP in 1Q06 Blue Gene: Low frequency , system on a chip, tight integration of thousands of cpus Cell : 8 SIMD units and a ppc970 core on a chip : 64 Flop/cycle/chip © 2004 IBM Corporation IBM eServer pSeries™ Technology Trends As needs diversify, systems are heterogeneous and distributed GRID technologies are an essential part to create cooperative environments based on standards © 2004 IBM Corporation IBM eServer pSeries™ IBM innovations IBM is : a sponsor of Globus Alliances contributing to Globus Tool Kit open souce a founding member of Globus Consortium IBM is extending its products Global file systems : – Multi platform and multi cluster GPFS Meta schedulers : – Multi platform -
IBM Powerpc 970 (A.K.A. G5)
IBM PowerPC 970 (a.k.a. G5) Ref 1 David Benham and Yu-Chung Chen UIC – Department of Computer Science CS 466 PPC 970FX overview ● 64-bit RISC ● 58 million transistors ● 512 KB of L2 cache and 96KB of L1 cache ● 90um process with a die size of 65 sq. mm ● Native 32 bit compatibility ● Maximum clock speed of 2.7 Ghz ● SIMD instruction set (Altivec) ● 42 watts @ 1.8 Ghz (1.3 volts) ● Peak data bandwidth of 6.4 GB per second A picture is worth a 2^10 words (approx.) Ref 2 A little history ● PowerPC processor line is a product of the AIM alliance formed in 1991. (Apple, IBM, and Motorola) ● PPC 601 (G1) - 1993 ● PPC 603 (G2) - 1995 ● PPC 750 (G3) - 1997 ● PPC 7400 (G4) - 1999 ● PPC 970 (G5) - 2002 ● AIM alliance dissolved in 2005 Processor Ref 3 Ref 3 Core details ● 16(int)-25(vector) stage pipeline ● Large number of 'in flight' instructions (various stages of execution) - theoretical limit of 215 instructions ● 512 KB L2 cache ● 96 KB L1 cache – 64 KB I-Cache – 32 KB D-Cache Core details continued ● 10 execution units – 2 load/store operations – 2 fixed-point register-register operations – 2 floating-point operations – 1 branch operation – 1 condition register operation – 1 vector permute operation – 1 vector ALU operation ● 32 64 bit general purpose registers, 32 64 bit floating point registers, 32 128 vector registers Pipeline Ref 4 Benchmarks ● SPEC2000 ● BLAST – Bioinformatics ● Amber / jac - Structure biology ● CFD lab code SPEC CPU2000 ● IBM eServer BladeCenter JS20 ● PPC 970 2.2Ghz ● SPECint2000 ● Base: 986 Peak: 1040 ● SPECfp2000 ● Base: 1178 Peak: 1241 ● Dell PowerEdge 1750 Xeon 3.06Ghz ● SPECint2000 ● Base: 1031 Peak: 1067 Apple’s SPEC Results*2 ● SPECfp2000 ● Base: 1030 Peak: 1044 BLAST Ref. -
Dynamic Helper Threaded Prefetching on the Sun Ultrasparc® CMP Processor
Dynamic Helper Threaded Prefetching on the Sun UltraSPARC® CMP Processor Jiwei Lu, Abhinav Das, Wei-Chung Hsu Khoa Nguyen, Santosh G. Abraham Department of Computer Science and Engineering Scalable Systems Group University of Minnesota, Twin Cities Sun Microsystems Inc. {jiwei,adas,hsu}@cs.umn.edu {khoa.nguyen,santosh.abraham}@sun.com Abstract [26], [28], the processor checkpoints the architectural state and continues speculative execution that Data prefetching via helper threading has been prefetches subsequent misses in the shadow of the extensively investigated on Simultaneous Multi- initial triggering missing load. When the initial load Threading (SMT) or Virtual Multi-Threading (VMT) arrives, the processor resumes execution from the architectures. Although reportedly large cache checkpointed state. In software pre-execution (also latency can be hidden by helper threads at runtime, referred to as helper threads or software scouting) [2], most techniques rely on hardware support to reduce [4], [7], [10], [14], [24], [29], [35], a distilled version context switch overhead between the main thread and of the forward slice starting from the missing load is helper thread as well as rely on static profile feedback executed, minimizing the utilization of execution to construct the help thread code. This paper develops resources. Helper threads utilizing run-time a new solution by exploiting helper threaded pre- compilation techniques may also be effectively fetching through dynamic optimization on the latest deployed on processors that do not have the necessary UltraSPARC Chip-Multiprocessing (CMP) processor. hardware support for hardware scouting (such as Our experiments show that by utilizing the otherwise checkpointing and resuming regular execution). idle processor core, a single user-level helper thread Initial research on software helper threads is sufficient to improve the runtime performance of the developed the underlying run-time compiler main thread without triggering multiple thread slices. -
Chapter 2 Java Processor Architectural
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Leaming 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI" The JAFARDD Processor: A Java Architecture Based on a Folding Algorithm, with Reservation Stations, Dynamic Translation, and Dual Processing by Mohamed Watheq AH Kamel El-Kharashi B. Sc., Ain Shams University, 1992 M. Sc., Ain Shams University, 1996 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of D o c t o r o f P h il o s o p h y in the Department of Electrical and Computer Engineering We accept this dissertation as conforming to the required standard Dr. F. Gebali, Supervisor (Department of Electrical and Computer Engineering) Dr. -
Debugging Multicore & Shared- Memory Embedded Systems
Debugging Multicore & Shared- Memory Embedded Systems Classes 249 & 269 2007 edition Jakob Engblom, PhD Virtutech [email protected] 1 Scope & Context of This Talk z Multiprocessor revolution z Programming multicore z (In)determinism z Error sources z Debugging techniques 2 Scope and Context of This Talk z Some material specific to shared-memory symmetric multiprocessors and multicore designs – There are lots of problems particular to this z But most concepts are general to almost any parallel application – The problem is really with parallelism and concurrency rather than a particular design choice 3 Introduction & Background Multiprocessing: what, why, and when? 4 The Multicore Revolution is Here! z The imminent event of parallel computers with many processors taking over from single processors has been declared before... z This time it is for real. Why? z More instruction-level parallelism hard to find – Very complex designs needed for small gain – Thread-level parallelism appears live and well z Clock frequency scaling is slowing drastically – Too much power and heat when pushing envelope z Cannot communicate across chip fast enough – Better to design small local units with short paths z Effective use of billions of transistors – Easier to reuse a basic unit many times z Potential for very easy scaling – Just keep adding processors/cores for higher (peak) performance 5 Parallel Processing z John Hennessy, interviewed in the ACM Queue sees the following eras of computer architecture evolution: 1. Initial efforts and early designs. 1940. ENIAC, Zuse, Manchester, etc. 2. Instruction-Set Architecture. Mid-1960s. Starting with the IBM System/360 with multiple machines with the same compatible instruction set 3. -
Introduction to the Cell Multiprocessor
Introduction J. A. Kahle M. N. Day to the Cell H. P. Hofstee C. R. Johns multiprocessor T. R. Maeurer D. Shippy This paper provides an introductory overview of the Cell multiprocessor. Cell represents a revolutionary extension of conventional microprocessor architecture and organization. The paper discusses the history of the project, the program objectives and challenges, the design concept, the architecture and programming models, and the implementation. Introduction: History of the project processors in order to provide the required Initial discussion on the collaborative effort to develop computational density and power efficiency. After Cell began with support from CEOs from the Sony several months of architectural discussion and contract and IBM companies: Sony as a content provider and negotiations, the STI (SCEI–Toshiba–IBM) Design IBM as a leading-edge technology and server company. Center was formally opened in Austin, Texas, on Collaboration was initiated among SCEI (Sony March 9, 2001. The STI Design Center represented Computer Entertainment Incorporated), IBM, for a joint investment in design of about $400,000,000. microprocessor development, and Toshiba, as a Separate joint collaborations were also set in place development and high-volume manufacturing technology for process technology development. partner. This led to high-level architectural discussions A number of key elements were employed to drive the among the three companies during the summer of 2000. success of the Cell multiprocessor design. First, a holistic During a critical meeting in Tokyo, it was determined design approach was used, encompassing processor that traditional architectural organizations would not architecture, hardware implementation, system deliver the computational power that SCEI sought structures, and software programming models. -
IBM Power Roadmap
POWER6™ Processor and Systems Jim McInnes [email protected] Compiler Optimization IBM Canada Toronto Software Lab © 2007 IBM Corporation All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only Role .I am a Technical leader in the Compiler Optimization Team . Focal point to the hardware development team . Member of the Power ISA Architecture Board .For each new microarchitecture I . help direct the design toward helpful features . Design and deliver specific compiler optimizations to enable hardware exploitation 2 IBM POWER6 Overview © 2007 IBM Corporation All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only POWER5 Chip Overview High frequency dual-core chip . 8 execution units 2LS, 2FP, 2FX, 1BR, 1CR . 1.9MB on-chip shared L2 – point of coherency, 3 slices . On-chip L3 directory and controller . On-chip memory controller Technology & Chip Stats . 130nm lithography, Cu, SOI . 276M transistors, 389 mm2 . I/Os: 2313 signal, 3057 Power/Gnd 3 IBM POWER6 Overview © 2007 IBM Corporation All statements regarding IBM future directions and intent are subject to change or withdrawal without notice and represent goals and objectives only POWER6 Chip Overview SDU RU Ultra-high frequency dual-core chip IFU FXU . 8 execution units L2 Core0 VMX L2 2LS, 2FP, 2FX, 1BR, 1VMX QUAD LSU FPU QUAD . 2 x 4MB on-chip L2 – point of L3 coherency, 4 quads L2 CNTL CNTL . On-chip L3 directory and controller . Two on-chip memory controllers M FBC GXC M Technology & Chip stats C C . -
Power Architecture® ISA 2.06 Stride N Prefetch Engines to Boost Application's Performance
Power Architecture® ISA 2.06 Stride N prefetch Engines to boost Application's performance History of IBM POWER architecture: POWER stands for Performance Optimization with Enhanced RISC. Power architecture is synonymous with performance. Introduced by IBM in 1991, POWER1 was a superscalar design that implemented register renaming andout-of-order execution. In Power2, additional FP unit and caches were added to boost performance. In 1996 IBM released successor of the POWER2 called P2SC (POWER2 Super chip), which is a single chip implementation of POWER2. P2SC is used to power the 30-node IBM Deep Blue supercomputer that beat world Chess Champion Garry Kasparov at chess in 1997. Power3, first 64 bit SMP, featured a data prefetch engine, non-blocking interleaved data cache, dual floating point execution units, and many other goodies. Power3 also unified the PowerPC and POWER Instruction set and was used in IBM's RS/6000 servers. The POWER3-II reimplemented POWER3 using copper interconnects, delivering double the performance at about the same price. Power4 was the first Gigahertz dual core processor launched in 2001 which was awarded the MicroProcessor Technology Award in recognition of its innovations and technology exploitation. Power5 came in with symmetric multi threading (SMT) feature to further increase application's performance. In 2004, IBM with 15 other companies founded Power.org. Power.org released the Power ISA v2.03 in September 2006, Power ISA v.2.04 in June 2007 and Power ISA v.2.05 with many advanced features such as VMX, virtualization, variable length encoding, hyper visor functionality, logical partitioning, virtual page handling, Decimal Floating point and so on which further boosted the architecture leadership in the market place and POWER5+, Cell, POWER6, PA6T, Titan are various compliant cores. -
Ultrasparc-III Ultrasparc-III Vs Intel IA-64
UltraSparc-III UltraSparc-III vs Intel IA-64 vs • Introduction Intel IA-64 • Framework Definition Maria Celeste Marques Pinto • Architecture Comparition Departamento de Informática, Universidade do Minho • Future Trends 4710 - 057 Braga, Portugal [email protected] • Conclusions ICCA’03 ICCA’03 Introduction Framework Definition • UltraSparc-III (US-III) is the third generation from the • Reliability UltraSPARC family of Sun • Instruction level Parallelism (ILP) • Is a RISC processor and uses the 64-bit SPARC-V9 architecture – instructions per cycle • IA-64 is Intel’s extension into a 64-bit architecture • Branch Handling • IA-64 processor is based on a concept known as EPIC (Explicitly – Techniques: Parallel Instruction Computing) • branch delay slots • predication – Strategies: • static •dynamic ICCA’03 ICCA’03 Framework Definition Framework Definition • Memory Hierarchy • Pipeline – main memory and cache memory – increase the speed of CPU processing – cache levels location – several stages that performs part of the work necessary to execute an instruction – cache organization: • fully associative - every entry has a slot in the "cache directory" to indicate • Instruction Set (IS) where it came from in memory – is the hardware "language" in which the software tells the processor what to do • one-way set associative - only a single directory entry be searched – can be divided into four basic types of operations such as arithmetic, logical, • two-way set associative - two entries per slot to be searched (and is extended to program-control