Chapter 1 – Vocabulary & Study Guide 1) Hypothesis an Educated

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 – Vocabulary & Study Guide 1) Hypothesis an Educated Chapter 1 – Vocabulary & Study Guide 1) hypothesis an educated guess about a possible solution to a mystery; a prediction or statement that can be tested; A reasonable or educated guess; what a scientist thinks will happen in an experiment. Hypotheses are based on observations, research, and what is already known about the subject, you should be able to test your hypothesis through experimentation. 2) scientific method a problem-solving procedure used by scientists that follows steps to draw a conclusion, it includes identifying a problem, gathering information, making hypotheses, testing the hypotheses, analyzing the results, and drawing conclusions. 3) science a process of observing, studying, and thinking about things to gain knowledge to better understand the world. 4) Earth Science the study of Earth and space. 5) variable different factors that can change in an experiment; something that can change or "vary" in a situation. 6) independent variable sometimes called the manipulated variable; the variable that changes, or is changed by the researcher. A variable that is deliberately or intentionally changed by the scientist in an experiment. 7) constant variables that do not change in an experiment. 8) dependent variable sometimes called the responding variable; the variable being measured; a variable that changes as a result of the manipulation of another variable. The responding variable is not changed intentionally, rather, it changes because of what the scientist did with the independent variable. 9) control a standard to which results can be compared; the same experiment done with the same variables, except it omits the independent variable. 10) technology use of scientific discoveries for practical purposes such as making pottery or extracting metals from rocks, use of knowledge to make products or tools 11) scientific theory an explanation or model backed by results obtained from many tests or experiments A scientific law is a description of an observed phenomenon. A scientific theory is an explanation of an observed phenomenon. Theory - uses many observations and has loads of experimental evidence - can be applied to unrelated facts and new relationships - flexible enough to be modified if new data/evidence introduced 12) scientific law a rule that describes the behavior of something in nature, usually without explaining why the behavior occurs. A scientific law is a description of an observed phenomenon. A scientific theory is an explanation of an observed phenomenon Law - stands the test of time, often without change - experimentally confirmed over and over - can create true predictions for different situations - has uniformity and is universal 13) ethics deals with moral values about what is good or bad; a system of moral principles. Problems that deal with ethics cannot be solved using scientific methods. 14) bias personal opinion that may affect experiment results; prejudice in favor of or against one thing, person, or group compared with another, usually in a way considered to be unfair. 15) anemometer measures wind speed 16) barometer measures atmospheric ( barometric) pressure 17) hygrometer measures the percentage of water (hy-) vapor in the air 18) thermometer measures temperature 19) conclusion / inference summarizes the test, tells whether the hypothesis was correct or not, and suggests what parts of the test could be changed to make it better; a judgment or decision reached by reasoning; the result or outcome; he solution or answer to a problem. The conclusion is what the scientist has learned about the problem through experimentation, This is where all of the results from the experiment are analyzed and a determination is reached about the hypothesis. 20) fraud opposite of ethical behavior, includes making up data, changing experiment results, or taking credit for another’s work 21) Joseph Henry was an American scientist who served as the first Secretary of the Smithsonian Institution in 1850. He was the first person to draw and compile weather maps. 22) Weather Bureau formerly an agency responsible for the gathering and interpreting of meteorological data for weather study and forecasts. It was formed and functioning by the late 1800s and was renamed the National Weather Service in 1970 when it became part of the National Oceanic and Atmosphere Administration (NOAA). 23) transferable technology technology that can be applied to new situations, other than what it was originally designed for 24) NOAA National Oceanic and Atmosphere Administration, The National Oceanic and Atmospheric Administration (NOAA) is a science-based federal agency of the United States federal government responsible for monitoring our climate and our environment, and taking steps to preserve them. 25) GPS Global Positioning System, a radio system that uses signals from satellites to tell you where you are and to give you directions to other places 26) experiment/experimental a scientific test in which you perform a series of actions and carefully observe their effects in order to learn about something, a scientific procedure undertaken to make a discovery, test a hypothesis, or demonstrate a known fact. .
Recommended publications
  • Generalized Linear Models (Glms)
    San Jos´eState University Math 261A: Regression Theory & Methods Generalized Linear Models (GLMs) Dr. Guangliang Chen This lecture is based on the following textbook sections: • Chapter 13: 13.1 – 13.3 Outline of this presentation: • What is a GLM? • Logistic regression • Poisson regression Generalized Linear Models (GLMs) What is a GLM? In ordinary linear regression, we assume that the response is a linear function of the regressors plus Gaussian noise: 0 2 y = β0 + β1x1 + ··· + βkxk + ∼ N(x β, σ ) | {z } |{z} linear form x0β N(0,σ2) noise The model can be reformulate in terms of • distribution of the response: y | x ∼ N(µ, σ2), and • dependence of the mean on the predictors: µ = E(y | x) = x0β Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University3/24 Generalized Linear Models (GLMs) beta=(1,2) 5 4 3 β0 + β1x b y 2 y 1 0 −1 0.0 0.2 0.4 0.6 0.8 1.0 x x Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University4/24 Generalized Linear Models (GLMs) Generalized linear models (GLM) extend linear regression by allowing the response variable to have • a general distribution (with mean µ = E(y | x)) and • a mean that depends on the predictors through a link function g: That is, g(µ) = β0x or equivalently, µ = g−1(β0x) Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University5/24 Generalized Linear Models (GLMs) In GLM, the response is typically assumed to have a distribution in the exponential family, which is a large class of probability distributions that have pdfs of the form f(x | θ) = a(x)b(θ) exp(c(θ) · T (x)), including • Normal - ordinary linear regression • Bernoulli - Logistic regression, modeling binary data • Binomial - Multinomial logistic regression, modeling general cate- gorical data • Poisson - Poisson regression, modeling count data • Exponential, Gamma - survival analysis Dr.
    [Show full text]
  • How Prediction Statistics Can Help Us Cope When We Are Shaken, Scared and Irrational
    EGU21-15219 https://doi.org/10.5194/egusphere-egu21-15219 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. How prediction statistics can help us cope when we are shaken, scared and irrational Yavor Kamer1, Shyam Nandan2, Stefan Hiemer1, Guy Ouillon3, and Didier Sornette4,5 1RichterX.com, Zürich, Switzerland 2Windeggstrasse 5, 8953 Dietikon, Zurich, Switzerland 3Lithophyse, Nice, France 4Department of Management,Technology and Economics, ETH Zürich, Zürich, Switzerland 5Institute of Risk Analysis, Prediction and Management (Risks-X), SUSTech, Shenzhen, China Nature is scary. You can be sitting at your home and next thing you know you are trapped under the ruble of your own house or sucked into a sinkhole. For millions of years we have been the figurines of this precarious scene and we have found our own ways of dealing with the anxiety. It is natural that we create and consume prophecies, conspiracies and false predictions. Information technologies amplify not only our rational but also irrational deeds. Social media algorithms, tuned to maximize attention, make sure that misinformation spreads much faster than its counterpart. What can we do to minimize the adverse effects of misinformation, especially in the case of earthquakes? One option could be to designate one authoritative institute, set up a big surveillance network and cancel or ban every source of misinformation before it spreads. This might have worked a few centuries ago but not in this day and age. Instead we propose a more inclusive option: embrace all voices and channel them into an actual, prospective earthquake prediction platform (Kamer et al.
    [Show full text]
  • Greek and Latin Roots, Prefixes, and Suffixes
    GREEK AND LATIN ROOTS, PREFIXES, AND SUFFIXES This is a resource pack that I put together for myself to teach roots, prefixes, and suffixes as part of a separate vocabulary class (short weekly sessions). It is a combination of helpful resources that I have found on the web as well as some tips of my own (such as the simple lesson plan). Lesson Plan Ideas ........................................................................................................... 3 Simple Lesson Plan for Word Study: ........................................................................... 3 Lesson Plan Idea 2 ...................................................................................................... 3 Background Information .................................................................................................. 5 Why Study Word Roots, Prefixes, and Suffixes? ......................................................... 6 Latin and Greek Word Elements .............................................................................. 6 Latin Roots, Prefixes, and Suffixes .......................................................................... 6 Root, Prefix, and Suffix Lists ........................................................................................... 8 List 1: MEGA root list ................................................................................................... 9 List 2: Roots, Prefixes, and Suffixes .......................................................................... 32 List 3: Prefix List ......................................................................................................
    [Show full text]
  • Reliability Engineering: Trends, Strategies and Best Practices
    Reliability Engineering: Trends, Strategies and Best Practices WHITE PAPER September 2007 Predictive HCL’s Predictive Engineering encompasses the complete product life-cycle process, from concept to design to prototyping/testing, all the way to manufacturing. This helps in making decisions early Engineering in the design process, perfecting the product – thereby cutting down cycle time and costs, and Think. Design. Perfect! meeting set reliability and quality standards. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 TABLE OF CONTENTS Abstract 3 Importance of reliability engineering in product industry 3 Current trends in reliability engineering 4 Reliability planning – an important task 5 Strength of reliability analysis 6 Is your reliability test plan optimized? 6 Challenges to overcome 7 Outsourcing of a reliability task 7 About HCL 10 © 2007, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 Abstract In reliability engineering, product industries now follow a conscious and planned approach to effectively address multiple issues related to product certification, failure returns, customer satisfaction, market competition and product lifecycle cost. Today, reliability professionals face new challenges posed by advanced and complex technology. Expertise and experience are necessary to provide an optimized solution meeting time and cost constraints associated with analysis and testing. In the changed scenario, the reliability approach has also become more objective and result oriented. This is well supported by analysis software. This paper discusses all associated issues including outsourcing of reliability tasks to a professional service provider as an alternate cost-effective option. Importance of reliability engineering in product industry The degree of importance given to the reliability of products varies depending on their criticality.
    [Show full text]
  • Principles of Scientific Inquiry
    Chapter 2 PRINCIPLES OF SCIENTIFIC INQUIRY Introduction This chapter provides a summary of the principles of scientific inquiry. The purpose is to explain terminology, and introduce concepts, which are explained more completely in later chapters. Much of the content has been based on explanations and examples given by Wilson (1). The Scientific Method Although most of us have heard, at some time in our careers, that research must be carried out according to “the scientific method”, there is no single, scientific method. The term is usually used to mean a systematic approach to solving a problem in science. Three types of investigation, or method, can be recognized: · The Observational Method · The Experimental (and quasi-experimental) Methods, and · The Survey Method. The observational method is most common in the natural sciences, especially in fields such as biology, geology and environmental science. It involves recording observations according to a plan, which prescribes what information to collect, where it should be sought, and how it should be recorded. In the observational method, the researcher does not control any of the variables. In fact, it is important that the research be carried out in such a manner that the investigations do not change the behaviour of what is being observed. Errors introduced as a result of observing a phenomenon are known as systematic errors because they apply to all observations. Once a valid statistical sample (see Chapter Four) of observations has been recorded, the researcher analyzes and interprets the data, and develops a theory or hypothesis, which explains the observations. The experimental method begins with a hypothesis.
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • Hempel and Confirmation Theory
    Hempel and Confirmation Theory Jan Sprenger* June 15, 2020 Carl Gustav Hempel (1905–1997) was one of the primary exponents of logical empiricism. As a student and member of the Gesellschaft für em- pirische Philosophie in Berlin, alongside Reichenbach and Grelling, he wit- nessed the emergence of logical empiricism as a philosophical program. From the mid-1930s onwards, his contributions shaped its development, too. Hempel studied primarily in Göttingen and Berlin, but in 1929/30, he also spent a semester in Vienna studying with Carnap and partici- pated in the activities of the Vienna Circle. Both societies joined forces for organizing scientific events, and founded the journal Erkenntnis in 1930, where many seminal papers of logical empiricism were published, with Carnap and Reichenbach as editors. While the work of the Berlin philosophers is congenial to the project of the Vienna Circle, there are important differences, too. Neither Hempel nor his mentor Reichenbach identified “scientific philosophy” with the project of cleansing science of meaningless statements (e.g., Carnap 1930). Rather, Hempel extensively used a method that Carnap would apply in later works on probability and confirmation (Carnap 1950, 1952): expli- cation, that is, the replacement of a vague and imprecise pre-theoretical concept (e.g., “confirmation”) by a fruitful and precise concept (e.g., a formal confirmation criterion). Relying on the method of explication, Hempel developed adequacy conditions on a qualitative concept of con- firmation (Hempel 1943, 1945a,b), a probabilistic measure of degree of *Contact information: Center for Logic, Language and Cognition (LLC), Department of Philosophy and Education Sciences, Università degli Studi di Torino, Via Sant’Ottavio 20, 10124 Torino, Italy.
    [Show full text]
  • This Is Dr. Chumney. the Focus of This Lecture Is Hypothesis Testing –Both What It Is, How Hypothesis Tests Are Used, and How to Conduct Hypothesis Tests
    TRANSCRIPT: This is Dr. Chumney. The focus of this lecture is hypothesis testing –both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing. 2 TRANSCRIPT: Let’s being the lecture with a summary of the logic process that underlies hypothesis testing. 3 TRANSCRIPT: It is often impossible or otherwise not feasible to collect data on every individual within a population. Therefore, researchers rely on samples to help answer questions about populations. Hypothesis testing is a statistical procedure that allows researchers to use sample data to draw inferences about the population of interest. Hypothesis testing is one of the most commonly used inferential procedures. Hypothesis testing will combine many of the concepts we have already covered, including z‐scores, probability, and the distribution of sample means. To conduct a hypothesis test, we first state a hypothesis about a population, predict the characteristics of a sample of that population (that is, we predict that a sample will be representative of the population), obtain a sample, then collect data from that sample and analyze the data to see if it is consistent with our hypotheses. 4 TRANSCRIPT: The process of hypothesis testing begins by stating a hypothesis about the unknown population. Actually we state two opposing hypotheses. The first hypothesis we state –the most important one –is the null hypothesis. The null hypothesis states that the treatment has no effect. In general the null hypothesis states that there is no change, no difference, no effect, and otherwise no relationship between the independent and dependent variables.
    [Show full text]
  • The Scientific Method: Hypothesis Testing and Experimental Design
    Appendix I The Scientific Method The study of science is different from other disciplines in many ways. Perhaps the most important aspect of “hard” science is its adherence to the principle of the scientific method: the posing of questions and the use of rigorous methods to answer those questions. I. Our Friend, the Null Hypothesis As a science major, you are probably no stranger to curiosity. It is the beginning of all scientific discovery. As you walk through the campus arboretum, you might wonder, “Why are trees green?” As you observe your peers in social groups at the cafeteria, you might ask yourself, “What subtle kinds of body language are those people using to communicate?” As you read an article about a new drug which promises to be an effective treatment for male pattern baldness, you think, “But how do they know it will work?” Asking such questions is the first step towards hypothesis formation. A scientific investigator does not begin the study of a biological phenomenon in a vacuum. If an investigator observes something interesting, s/he first asks a question about it, and then uses inductive reasoning (from the specific to the general) to generate an hypothesis based upon a logical set of expectations. To test the hypothesis, the investigator systematically collects data, either with field observations or a series of carefully designed experiments. By analyzing the data, the investigator uses deductive reasoning (from the general to the specific) to state a second hypothesis (it may be the same as or different from the original) about the observations.
    [Show full text]
  • An Introduction to Philosophy
    An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so.
    [Show full text]
  • Prediction in Multilevel Generalized Linear Models
    J. R. Statist. Soc. A (2009) 172, Part 3, pp. 659–687 Prediction in multilevel generalized linear models Anders Skrondal Norwegian Institute of Public Health, Oslo, Norway and Sophia Rabe-Hesketh University of California, Berkeley, USA, and Institute of Education, London, UK [Received February 2008. Final revision October 2008] Summary. We discuss prediction of random effects and of expected responses in multilevel generalized linear models. Prediction of random effects is useful for instance in small area estimation and disease mapping, effectiveness studies and model diagnostics. Prediction of expected responses is useful for planning, model interpretation and diagnostics. For prediction of random effects, we concentrate on empirical Bayes prediction and discuss three different kinds of standard errors; the posterior standard deviation and the marginal prediction error standard deviation (comparative standard errors) and the marginal sampling standard devi- ation (diagnostic standard error). Analytical expressions are available only for linear models and are provided in an appendix. For other multilevel generalized linear models we present approximations and suggest using parametric bootstrapping to obtain standard errors. We also discuss prediction of expectations of responses or probabilities for a new unit in a hypotheti- cal cluster, or in a new (randomly sampled) cluster or in an existing cluster. The methods are implemented in gllamm and illustrated by applying them to survey data on reading proficiency of children nested in schools. Simulations are used to assess the performance of various pre- dictions and associated standard errors for logistic random-intercept models under a range of conditions. Keywords: Adaptive quadrature; Best linear unbiased predictor (BLUP); Comparative standard error; Diagnostic standard error; Empirical Bayes; Generalized linear mixed model; gllamm; Mean-squared error of prediction; Multilevel model; Posterior; Prediction; Random effects; Scoring 1.
    [Show full text]
  • A Philosophical Treatise of Universal Induction
    Entropy 2011, 13, 1076-1136; doi:10.3390/e13061076 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Philosophical Treatise of Universal Induction Samuel Rathmanner and Marcus Hutter ? Research School of Computer Science, Australian National University, Corner of North and Daley Road, Canberra ACT 0200, Australia ? Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 20 April 2011; in revised form: 24 May 2011 / Accepted: 27 May 2011 / Published: 3 June 2011 Abstract: Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.
    [Show full text]