General-Purpose Computing with Virtualbox on Genode/NOVA

Total Page:16

File Type:pdf, Size:1020Kb

General-Purpose Computing with Virtualbox on Genode/NOVA General-purpose computing with VirtualBox on Genode/NOVA Norman Feske <[email protected]> Outline 1. VirtualBox 2. NOVA microhypervisor and Genode 3. Transplantation of VirtualBox to NOVA 4. Demo 5. War stories 6. Project Turmvilla 7. The Book “Genode Foundations” General-purpose computing with VirtualBox on Genode/NOVA2 Outline 1. VirtualBox 2. NOVA microhypervisor and Genode 3. Transplantation of VirtualBox to NOVA 4. Demo 5. War stories 6. Project Turmvilla 7. The Book “Genode Foundations” General-purpose computing with VirtualBox on Genode/NOVA3 Architecture overview config, status SVC VM xpcom VM process xpcom process IPCD xpcom xpcom VBoxManage VirtualBox Application /dev/vboxdrv /dev/vboxdrv General-purpose computing with VirtualBox on Genode/NOVA4 Starting up a VM process VM process open /dev/vboxdrv kernel vboxdrv.ko General-purpose computing with VirtualBox on Genode/NOVA5 VM process running root mode non-root mode VM process load VMMR0 /dev/vboxdrv kernel vboxdrv.ko VMMR0 / Hypervisor General-purpose computing with VirtualBox on Genode/NOVA6 Entering the Guest OS root mode non-root mode VM process ioctrl VM RUN /dev/vboxdrv Guest OS kernel vboxdrv.ko world switch General-purpose computing with VirtualBox on Genode/NOVA7 Flow of a virtualization event root mode non-root mode VM process VM RUN returns /dev/vboxdrv Guest OS kernel vboxdrv.ko no yes VMMR0 ? world switch General-purpose computing with VirtualBox on Genode/NOVA8 root mode non-root mode VM process /dev/vboxdrv Guest OS kernel highly complex vboxdrv.ko VMMR0 / Hypervisor Risks for desktop virtualization General-purpose computing with VirtualBox on Genode/NOVA9 root mode non-root mode VM process /dev/vboxdrv Guest OS kernel highly complex vboxdrv.ko VMMR0 / Hypervisor Risks for desktop virtualization General-purpose computing with VirtualBox on Genode/NOVA9 Risks for desktop virtualization root mode non-root mode VM process access control? /dev/vboxdrv Guest OS kernel highly complex vboxdrv.ko VMMR0 / Hypervisor General-purpose computing with VirtualBox on Genode/NOVA 10 Risks for desktop virtualization root mode non-root mode authorized to change the kernel VM process highly complex access control? /dev/vboxdrv Guest OS kernel highly complex vboxdrv.ko VMMR0 / Hypervisor General-purpose computing with VirtualBox on Genode/NOVA 11 Outline 1. VirtualBox 2. NOVA microhypervisor and Genode 3. Transplantation of VirtualBox to NOVA 4. Demo 5. War stories 6. Project Turmvilla 7. The Book “Genode Foundations” General-purpose computing with VirtualBox on Genode/NOVA 12 NOVA architecture Guest OS Guest OS Guest OS non-root mode root mode VMM VMM VMM Resource management Apps Drivers 9,000 SLOC kernel NOVA Microhypervisor General-purpose computing with VirtualBox on Genode/NOVA 13 Flow of a virtualization event User-level VMM Guest OS UTCB VMCS UTCB copy NOVA world switch General-purpose computing with VirtualBox on Genode/NOVA 14 Genode OS architecture → Application-specific TCB General-purpose computing with VirtualBox on Genode/NOVA 15 Genode OS framework General-purpose computing with VirtualBox on Genode/NOVA 16 Genode combined with virtualization General-purpose computing with VirtualBox on Genode/NOVA 17 Seoul VMM on top of Genode/NOVA Unmodified Guest OS Kernel virtual virtual virtual CPU RAM device Resource Device VMM Multiplexer Driver Init Core User Mode NOVA Hypervisor Privileged Mode General-purpose computing with VirtualBox on Genode/NOVA 18 Idea Device models and features of VirtualBox + Security of the Genode/NOVA architecture General-purpose computing with VirtualBox on Genode/NOVA 19 Outline 1. VirtualBox 2. NOVA microhypervisor and Genode 3. Transplantation of VirtualBox to NOVA 4. Demo 5. War stories 6. Project Turmvilla 7. The Book “Genode Foundations” General-purpose computing with VirtualBox on Genode/NOVA 20 Identify the interesting parts Entire VirtualBox code base > 4 million lines of code (sloccount) Narrowed to the interesting parts > 2 million lines of code src/VBox/VMM src/recompiler src/VBox/Main src/libs/liblzf-3.4 src/VBox/Runtime src/libs/liblzf-3.4/cs src/VBox/Devices src/libs/libxml2-2.6.31 src/VBox/Storage src/libs/zlib-1.2.6 src/VBox/GuestHost include/VBox src/VBox/Disassembler include/iprt src/VBox/HostServices General-purpose computing with VirtualBox on Genode/NOVA 21 → Most parts of the POSIX runtime could be reused Porting the VirtualBox Runtime to Genode Facilitate Genode’s existing infrastructure I 3rd-party software management tools I FreeBSD libc I Standard C++ library I POSIX threads General-purpose computing with VirtualBox on Genode/NOVA 22 Porting the VirtualBox Runtime to Genode Facilitate Genode’s existing infrastructure I 3rd-party software management tools I FreeBSD libc I Standard C++ library I POSIX threads → Most parts of the POSIX runtime could be reused General-purpose computing with VirtualBox on Genode/NOVA 22 Guest memory (accessed by recompiler and device models) RAM, MMIO I/O-port handling PGM, HWACCM, TM Device models, PDM, BIOS Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface VM process initialization Enable subsystems one by one General-purpose computing with VirtualBox on Genode/NOVA 23 I/O-port handling PGM, HWACCM, TM Device models, PDM, BIOS Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface VM process initialization Enable subsystems one by one Guest memory (accessed by recompiler and device models) RAM, MMIO General-purpose computing with VirtualBox on Genode/NOVA 23 PGM, HWACCM, TM Device models, PDM, BIOS Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface VM process initialization Enable subsystems one by one Guest memory (accessed by recompiler and device models) RAM, MMIO I/O-port handling General-purpose computing with VirtualBox on Genode/NOVA 23 Device models, PDM, BIOS Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface VM process initialization Enable subsystems one by one Guest memory (accessed by recompiler and device models) RAM, MMIO I/O-port handling PGM, HWACCM, TM General-purpose computing with VirtualBox on Genode/NOVA 23 Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface VM process initialization Enable subsystems one by one Guest memory (accessed by recompiler and device models) RAM, MMIO I/O-port handling PGM, HWACCM, TM Device models, PDM, BIOS General-purpose computing with VirtualBox on Genode/NOVA 23 VM process initialization Enable subsystems one by one Guest memory (accessed by recompiler and device models) RAM, MMIO I/O-port handling PGM, HWACCM, TM Device models, PDM, BIOS Host drivers I Using the “Basic front end” I Reimplement SDLConsole interface General-purpose computing with VirtualBox on Genode/NOVA 23 A look inside a VM process Recompiler Hardware Acceleration Execution Manager VM VM Instruction Exit Enter Emulator General-purpose computing with VirtualBox on Genode/NOVA 24 Start with executing the recompiler only Recompiler Hardware Acceleration Execution Manager Instruction Emulator General-purpose computing with VirtualBox on Genode/NOVA 25 Simple test scenario FB SDL VirtualBox Framebuffer Input ISO image Init ROM Core kernel Linux General-purpose computing with VirtualBox on Genode/NOVA 26 2. Small Linux-based images (Tinycore, GRML) 3. Windows XP Increasing guest complexity 1. Custom-made Genode OS scenarios General-purpose computing with VirtualBox on Genode/NOVA 27 3. Windows XP Increasing guest complexity 1. Custom-made Genode OS scenarios 2. Small Linux-based images (Tinycore, GRML) General-purpose computing with VirtualBox on Genode/NOVA 27 Increasing guest complexity 1. Custom-made Genode OS scenarios 2. Small Linux-based images (Tinycore, GRML) 3. Windows XP General-purpose computing with VirtualBox on Genode/NOVA 27 Windows XP as a guest FB SDL LX Proxy FS VirtualBox Framebuffer Input File system VDI image Init Core kernel Linux General-purpose computing with VirtualBox on Genode/NOVA 28 PS/2 driver VESA driver Rump FS AHCI driver VirtualBox Input Framebuffer File system Block VDI image Init Core kernel NOVA Move scenario to NOVA General-purpose computing with VirtualBox on Genode/NOVA 29 PS/2 driver VESA driver Rump FS AHCI driver VirtualBox Input Framebuffer File system Block VDI image Init Core kernel NOVA Move scenario to NOVA General-purpose computing with VirtualBox on Genode/NOVA 29 Entering non-root mode Recompiler Hardware Acceleration Execution Manager IRQs VM VM Instruction Exit Enter Emulator General-purpose computing with VirtualBox on Genode/NOVA 30 Virtualization of guest memory (EPT faults) Enter VT-x conservatively (if protected mode and paging enabled) Inject IRQs into recompiler Later: IRQ injection via NOVA into VT-X Entering non-root mode VBox VM state ↔ NOVA UTCB state General-purpose computing with VirtualBox on Genode/NOVA 31 Enter VT-x conservatively (if protected mode and paging enabled) Inject IRQs into recompiler Later: IRQ injection via NOVA into VT-X Entering non-root mode VBox VM state ↔ NOVA UTCB state Virtualization of guest memory (EPT faults) General-purpose computing with VirtualBox on Genode/NOVA 31 Inject IRQs into recompiler Later: IRQ injection via NOVA into VT-X Entering non-root mode VBox VM state ↔ NOVA UTCB state Virtualization of guest memory (EPT faults) Enter VT-x conservatively (if protected mode and paging enabled) General-purpose computing with VirtualBox on Genode/NOVA 31 Later: IRQ injection via NOVA into VT-X Entering non-root mode VBox VM state ↔ NOVA
Recommended publications
  • Upgrading Cfengine Nova a Cfengine Special Topics Handbook
    Upgrading CFEngine Nova A CFEngine Special Topics Handbook CFEngine AS This document describes how software updates work in CFEngine Nova. ¨ © Copyright c 2010- CFEngine AS 1 v i Table of Contents What does upgrading mean? ::::::::::::::::::::::::::::::::::::::::: 3 Why do I need to upgrade?::::::::::::::::::::::::::::::::::::::::::: 3 How does upgrading work? ::::::::::::::::::::::::::::::::::::::::::: 3 How can I do phased deployment? :::::::::::::::::::::::::::::::::::: 4 What if I have multiple operating system platforms? ::::::::::::::::::: 4 How do Nova policies update if I already have my own policy? ::::::::: 4 Appendix A Manual package upgrade commands ::::::: 5 3 What does upgrading mean? A software upgrade involves obtaining a new version of the CFEngine software from soft- ware.CFEngine.com and installing it in place of the old. When software is updated, the previous version of the software is retained. From version 1.1 of CFEngine Nova, CFEngine is fully capable of managing its own updates ¨ and service restarts with a minimum of manual work on the policy server. Existing users of version 1.0 will need to upgrade the software manually on the affected sys- tems, or use the existing CFEngine to assist in the manual process. Please contact CFEngine Professional Services for for assistance (see Appendix). © Why do I need to upgrade? Bug fixes and new features are included in new software releases. To gain access to these fixes, you need to upgrade the software. Changes to the standard Community Open Promise Body Library might make use of new features, so upgrading brings you access to these new methods. How does upgrading work? CFEngine packages its software in operating sytsem compatible package formats (RPM, PKG, MSI, etc).
    [Show full text]
  • Ein Wilder Ritt Distributionen
    09/2016 Besichtigungstour zu den skurrilsten Linux-Distributionen Titelthema Ein wilder Ritt Distributionen 28 Seit den frühen 90ern schießen die Linux-Distributionen wie Pilze aus dem Boden. Das Linux-Magazin blickt zurück auf ein paar besonders erstaunliche oder schräge Exemplare. Kristian Kißling www.linux-magazin.de © Antonio Oquias, 123RF Oquias, © Antonio Auch wenn die Syntax anderes vermu- samer Linux-Distributionen aufzustellen, Basis für Evil Entity denkt (Grün!), liegt ten lässt, steht der Name des klassischen denn in den zweieinhalb Jahrzehnten falsch. Tatsächlich basierte Evil Entity auf Linux-Tools »awk« nicht für Awkward kreuzte eine Menge von ihnen unseren Slackware und setzte auf einen eher düs- (zu Deutsch etwa „tolpatschig“), sondern Weg. Während einige davon noch putz- ter anmutenden Enlightenment-Desktop für die Namen seiner Autoren, nämlich munter in die Zukunft blicken, ist bei an- (Abbildung 3). Alfred Aho, Peter Weinberger und Brian deren nicht recht klar, welche Zielgruppe Als näher am Leben erwies sich der Fo- Kernighan. Kryptische Namen zu geben sie anpeilen oder ob sie überhaupt noch kus der Distribution, der auf dem Ab- sei eine lange etablierte Unix-Tradition, am Leben sind. spielen von Multimedia-Dateien lag – sie heißt es auf einer Seite des Debian-Wiki wollten doch nur Filme schauen. [1], die sich mit den Namen traditioneller Linux für Zombies Linux-Tools beschäftigt. Je kaputter, desto besser Denn, steht dort weiter, häufig halten Apropos untot: Die passende Linux- Entwickler die Namen ihrer Tools für Distribution für Zombies ließ sich recht Auch Void Linux [4], der Name steht selbsterklärend oder sie glauben, dass einfach ermitteln. Sie heißt Undead Linux je nach Übersetzung für „gleichgültig“ sie die User ohnehin nicht interessieren.
    [Show full text]
  • NOVA: a Log-Structured File System for Hybrid Volatile/Non
    NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu and Steven Swanson, University of California, San Diego https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu This paper is included in the Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST ’16). February 22–25, 2016 • Santa Clara, CA, USA ISBN 978-1-931971-28-7 Open access to the Proceedings of the 14th USENIX Conference on File and Storage Technologies is sponsored by USENIX NOVA: A Log-structured File System for Hybrid Volatile/Non-volatile Main Memories Jian Xu Steven Swanson University of California, San Diego Abstract Hybrid DRAM/NVMM storage systems present a host of opportunities and challenges for system designers. These sys- Fast non-volatile memories (NVMs) will soon appear on tems need to minimize software overhead if they are to fully the processor memory bus alongside DRAM. The result- exploit NVMM’s high performance and efficiently support ing hybrid memory systems will provide software with sub- more flexible access patterns, and at the same time they must microsecond, high-bandwidth access to persistent data, but provide the strong consistency guarantees that applications managing, accessing, and maintaining consistency for data require and respect the limitations of emerging memories stored in NVM raises a host of challenges. Existing file sys- (e.g., limited program cycles). tems built for spinning or solid-state disks introduce software Conventional file systems are not suitable for hybrid mem- overheads that would obscure the performance that NVMs ory systems because they are built for the performance char- should provide, but proposed file systems for NVMs either in- acteristics of disks (spinning or solid state) and rely on disks’ cur similar overheads or fail to provide the strong consistency consistency guarantees (e.g., that sector updates are atomic) guarantees that applications require.
    [Show full text]
  • Red Hat Enterprise Linux Openstack Platform on Inktank Ceph Enterprise
    Red Hat Enterprise Linux OpenStack Platform on Inktank Ceph Enterprise Cinder Volume Performance Performance Engineering Version 1.0 December 2014 100 East Davie Street Raleigh NC 27601 USA Phone: +1 919 754 4950 Fax: +1 919 800 3804 Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat "Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other countries. Dell, the Dell logo and PowerEdge are trademarks of Dell, Inc. Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. All other trademarks referenced herein are the property of their respective owners. © 2014 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/). The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable for technical or editorial errors or omissions contained herein. Distribution of modified versions of this document is prohibited without the explicit permission of Red Hat Inc. Distribution of this work or derivative of this work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from Red Hat Inc. The GPG fingerprint of the [email protected] key is: CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E www.redhat.com 2 Performance Engineering Table of Contents 1 Executive Summary ........................................................................................
    [Show full text]
  • Introduction to Fmxlinux Delphi's Firemonkey For
    Introduction to FmxLinux Delphi’s FireMonkey for Linux Solution Jim McKeeth Embarcadero Technologies [email protected] Chief Developer Advocate & Engineer For quality purposes, all lines except the presenter are muted IT’S OK TO ASK QUESTIONS! Use the Q&A Panel on the Right This webinar is being recorded for future playback. Recordings will be available on Embarcadero’s YouTube channel Your Presenter: Jim McKeeth Embarcadero Technologies [email protected] | @JimMcKeeth Chief Developer Advocate & Engineer Agenda • Overview • Installation • Supported platforms • PAServer • SDK & Packages • Usage • UI Elements • Samples • Database Access FireDAC • Migrating from Windows VCL • midaconverter.com • 3rd Party Support • Broadway Web Why FMX on Linux? • Education - Save money on Windows licenses • Kiosk or Point of Sale - Single purpose computers with locked down user interfaces • Security - Linux offers more security options • IoT & Industrial Automation - Add user interfaces for integrated systems • Federal Government - Many govt systems require Linux support • Choice - Now you can, so might as well! Delphi for Linux History • 1999 Kylix: aka Delphi for Linux, introduced • It was a port of the IDE to Linux • Linux x86 32-bit compiler • Used the Trolltech QT widget library • 2002 Kylix 3 was the last update to Kylix • 2017 Delphi 10.2 “Tokyo” introduced Delphi for x86 64-bit Linux • IDE runs on Windows, cross compiles to Linux via the PAServer • Designed for server side development - no desktop widget GUI library • 2017 Eugene
    [Show full text]
  • Microkernel Construction Introduction
    Microkernel Construction Introduction Nils Asmussen 04/09/2020 1 / 32 Normal Organization Thursday, 4th DS, 2 SWS Slides: www.tudos.org ! Studies ! Lectures ! MKC Subscribe to our mailing list: www.tudos.org/mailman/listinfo/mkc2020 In winter term: Microkernel-based operating systems (MOS) Various labs 2 / 32 Organization due to COVID-19 Slides and video recordings of lectures will be published Questions can be asked on the mailing list Subscribe to the mailing list! Practical exercises are planed for the end of the semester Depending on how COVID-19 continues, exercises are in person or we use some video-conferencing tool 3 / 32 Goals 1 Provide deeper understanding of OS mechanisms 2 Look at the implementation details of microkernels 3 Make you become enthusiastic microkernel hackers 4 Propaganda for OS research done at TU Dresden and Barkhausen Institut 4 / 32 Outline Organization Monolithic vs. Microkernel Kernel design comparison Examples for microkernel-based systems Vision vs. Reality Challenges Overview About L4/NOVA 5 / 32 Monolithic Kernel System Design u s Application Application Application e r k Kernel e r File Network n e Systems Stacks l m Memory Process o Drivers Management Management d e Hardware 6 / 32 Monolithic Kernel OS (Propaganda) System components run in privileged mode No protection between system components Faulty driver can crash the whole system Malicious app could exploit bug in faulty driver More than 2=3 of today's OS code are drivers No need for good system design Direct access to data structures Undocumented
    [Show full text]
  • Can Microkernels Mitigate Microarchitectural Attacks?⋆
    Can Microkernels Mitigate Microarchitectural Attacks?? Gunnar Grimsdal1, Patrik Lundgren2, Christian Vestlund3, Felipe Boeira1, and Mikael Asplund1[0000−0003−1916−3398] 1 Department of Computer and Information Science, Link¨oping University, Sweden ffelipe.boeira,[email protected] 2 Westermo Network Technologies [email protected] 3 Sectra AB, Link¨oping,Sweden Abstract. Microarchitectural attacks such as Meltdown and Spectre have attracted much attention recently. In this paper we study how effec- tive these attacks are on the Genode microkernel framework using three different kernels, Okl4, Nova, and Linux. We try to answer the question whether the strict process separation provided by Genode combined with security-oriented kernels such as Okl4 and Nova can mitigate microar- chitectural attacks. We evaluate the attack effectiveness by measuring the throughput of data transfer that violates the security properties of the system. Our results show that the underlying side-channel attack Flush+Reload used in both Meltdown and Spectre, is effective on all in- vestigated platforms. We were also able to achieve high throughput using the Spectre attack, but we were not able to show any effective Meltdown attack on Okl4 or Nova. Keywords: Genode, Meltdown, Spectre, Flush+Reload, Okl4, Nova 1 Introduction It used to be the case that general-purpose operating systems were mostly found in desktop computers and servers. However, as IoT devices are becoming in- creasingly more sophisticated, they tend more and more to require a powerful operating system such as Linux, since otherwise all basic services must be im- plemented and maintained by the device developers. At the same time, security has become a prime concern both in IoT and in the cloud domain.
    [Show full text]
  • Operating System Support for Run-Time Security with a Trusted Execution Environment
    Operating System Support for Run-Time Security with a Trusted Execution Environment - Usage Control and Trusted Storage for Linux-based Systems - by Javier Gonz´alez Ph.D Thesis IT University of Copenhagen Advisor: Philippe Bonnet Submitted: January 31, 2015 Last Revision: May 30, 2015 ITU DS-nummer: D-2015-107 ISSN: 1602-3536 ISBN: 978-87-7949-302-5 1 Contents Preface8 1 Introduction 10 1.1 Context....................................... 10 1.2 Problem....................................... 12 1.3 Approach...................................... 14 1.4 Contribution.................................... 15 1.5 Thesis Structure.................................. 16 I State of the Art 18 2 Trusted Execution Environments 20 2.1 Smart Cards.................................... 21 2.1.1 Secure Element............................... 23 2.2 Trusted Platform Module (TPM)......................... 23 2.3 Intel Security Extensions.............................. 26 2.3.1 Intel TXT.................................. 26 2.3.2 Intel SGX.................................. 27 2.4 ARM TrustZone.................................. 29 2.5 Other Techniques.................................. 32 2.5.1 Hardware Replication........................... 32 2.5.2 Hardware Virtualization.......................... 33 2.5.3 Only Software............................... 33 2.6 Discussion...................................... 33 3 Run-Time Security 36 3.1 Access and Usage Control............................. 36 3.2 Data Protection................................... 39 3.3 Reference
    [Show full text]
  • Debian \ Amber \ Arco-Debian \ Arc-Live \ Aslinux \ Beatrix
    Debian \ Amber \ Arco-Debian \ Arc-Live \ ASLinux \ BeatriX \ BlackRhino \ BlankON \ Bluewall \ BOSS \ Canaima \ Clonezilla Live \ Conducit \ Corel \ Xandros \ DeadCD \ Olive \ DeMuDi \ \ 64Studio (64 Studio) \ DoudouLinux \ DRBL \ Elive \ Epidemic \ Estrella Roja \ Euronode \ GALPon MiniNo \ Gibraltar \ GNUGuitarINUX \ gnuLiNex \ \ Lihuen \ grml \ Guadalinex \ Impi \ Inquisitor \ Linux Mint Debian \ LliureX \ K-DEMar \ kademar \ Knoppix \ \ B2D \ \ Bioknoppix \ \ Damn Small Linux \ \ \ Hikarunix \ \ \ DSL-N \ \ \ Damn Vulnerable Linux \ \ Danix \ \ Feather \ \ INSERT \ \ Joatha \ \ Kaella \ \ Kanotix \ \ \ Auditor Security Linux \ \ \ Backtrack \ \ \ Parsix \ \ Kurumin \ \ \ Dizinha \ \ \ \ NeoDizinha \ \ \ \ Patinho Faminto \ \ \ Kalango \ \ \ Poseidon \ \ MAX \ \ Medialinux \ \ Mediainlinux \ \ ArtistX \ \ Morphix \ \ \ Aquamorph \ \ \ Dreamlinux \ \ \ Hiwix \ \ \ Hiweed \ \ \ \ Deepin \ \ \ ZoneCD \ \ Musix \ \ ParallelKnoppix \ \ Quantian \ \ Shabdix \ \ Symphony OS \ \ Whoppix \ \ WHAX \ LEAF \ Libranet \ Librassoc \ Lindows \ Linspire \ \ Freespire \ Liquid Lemur \ Matriux \ MEPIS \ SimplyMEPIS \ \ antiX \ \ \ Swift \ Metamorphose \ miniwoody \ Bonzai \ MoLinux \ \ Tirwal \ NepaLinux \ Nova \ Omoikane (Arma) \ OpenMediaVault \ OS2005 \ Maemo \ Meego Harmattan \ PelicanHPC \ Progeny \ Progress \ Proxmox \ PureOS \ Red Ribbon \ Resulinux \ Rxart \ SalineOS \ Semplice \ sidux \ aptosid \ \ siduction \ Skolelinux \ Snowlinux \ srvRX live \ Storm \ Tails \ ThinClientOS \ Trisquel \ Tuquito \ Ubuntu \ \ A/V \ \ AV \ \ Airinux \ \ Arabian
    [Show full text]
  • KOS - Principles, Design, and Implementation
    KOS - Principles, Design, and Implementation Martin Karsten, University of Waterloo Work In Progress - September 29, 2015 Abstract KOS is an experimental operating system kernel that is designed to be simple and accessible to serve as a platform for research, experimen- tation, and teaching. The overall focus of this project is on system-level infrastructure software, in particular runtime systems. 1 Introduction KOS (pronounce "Chaos") is an experimental operating system kernel that is designed to be simple and accessible to serve as a platform for research, ex- perimentation, and teaching. It is focused on building a nucleus kernel that provides the basic set of operating system functionality, primarily for resource mediation, that must realistically be implemented for execution in privileged mode. While being simple KOS is not simplistic and avoids taking design shortcuts that would prohibit adding more sophisticated resource management strategies later on { inside the kernel or at higher software layers. The nu- cleus kernel is augmented with several prototype subsystems typically found in an operating system to eventually support running realistic applications. The entire code base is written in C++, except for small assembler parts. The C++ code makes use of advanced language features, such as code reuse with efficient strong type safety using templates, the C++ library for data struc- ture reuse, as well as (limited) polymorphism. Existing open-source software is reused for non-nucleus subsystems as much as possible. The project is hosted at https://git.uwaterloo.ca/mkarsten/KOS 2 Motivation In principle, an operating system has two basic functions. First, it consolidates low-level hardware interfaces and provides higher-level software abstractions to facilitate and alleviate application programming.
    [Show full text]
  • Embassies: Radically Refactoring the Web Jon Howell, Bryan Parno, John R
    Embassies: Radically Refactoring the Web Jon Howell, Bryan Parno, John R. Douceur, Microsoft Research Abstract of evolving complexity. On the Internet, application Web browsers ostensibly provide strong isolation for providers, or vendors, run server-side applications over the client-side components of web applications. Unfor- which they exercise total control, from the app down tunately, this isolation is weak in practice; as browsers to the network stack, firewall, and OS. Even when ven- add increasingly rich APIs to please developers, these dors are tenants of a shared datacenter, each tenant au- complex interfaces bloat the trusted computing base and tonomously controls its software stack down to the ma- erode cross-app isolation boundaries. chine code, and each tenant is accessible only via IP. We reenvision the web interface based on the notion The strong isolation among virtualized Infrastructure-as- of a pico-datacenter, the client-side version of a shared a-Service datacenter tenants derives not from physical server datacenter. Mutually untrusting vendors run their separation but from the execution interface’s simplicity. code on the user’s computer in low-level native code con- This paper extends the semantics of datacenter rela- tainers that communicate with the outside world only via tionships to the client’s web experience. Suspending dis- IP. Just as in the cloud datacenter, the simple semantics belief momentarily, suppose every client had ubiquitous makes isolation tractable, yet native code gives vendors high-performance Internet connectivity. In such a world, the freedom to run any software stack. Since the datacen- exploiting datacenter semantics is easy: The client is ter model is designed to be robust to malicious tenants, it merely a screencast (VNC) viewer; every app runs on is never dangerous for the user to click a link and invite its vendor’s servers and streams a video of its display to a possibly-hostile party onto the client.
    [Show full text]
  • Master Thesis
    Charles University in Prague Faculty of Mathematics and Physics MASTER THESIS Petr Koupý Graphics Stack for HelenOS Department of Distributed and Dependable Systems Supervisor of the master thesis: Mgr. Martin Děcký Study programme: Informatics Specialization: Software Systems Prague 2013 I would like to thank my supervisor, Martin Děcký, not only for giving me an idea on how to approach this thesis but also for his suggestions, numerous pieces of advice and significant help with code integration. Next, I would like to express my gratitude to all members of Hele- nOS developer community for their swift feedback and for making HelenOS such a good plat- form for works like this. Finally, I am very grateful to my parents and close family members for supporting me during my studies. I declare that I carried out this master thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University in Pra- gue has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In Prague, March 27, 2013 Petr Koupý Název práce: Graphics Stack for HelenOS Autor: Petr Koupý Katedra / Ústav: Katedra distribuovaných a spolehlivých systémů Vedoucí diplomové práce: Mgr. Martin Děcký Abstrakt: HelenOS je experimentální operační systém založený na mikro-jádrové a multi- serverové architektuře. Před započetím této práce již HelenOS obsahoval početnou množinu moderně navržených subsystémů zajišťujících různé úkoly v rámci systému.
    [Show full text]