Karyomorphological Studies in Some Species of Parnassia L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollination Ecology Summary
Pollination Ecology Summary Prof. em. Klaus Ammann, Neuchâtel [email protected] June 2013 Ohne den Pollenübertragungs-Service blütenbesuchender Tiere könnten sich viele Blütenpanzen nicht geschlechtlich fortpanzen. Die komplexen und faszinierenden Bestäubungsvorgänge bei Blütenpanzen sind Ausdruck von Jahrmillionen von Selektionsvorgängen, verbunden mit Selbstorganisation der Lebewesen; eine Sicht, die auch Darwin schon unterstützte. Bei vielen zwischenartlichen Beziehungen haben sich zwei oder auch mehrere Arten in ihrer Entwicklung gegenseitig beeinusst. Man spricht hier von sogenannter Coevolution. Deutlich ist die Coevolution auch bei verschiedenen Bestäubungssystemen und -mechanismen, die von symbiontischer bis parasitischer Natur sein können. Die Art-Entstehung, die Vegetationsökologie und die Entstehung von Kulturpanzen sind eng damit verbunden Veranstalter: Naturforschende Gesellschaft Schaffhausen 1. Pollination Ecology Darwin http://en.wikipedia.org/wiki/Pollination_syndrome http://www.cas.vanderbilt.edu/bioimages/pages/pollination.htm Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics, 35, pp 375-403 http://www.botanischergarten.ch/Pollination/Fenster-Pollination-Syndromes-2004.pdf invitation to browse in the website of the Friends of Charles Darwin http://darwin.gruts.com/weblog/archive/2008/02/ Working Place of Darwin in Downe Village http://www.focus.de/wissen/wissenschaft/wissenschaft-darwin-genoss-ein-suesses-studentenleben_aid_383172.html Darwin as a human being and as a scientist Darwin, C. (1862), On the various contrivances by which orchids are fertilized by insects and on the good effects of intercrossing The Complete Work of Charles Darwin online, Scanned, OCRed and corrected by John van Wyhe 2003; further corrections 8.2006. -
Proceedings of the Indiana Academy of Science
PROCEEDINGS of the Indiana Academy of Science Founded December 29, 1885 Volume 87 1977 Benjamin Moulton, Editor Indiana State University Terre Haute, Indiana Spring Meeting April 22, 1977 Indiana University — Purdue University at Indianapolis Indianapolis, Indiana Fall Meeting October 27, 1977 Indiana University- Purdue University at Indianapolis Indianapolis, Indiana Published at Indianapolis, Indiana 1978 1. The permanent address of the Academy is the Indiana State Library, 140 N. Senate Ave., Indianapolis, Indiana 46204. 2. Instructions for Contributors appear at the end of this volume. 3. Exchanges. Items sent in exchange for the Proceedings and correspondence concerning exchange arrangements should be addressed: John Shepard Wright Memorial Library of the Indiana Academy of Science c/o Indiana State Library Indianapolis, Indiana 46204 4. Proceedings may be purchased through the State Library at $7.00 per volume. 5. Reprints of technical papers can often be secured from the authors. They cannot be supplied by the State Library nor by the officers of the Academy. 6. The Constitution and By-Laws reprinted from Vol. 74 are available to members upon appli- cation to the Secretary. Necrologies reprinted from the various volumes can be supplied to relatives and friends of deceased members by the Secretary. 7. Officers whose names and addresses are not known to correspondents may be addressed care of the State Library. Papers published in the Proceedings of the Academy of Science are abstracted or indexed in appropriate services listed here: -
Notes on Parnassia Kumaonica Nekr. (Parnassiaceae) in Nepal
Bull. Natn. Sci. Mus., Tokyo, Ser. B, 32(2), pp. 103–107, June 22, 2006 Notes on Parnassia kumaonica Nekr. (Parnassiaceae) in Nepal Shinobu Akiyama1 and Mahendra N. Subedi2 1 Department of Botany, National Science Museum, Tokyo, 4–1–1 Amakubo, Tsukuba, Ibaraki, 305–0005 Japan E-mail: [email protected] 2 Department of Plant Resources, Ministry of Forest and Soil Conservation, G. P. O. Box 9446, Kathmandu, Nepal Abstract An additional description of Parnassia kumaonica Nekr. is given with sketches. This species is characterized by the petals with abruptly narrowed claw-like base. The key to distinguish from the resembling species in Nepal is also given. Key words : Himalaya, Mustang, Nepal, Parnassia, Sino-Himalayan region The flora and vegetation of Mustang District, sia is identified as P. kumaonica. In the original Central Nepal are remarkably different from description of P. kumaonica the size of sepals, other districts in Nepal (Stainton 1972). Since petals, stamens, and staminodes is not men- 2000 research teams have been dispatched to the tioned, though it has rough sketches of a plant, a lower and upper Mustang to study the flora sepal, petals, and staminodes without scale (Iokawa 2001, Noshiro and Amano 2002, (Nekrassova 1927). Miyamoto and Ikeda 2003). A Parnassia was Parnassia kumaonica is hardly known in collected during these field researches. Nepal. Hara (1955) mentioned several features The genus Parnassia is diversified in the Sino- including the size of style (as 2 mm long) based Himalayan floristic region. Hara (1979) recog- on the specimen from Thaple Himal (4600 m), nized six species in Nepal. -
Evidences from One-By-One Stamen Movement in an Insect-Pollinated Plant
Is There ‘Anther-Anther Interference’ within a Flower? Evidences from One-by-One Stamen Movement in an Insect-Pollinated Plant Ming-Xun Ren1¤, Zhao-Jun Bu2* 1 Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China, 2 Institute for Peat and Mire Research, Northeast Normal University, State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun, China Abstract The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen’s anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3–1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these ‘hungry’ insects are discouraged by the scant and non-fresh pollen in the dehisced anther. -
Vascular Flora of Gus Engeling Wildlife Management Area, Anderson County, Texas
2003SOUTHEASTERN NATURALIST 2(3):347–368 THE VASCULAR FLORA OF GUS ENGELING WILDLIFE MANAGEMENT AREA, ANDERSON COUNTY, TEXAS 1 2,3 2 JASON R. SINGHURST , JAMES C. CATHY , DALE PROCHASKA , 2 4 5 HAYDEN HAUCKE , GLENN C. KROH , AND WALTER C. HOLMES ABSTRACT - Field studies in the Gus Engeling Wildlife Management Area, which consists of approximately 4465.5 ha (11,034.1 acres) of the Post Oak Savannah of Anderson County, have resulted in an annotated checklist of the vascular flora corroborating its remarkable species richness. A total of 930 taxa (excluding family names), belonging to 485 genera and 145 families are re- corded. Asteraceae (124 species), Poaceae (114 species), Fabaceae (67 species), and Cyperaceae (61 species) represented the largest families. Six Texas endemic taxa occur on the site: Brazoria truncata var. pulcherrima (B. pulcherrima), Hymenopappus carrizoanus, Palafoxia reverchonii, Rhododon ciliatus, Trades- cantia humilis, and T. subacaulis. Within Texas, Zigadenus densus is known only from the study area. The area also has a large number of species that are endemic to the West Gulf Coastal Plain and Carrizo Sands phytogeographic distribution patterns. Eleven vegetation alliances occur on the property, with the most notable being sand post oak-bluejack oak, white oak-southern red oak-post oak, and beakrush-pitcher plant alliances. INTRODUCTION The Post Oak Savannah (Gould 1962) comprises about 4,000,000 ha of gently rolling to hilly lands that lie immediately west of the Pineywoods (Timber belt). Some (Allred and Mitchell 1955, Dyksterhuis 1948) consider the vegetation of the area as part of the deciduous forest; i.e., burned out forest that is presently regenerating. -
Parnassia Section Saxifragastrum (Parnassiaceae) from China
Ann. Bot. Fennici 46: 559–565 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 18 December 2009 © Finnish Zoological and Botanical Publishing Board 2009 Taxonomic notes on Parnassia section Saxifragastrum (Parnassiaceae) from China Ding Wu1,2, Lian-Ming Gao1,3,* & Michael Möller4 1) Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China (*corresponding author’s e-mail: [email protected]) 2) Jingdezhen College, Jingdezhen 333000, China 3) Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, China 4) Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, UK Received 28 July 2008, revised version received 15 Dec. 2008, accepted 23 Dec. 2008 Wu, D., Gao, L. M. & Möller, M. 2009: Taxonomic notes on Parnassia section Saxifragastrum (Par- nassiaceae) from China. — Ann. Bot. Fennici 46: 559–565. Morphological variation within and among populations of closely related taxa of Parnassia sect. Saxifragastrum from China was studied based on literature, specimen examinations and field survey. Parnassia angustipetala T.C. Ku, P. yulongshanensis T.C. Ku, P. longipetaloides J.T. Pan, and P. yanyuanensis T.C. Ku were reduced to synonymy of P. yunnanensis Franchet. Parnassia humilis T.C. Ku is different from P. yunnanensis, and is proposed as a new synonym of P. trinervis Drude. The geographic distribution and illustrations of P. yunnanensis and P. trinervis are also presented. Key words: distribution, morphology, Parnassia sect. Saxifragastrum, taxonomy Introduction ova (1927), Evans (1921) and Handel-Mazzetti (1941). Engler (1930) followed Drude’s (1875) The genus Parnassia, consisting of about 50 spe- classification, but added a fifth section. -
The Vascular Flora of Mason Mountain Wildlife Management Area, Mason County, Texas
2007 SOUTHEASTERNNATURALIST 6(4):683-692 The Vascular Flora of Mason Mountain Wildlife Management Area, Mason County, Texas ' Jason R. Singhurst ,Laura L. Sanchez2, Donnie Frels, Jr.3, T.Wayne Schwertner4, Mark Mitchell4, Sara Moren5, andWalter C. Holmes6 - Abstract A survey of the vascular flora of Mason Mountain Wildlife Management Area, located in the Llano Uplift of Central Texas, was conducted between spring of 2001 and spring of 2006. A total of 693 species and infraspecific taxa in 103 families and 376 genera were documented from 14 plant associations. Poaceae (117 species), Asteraceae (102 species), Fabaceae (46 species), and Euphorbiaceae (31 species) were the families with the largest number of species. Five taxa, Campanula reverchonii (basin bellflower), Eriogonum tenellum Torr. var. ramosissimum (tall buckwheat), Isoetes lithophila (rock quillwort), Packera texensis (Llano groundsel), and Tradescantia pedicellata (Edwards Plateau spiderwort) are endemic to the Llano Uplift, while 24 others are endemic to Texas. Other noteworthy taxa included Isoetes piedmontana (Piedmont quillwort), Pilularia americana (American pillwort), and Senecio ampullaceus (Texas ragwort). Introduction The Llano Uplift (Gould 1975, Lyndon B. Johnson School of Affairs 1978) of Texas comprises about 12,950 km2 (5000 mi2) of gently rolling to hilly lands that lie to the west of Austin and encompasses portions of Blanco, Burnet, Gillespie, Kimble, Llano, Lampasas, Mason, Menard, Mc Culloch, San Saba, and Travis counties. The study area is located in the area eastern portion of the Edwards Plateau vegetation of the state and is characterized by granite outcrops. Correll and Johnston (1970) describe the Edwards Plateau as a region of significant endemism; however, the granite-outcrop portion of this region has received limited botanical ex ploration over the past 150 years. -
Newsletter of the Arkansas Native Plant Society
CLAYTONIA Newsletter of the Arkansas Native Plant Society Vol. 30 No. 2 In Memoriam: Dr. Dan Marsh (1933—2010) Fall/Winter 2010 By Theo Witsell Dr. Daniel Lee Marsh, 77, long-time ANPS In this issue: member and retired professor of biology at Henderson State University, died on Monday Remembering Dan Marsh July 26, 2010. He was born on June 2, 1933 Page 1 in Jonesboro. Dan was a mentor to many botany students, young and old, formal and U.S. Botanists Endangered informal. He will be remembered for his gift of inspiring those around him to appreciate Page 3 and seek to understand the wonders of the natural world. Dan was knowledgeable about Mid-South Native Plant many aspects of the Arkansas flora but was Conference especially expert in some of the most difficult Page 5 and under-appreciated groups of plants—the mosses, liverworts, and hornworts. Dan loved On the Trail of Demaree, being in the field and was a gifted teacher in both the classroom and in the woods. Moore, Palmer and Harvey Page 6 Dan had a big interest in the smallest plants and was fond of crawling around on his hands Spring Meeting Minutes and knees in interesting habitats engaged in Page 9 what he referred to as “belly botany”. He was Dr. Daniel L. Marsh, Professor Emeritus of Biology at Henderson the state’s foremost authority on the bryophytes and, in his usual good-natured State University and ANPS member. Native Gardening Workshop in Photo by John Pelton Conway humor, refused to call them “the lower plants” as most botanists do. -
Native Vascular Plants
!Yt q12'5 3. /3<L....:::5_____ ,--- _____ Y)Q.'f MUSEUM BULLETIN NO.4 -------------- Copy I NATIVE VASCULAR PLANTS Endangered, Threatened, Or Otherwise In Jeopardy In South Carolina By Douglas A. Rayner, Chairman And Other Members Of The South Carolina Advisory Committee On Endangered, Threatened And Rare Plants SOUTH CAROLINA MUSEUM COMMISSION S. C. STATE LIR7~'· '?Y rAPR 1 1 1995 STATE DOCU~ 41 ;::,·. l s NATIVE VASCULAR PLANTS ENDANGERED, THREATENED, OR OTHERWISE IN JEOPARDY IN SOUTH CAROLINA by Douglas A. Rayner, Chairman and other members of the South Carolina Advisory Committee on Endangered, Threatened, and Rare Plants March, 1979 Current membership of the S. C. Committee on Endangered, Threatened, and Rare Plants Subcommittee on Criteria: Ross C. Clark, Chairman (1977); Erskine College (taxonomy and ecology) Steven M. Jones, Clemson University (forest ecology) Richard D. Porcher, The Citadel (taxonomy) Douglas A. Rayner, S.C. Wildlife Department (taxonomy and ecology) Subcommittee on Listings: C. Leland Rodgers, Chairman (1977 listings); Furman University (taxonomy and ecology) Wade T. Batson, University of South Carolina, Columbia (taxonomy and ecology) Ross C. Clark, Erskine College (taxonomy and ecology) John E. Fairey, III, Clemson University (taxonomy) Joseph N. Pinson, Jr., University of South Carolina, Coastal Carolina College (taxonomy) Robert W. Powell, Jr., Converse College (taxonomy) Douglas A Rayner, Chairman (1979 listings) S. C. Wildlife Department (taxonomy and ecology) INTRODUCTION South Carolina's first list of rare vascular plants was produced as part of the 1976 S.C. En dangered Species Symposium by the S. C. Advisory Committee on Endangered, Threatened and Rare Plants, 1977. The Symposium was a joint effort of The Citadel's Department of Biology and the S. -
Flies and Flowers Ii: Floral Attractants and Rewards
Journal of Pollination Ecology, 12(8), 2014, pp 63-94 FLIES AND FLOWERS II: FLORAL ATTRACTANTS AND REWARDS Thomas S Woodcock 1*, Brendon M H Larson 2, Peter G Kevan 1, David W Inouye 3 & Klaus Lunau 4 1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1. 2Department of Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1. 3Department of Biology, University of Maryland, College Park, Maryland, USA, 20742. 4Institute of Sensory Ecology, Biology Department, Heinrich-Heine University, D-40225 Düsseldorf, Germany. Abstract —This paper comprises Part II of a review of flower visitation and pollination by Diptera (myiophily or myophily). While Part I examined taxonomic diversity of anthophilous flies, here we consider the rewards and attractants used by flowers to procure visits by flies, and their importance in the lives of flies. Food rewards such as pollen and nectar are the primary reasons for flower visits, but there is also a diversity of non-nutritive rewards such as brood sites, shelter, and places of congregation. Floral attractants are the visual and chemical cues used by Diptera to locate flowers and the rewards that they offer, and we show how they act to increase the probability of floral visitation. Lastly, we discuss the various ways in which flowers manipulate the behaviour of flies, deceiving them to visit flowers that do not provide the advertised reward, and how some flies illegitimately remove floral rewards without causing pollination. Our review demonstrates that myiophily is a syndrome corresponding to elements of anatomical, behavioural and physiological adaptations of flower-visiting Diptera. -
Dipterists Digest
Dipterists Digest 2018 Vol. 25 No. 2 Cover illustration: Palloptera usta (Meigen, 1826) (Pallopteridae), male, on a rotten birch log at Glen Affric (NH 28012832), 4 November 2018. © Alan Watson Featherstone. In Britain, a predominantly Scottish species, having strong associations with Caledonian pine forest, but also developing in wood of broad-leaved trees. Rearing records from under bark of Betula (3), Fraxinus (1), Picea (18), Pinus (21), Populus (2) and Quercus (1) were cited by G.E. Rotheray and R.M. Lyszkowski (2012. Pallopteridae (Diptera) in Scotland. Dipterists Digest (Second Series ) 19, 189- 203). Apparently a late date, as the date range given by Rotheray and Lyszkowski ( op. cit .) for both adult captures and emergence dates from puparia was 13 May to 29 September. Dipterists Digest Vol. 25 No. 2 Second Series 2018 th Published 27 February 2019 Published by ISSN 0953-7260 Dipterists Digest Editor Peter J. Chandler, 606B Berryfield Lane, Melksham, Wilts SN12 6EL (E-mail: [email protected]) Editorial Panel Graham Rotheray Keith Snow Alan Stubbs Derek Whiteley Phil Withers Dipterists Digest is the journal of the Dipterists Forum . It is intended for amateur, semi- professional and professional field dipterists with interests in British and European flies. All notes and papers submitted to Dipterists Digest are refereed. Articles and notes for publication should be sent to the Editor at the above address, and should be submitted with a current postal and/or e-mail address, which the author agrees will be published with their paper. Articles must not have been accepted for publication elsewhere and should be written in clear and concise English. -
List of Plant Species Occurring at Kingsland Prairie Conservation Area - Updated 23 September 2017 - 447 Taxa
List of plant species occurring at Kingsland Prairie Conservation Area - Updated 23 September 2017 - 447 taxa. Scientific name Common name Strata Frequency Habitat Source PTERIDOPHYTES Asplenicaceae Asplenium platyneuron ebony spleenwort herb 2 D 3 Dennstaedtiaceae Pteridium aquilinum bracken fern herb 3 D 6 Dryopteridaceae Polystichum acrostichoides Christmas fern herb 2 E 3 Onocleaceae Onoclea sensibilis sensitive fern herb 2 E 12 Ophioglossaceae Botrychium virginianum rattlesnake fern herb 1 D 14 Osmundaceae Osmunda cinnamomea cinnamon fern herb 1 C 9 Osmunda regalis var. spectabilis American royal fern herb 1 D 7 Polypodiaceae Pleopeltis polypodioides var. michauxiana resurrection fern herb 2 C, D 3 Thelypteridaceae Phegopteris hexagonoptera southern beech fern herb 2 E 13 Woodsiaceae Athyrium filix-femina var. asplenioides southern lady fern herb 2 E 12 GYMNOSPERMS Cupressaceae Juniperus virginiana eastern red cedar tree, sap, shrub 1 B 3 Pinaceae Pinus echinata shortleaf pine tree, sap 3 B, C 2 Pinus taeda loblolly pine tree, sap 5 B, C, D, F 1 ANGIOSPERMS – MAGNOLIOPSIDA (Dicots) Acanthaceae Justicia ovata var. lanceolata lance-leaf water-willow herb F Ruellia humilis wild petunia herb 3 A 19 Ruellia strepens smooth wild petunia herb 3 D, E 7 Adoxaceae Sambucus canadensis common elderberry shrub 3 C, F 4 Viburnum nudum possum haw tree, shrub 2 D, E 37 Altingaceae Liquidambar styraciflua sweetgum tree, sap 4 D,E 3 Anacardiaceae Rhus copallinum winged sumac shrub 2 C 2 Toxicodendron radicans eastern poison ivy woody vine, herb 4 C,