University of Southampton Research Repository Eprints Soton
Total Page:16
File Type:pdf, Size:1020Kb
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Investigating the drivers of perturbations to the Cenozoic carbon-climate system by David Ian Armstrong McKay Thesis for the degree of Doctor of Philosophy August 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Thesis for the degree of Doctor of Philosophy INVESTIGATING THE DRIVERS OF PERTURBATIONS TO THE CENOZOIC CARBON-CLIMATE SYSTEM David Ian Armstrong McKay Over the course of the Cenozoic the Earth system has shifted from a CO2-rich ‘Greenhouse’ climate state to a CO2-poor ‘Icehouse’ climate state. This trend is punctuated by numerous perturbations to the carbon-climate system, but the extent of the coupling between the carbon cycle and climate system, the drivers of these perturbations, and their relationship to the longer-term Cenozoic trend is still debated. In this thesis, I use biogeochemical modelling and numerical analysis to explore the key research question: ‘What were the drivers of carbon-climate system perturbations during the Cenozoic?’, with a focus on perturbations during the Eocene- Oligocene Transition and the mid-Miocene, the role of tipping points during these periods, and the long-term evolution of the ocean carbonate system. The potential impact of the Columbia River Basalt large igneous province on the mid-Miocene Earth system is investigated using two biogeochemical box models. This modelling indicates that ‘cryptic degassing’ from intrusive and/or crust-contaminated magma of a magnitude within the estimated possible range can drive the observed carbon cycle perturbation and warming around 16.0 Ma, but cannot by itself explain other features of the mid-Miocene palaeorecords. The hypothesised drivers of the Eocene-Oligocene Transition (EOT) carbon cycle perturbation are explored using a biogeochemical box model. The results suggest that the glacioeustatic fractionation of carbonate burial from shelf to basin can explain most of the deepening of the carbonate compensation depth (CCD) at the EOT, but that the benthic carbon isotope excursion most likely requires additional drivers. The shelf-basin carbonate burial fractionation hypothesis is examined further in order to quantify the relationship between shelf carbonate burial extent, the CCD, and changing sea-level during the Cenozoic. This analysis confirms that carbonate burial fractionation can drive most of the CCD deepening at the EOT but is less important either before or since then, and also indicates that the sensitivity of the CCD to sea level change has significantly declined during the Cenozoic. Palaeorecords of a number of perturbations to the carbon-climate system during the Cenozoic are analysed in search for ‘early warning signals’ (EWS) indicative of systemic instability and impending critical transitions, and the reliability of this method when applied to palaeorecords is critically explored. EWS are found prior to some (e.g. the EOT and Palaeocene-Eocene Thermal Maximum) but not all of the events, and the results and technique are judged to be moderately reliable. Table of Contents Table of Contents ................................................................................................... i List of Tables .......................................................................................................... v List of Figures ..................................................................................................... vii Declaration of Authorship ............................................................................. xiii Acknowledgements ............................................................................................ xv Some thoughts on modelling, complexity and climate change ....... xvii List of Abbreviations and Symbols ............................................................. xix Chapter 1: Introduction and Background .............................................. 1 1.1 The Goldilocks question ............................................................................. 1 1.2 Cenozoic climate change ............................................................................ 3 1.2.1 Long-term Cenozoic cooling ......................................................... 3 1.2.2 Abrupt climate shifts .................................................................... 5 1.2.3 Cenozoic climate chronology ........................................................ 6 1.2.4 Palaeoclimatology and the Anthropocene ................................. 8 1.3 The geological carbon cycle: conceptual and numerical models .......... 9 1.3.1 A conceptual model of the carbon cycle ..................................... 9 1.3.2 Numerical models of the carbon cycle ...................................... 16 1.4 Thesis aims and structure ....................................................................... 23 1.4.1 Key research questions ............................................................... 23 1.4.2 Thesis structure ........................................................................... 24 Chapter 2: Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study ........................ 25 2.1 Abstract ...................................................................................................... 25 2.2 Introduction ............................................................................................... 26 2.3 The mid-Miocene and the Columbia River Basalt eruptions ............. 28 2.4 Materials and Methods ............................................................................ 30 2.4.1 Modelling ...................................................................................... 30 2.4.2 MTW08 sensitivity analyses...................................................... 32 i 2.4.3 Eruption chronology ................................................................... 32 2.4.4 Cryptic degassing estimates ...................................................... 33 2.5 Results and Discussion ............................................................................ 37 2.5.1 Modelled emission scenario ....................................................... 38 2.5.2 The CCD and the mid-Miocene Climate Transition .............. 40 2.5.3 Mid-Miocene climate change ..................................................... 41 2.6 Conclusions ................................................................................................ 43 2.7 Acknowledgements ................................................................................... 43 2.8 Supporting Information ........................................................................... 44 2.8.1 Model parameters ....................................................................... 44 2.8.2 Sensitivity analyses .................................................................... 46 Chapter 3: Global carbon cycle perturbation across the Eocene- Oligocene climate transition .......................................................... 49 3.1 Abstract ...................................................................................................... 49 3.2 Background ................................................................................................ 50 3.2.1 The Eocene-Oligocene Transition ............................................. 50 3.2.2 Potential drivers of the EOT carbon cycle perturbation ....... 51 3.2.3 Study aims ................................................................................... 55 3.3 Method ........................................................................................................ 55 3.3.1 Modelling ...................................................................................... 55 3.3.2 Hypotheses ................................................................................... 56 3.4 Results and Discussion ............................................................................ 58 3.4.1 Scenarios ...................................................................................... 58 3.4.2 Implications ................................................................................. 68 3.5 Conclusions ................................................................................................ 71 3.6 Acknowledgements ................................................................................... 72 3.7 Supporting Information ........................................................................... 73 3.7.1 The SWC scenario and the climate-weathering feedback .... 73 3.7.2 Extra calcium input feedbacks ................................................