Global Material Cycles
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Four Hundred Million Years of Silica Biomineralization in Land Plants
Four hundred million years of silica biomineralization in land plants Elizabeth Trembath-Reicherta,1, Jonathan Paul Wilsonb, Shawn E. McGlynna,c, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; bDepartment of Biology, Haverford College, Haverford, PA 19041; and cGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved February 20, 2015 (received for review January 7, 2015) Biomineralization plays a fundamental role in the global silicon Silica is widely used within plants for structural support and cycle. Grasses are known to mobilize significant quantities of Si in pathogen defense (19–21), but it remains a poorly understood the form of silica biominerals and dominate the terrestrial realm aspect of plant biology. Recent work on the angiosperm Oryza today, but they have relatively recent origins and only rose to sativa demonstrated that silica accumulation is facilitated by taxonomic and ecological prominence within the Cenozoic Era. transmembrane proteins expressed in root cells (21–24). Phy- This raises questions regarding when and how the biological silica logenetic analysis revealed that these silicon transport proteins cycle evolved. To address these questions, we examined silica were derived from a diverse family of modified aquaporins that abundances of extant members of early-diverging land plant include arsenite and glycerol transporters (19, 21, 25, 26). A clades, which show that silica biomineralization is widespread different member of this aquaporin family was recently identi- across terrestrial plant linages. Particularly high silica abundances fied that enables silica uptake in the horsetail Equisetum,an are observed in lycophytes and early-diverging ferns. -
The Crazy Calcium Cycle. Eduardo A. Espeso Department of Cellular And
The CRaZy calcium cycle. Eduardo A. Espeso Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. 28040-Madrid. Spain. Key words: Crz1, calcineurin signaling, calcium pump, calcium channel, P-type ATPase, magnesium homeostasis Summary. Calcium is an essential cation for a cell. This cation participates in the regulation of numerous processes in either prokaryote s or eukaryotes, from bacteria to humans. Saccharomyces cerevisiae has served as a model organism to understand calcium homeostasis and calcium-dependent signaling in fungi. In this chapter it will be reviewed known and predicted transport mechanisms that mediate calcium homeostasis in the yeast. How and when calcium enters the cell, how and where it is stored, when is reutilized, and finally secreted to the environment to close the cycle. As a second messenger, maintenance of a controlled free intracellular calcium concentration is important for mediating transcriptional regulation. Many environmental stimuli modify the concentration of cytoplasmic free calcium generating the "calcium signal". This is sensed and transduced through the calmodulin/calcineurin pathway to a transcription factor, named c alcineurin-r esponsive z inc finger, CRZ, also known as "crazy" , to mediate transcriptional regulation of a large number of genes of diverse pathways including a negative feedback regulation of the calcium homeostasis system. A model of calcium regulation in yeasts In higher eukaryotes entry of calcium in the cell starts concatenated signaling events some of them are of enormous importance in animals such as initiation of the heartbeat or the synapses between neurons. In the budding yeast calcium mediates adaptation to a variety of stimuli such as the presence of mating pheromones (Iida et al., 1990), a damage to endoplasmic reticulum (Bonilla and Cunningham, 2003), and different ambient stresses like salinity, alkaline pH or high osmolarity [reviewed in (Cunningham, 2005)]. -
The Calcium Cycle
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 1985 Volume VII: Skeletal Materials- Biomineralization The Calcium Cycle Curriculum Unit 85.07.08 by Bill Duesing INTRODUCTION This unit is designed to be part of the Ecology course which is taught by High School in the Community at the West Rock Nature Center for four hours a day during the last quarter of the school year, The present ecology course involves both theoretical and practical studies relating to the earth and how it works. We will trace calcium in the biosphere from its location in igneous rocks in the early history of the earth to its location in the skeletons of high school students at the Nature Center. In the process of studying the transport and deposition of calcium we have a vehicle which touches on many of the important concepts we are teaching and relates to some of the hands-on activities the students are involved in. Some of the connections between the calcium cycle and the Ecology course are: Geology: Many of the students have no idea of the age and history of the earth and the great changes which it has gone through. How the calcium stored in the rocks in northwestern Connecticut came to be there touches on much of this chemistry: Most of the students have had very little exposure to chemistry, yet it is important in the study of ecology. Using the study of calcium, some simple chemical principles can be introduced such as the fact that calcium is intimately associated with carbon dioxide (CO2), as the solid calcium carbonate (CaCO3), and therefore is involved with life and life forms. -
Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O
1122 Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O. Box 80021 3508 TA Utrecht, The Netherlands INTRODUCTION Biological activity is a dominant force shaping the chemical structure and evolution of the earth surface environment. The presence of an oxygenated atmosphere- hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes. Understanding the interactions between organisms and their abiotic environment, and the resulting coupled evolution of the biosphere and geosphere is a central theme of research in biogeology. Biogeochemists contribute to this understanding by studying the transformations and transport of chemical substrates and products of biological activity in the environment. Biogeochemical cycles provide a general framework in which geochemists organize their knowledge and interpret their data. The cycle of a given element or substance maps out the rates of transformation in, and transport fluxes between, adjoining environmental reservoirs. The temporal and spatial scales of interest dictate the selection of reservoirs and processes included in the cycle. Typically, the need for a detailed representation of biological process rates and ecosystem structure decreases as the spatial and temporal time scales considered increase. Much progress has been made in the development of global-scale models of biogeochemical cycles. Although these models are based on fairly simple representations of the biosphere and hydrosphere, they account for the large-scale changes in the composition, redox state and biological productivity of the earth surface environment that have occurred over geological time. -
Nutrient Cycles, Biodegradation, and Bioremediation
LECTURE PRESENTATIONS For BROCK BIOLOGY OF MICROORGANISMS, THIRTEENTH EDITION Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark Chapter 24 Nutrient Cycles, Lectures by Biodegradation, and John Zamora Middle Tennessee State University Bioremediation © 2012 Pearson Education, Inc. I. Nutrient Cycles • 24.1 The Carbon Cycle • 24.2 Syntrophy and Methanogenesis • 24.3 The Nitrogen Cycle • 24.4 The Sulfur Cycle • 24.5 The Iron Cycle • 24.6 The Phosphorus, Calcium and Silica Cycles © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. Microbiology – Assist. Prof. Deniz AKGÜL 24.1 The Carbon Cycle • Carbon is cycled through all of Earth’s major carbon reservoirs (Figure 24.1) – Includes atmosphere, land, oceans, sediments, rocks and biomass © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. Microbiology – Assist. Prof. Deniz AKGÜL CO2 Human Figure 24.1 The carbon cycle activities Respiration The greatest reservoir of carbon on Earth is in rocks and sediments and most of this is in inorganic form as Land Animals and plants microorganisms carbonates Aquatic CO2 CO2 plants and Aquatic Human phyto- animals plankton Biological pump activities Fossil CO2 Humus Death and fuels mineralization Soil formation Respiration Earth’s crust Rock formation Land Animals and plants microorganisms Aquatic CO2 plants and Aquatic phyto- animals plankton Biological pump Fossil CO2 Humus Death and fuels mineralization Soil formation Earth’s crust Rock formation The carbon and oxygen cycles are closely connected, as oxygenic photosynthesis both removes CO2 and produces O2 and respiratory processes both produce CO2 and remove O2 © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. -
Calcium Isotopes in Scleractinian Fossil Corals Since the Mesozoic: Implications for Vital Effects and Biomineralization Through Time ∗ Anne M
Earth and Planetary Science Letters 444 (2016) 205–214 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Calcium isotopes in scleractinian fossil corals since the Mesozoic: Implications for vital effects and biomineralization through time ∗ Anne M. Gothmann a, , Michael L. Bender a, Clara L. Blättler a, Peter K. Swart b, Sharmila J. Giri b, Jess F. Adkins c, Jarosław Stolarski d, John A. Higgins a a Princeton University, Department of Geosciences, Princeton, NJ, USA b University of Miami, Department of Marine Geosciences, Miami, FL, USA c California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, USA d Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland a r t i c l e i n f o a b s t r a c t 44/40 Article history: We present a Cenozoic record of δ Ca from well preserved scleractinian fossil corals, as well as fossil 44/40 Received 24 September 2015 coral δ Ca data from two time periods during the Mesozoic (84 and 160 Ma). To complement the Received in revised form 27 February 2016 coral data, we also extend existing bulk pelagic carbonate records back to ∼80 Ma. The same fossil Accepted 6 March 2016 corals used for this study were previously shown to be excellently preserved, and to be faithful archives Available online 7 April 2016 44/40 of past seawater Mg/Ca and Sr/Ca since ∼200 Ma (Gothmann et al., 2015). We find that the δ Ca Editor: H. Stoll compositions of bulk pelagic carbonates from ODP Site 807 (Ontong Java Plateau) and DSDP Site 516 (Rio 44/40 Keywords: Grande Rise) have not varied by more than ∼±0.20h over the last ∼80 Myr. -
Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions
Article Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions Guilin Han 1,* , Anton Eisenhauer 2, Jie Zeng 1 and Man Liu 1 1 Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; [email protected] (J.Z.); [email protected] (M.L.) 2 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82-323-536 Abstract: In order to better constrain calcium cycling in natural soil and in soil used for agriculture, we present the δ44/40Ca values measured in rainwater, groundwater, plants, soil, and bedrock samples from a representative karst forest in SW China. The δ44/40Ca values are found to differ by ≈3.0‰ in the karst forest ecosystem. The Ca isotope compositions and Ca contents of groundwater, rainwater, and bedrock suggest that the Ca of groundwater primarily originates from rainwater and bedrock. The δ44/40Ca values of plants are lower than that of soils, indicating the preferential uptake of light Ca isotopes by plants. The distribution of δ44/40Ca values in the soil profiles (increasing with soil depth) suggests that the recycling of crop-litter abundant with lighter Ca isotope has potential effects on soil Ca isotope composition. The soil Mg/Ca content ratio probably reflects the preferential plant uptake of Ca over Mg and the difference in soil maturity. Light Ca isotopes are more abundant 40 Citation: Han, G.; Eisenhauer, A.; in mature soils than nutrient-depleted soils. The relative abundance in the light Ca isotope ( Ca) is Zeng, J.; Liu, M. -
Cellular Calcium Pathways and Isotope Fractionation in Emiliania
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Cellular calcium pathways and isotope fractionation inprovided by Electronic Publication Information Center Emiliania huxleyi Nikolaus Gussone Research Centre Ocean Margins, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany Gerald Langer ⎤ Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Silke Thoms ⎥ Germany Gernot Nehrke ⎦ Anton Eisenhauer Leibniz Institute of Marine Sciences at the University of Kiel, Dienstgeba¨ude Ostufer, Wischhofstraße 1-3, 24148 Kiel, Germany Ulf Riebesell Leibniz Institute of Marine Sciences at the University of Kiel, Dienstgeba¨ude Westufer, Du¨sternbrooker Weg 20, 24105 Kiel, Germany Gerold Wefer Research Centre Ocean Margins, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany ABSTRACT in coccolithophores, because previous work indicates a strong kinetic 2Ϫ The marine calcifying algae Emiliania huxleyi (coccolitho- effect of the carbonate ion concentration [CO3 ] on calcium isotope 2Ϫ phores) was grown in laboratory cultures under varying conditions fractionation (Lemarchand et al., 2004). Since reduced [CO3 ] leads with respect to the environmental parameters of temperature and to a decrease in calcification rate of Emiliania huxleyi (Riebesell et al., 2؊ carbonate ion concentration [CO3 ] concentration. The Ca isotope 2000), it should also be reflected in the Ca isotopic composition of composition of E. huxleyi’s coccoliths reveals new insights the coccolith. The apparent temperature dependence on Ca isotope 2Ϫ into fractionation processes during biomineralization. The fractionation was also proposed to be caused by [CO3 ] via the temperature-dependent Ca isotope fractionation resembles previ- temperature-dependent dissociation of carbonic acid (Lemarchand et ous calibrations of inorganic and biogenic calcite and aragonite. -
Silicon Cycling in Soils Revisited
plants Review Silicon Cycling in Soils Revisited Jörg Schaller 1,* , Daniel Puppe 1, Danuta Kaczorek 1,2 , Ruth Ellerbrock 1 and Michael Sommer 1,3 1 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; [email protected] (D.P.); [email protected] (D.K.); [email protected] (R.E.); [email protected] (M.S.) 2 Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland 3 Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam, Germany * Correspondence: [email protected]; Tel.: +49-33432-82371 Abstract: Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance. -
Unveiling the Role of Rhizaria in the Silicon Cycle Natalia Llopis Monferrer
Unveiling the role of Rhizaria in the silicon cycle Natalia Llopis Monferrer To cite this version: Natalia Llopis Monferrer. Unveiling the role of Rhizaria in the silicon cycle. Other. Université de Bretagne occidentale - Brest, 2020. English. NNT : 2020BRES0041. tel-03259625 HAL Id: tel-03259625 https://tel.archives-ouvertes.fr/tel-03259625 Submitted on 14 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L'UNIVERSITE DE BRETAGNE OCCIDENTALE ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Chimie Marine Par Natalia LLOPIS MONFERRER Unveiling the role of Rhizaria in the silicon cycle (Rôle des Rhizaria dans le cycle du silicium) Thèse présentée et soutenue à PLouzané, le 18 septembre 2020 Unité de recherche : Laboratoire de Sciences de l’Environnement Marin Rapporteurs avant soutenance : Diana VARELA Professor, Université de Victoria, Canada Giuseppe CORTESE Senior Scientist, GNS Science, Nouvelle Zélande Composition du Jury : Président : Géraldine SARTHOU Directrice de recherche, CNRS, LEMAR, Brest, France Examinateurs : Diana VARELA Professor, Université de Victoria, Canada Giuseppe CORTESE Senior Scientist, GNS Science, Nouvelle Zélande Colleen DURKIN Research Faculty, Moss Landing Marine Laboratories, Etats Unis Tristan BIARD Maître de Conférences, Université du Littoral Côte d’Opale, France Dir. -
Coupled Nitrogen and Calcium Cycles in Forests of the Oregon Coast Range
Ecosystems (2006) 9: 63–74 DOI: 10.1007/s10021-004-0039-5 Coupled Nitrogen and Calcium Cycles in Forests of the Oregon Coast Range Steven S. Perakis,1,2* Douglas A. Maguire,2 Thomas D. Bullen,3 Kermit Cromack,2 Richard H. Waring,2 and James R. Boyle2 1US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, USA; 2Department of Forest Science, Oregon State University, Corvallis, Oregon 97333, USA; 3US Geological Survey, Branch of Regional Research, Water Resources Discipline, Menlo Park, California 94025, USA ABSTRACT Nitrogen (N) is a critical limiting nutrient that concentrations are highly sensitive to variations in regulates plant productivity and the cycling of soil Ca across our sites. Natural abundance calcium other essential elements in forests. We measured isotopes (d44Ca) in exchangeable and acid leach- foliar and soil nutrients in 22 young Douglas-fir able pools of surface soil measured at a single site stands in the Oregon Coast Range to examine showed 1 per mil depletion relative to deep soil, patterns of nutrient availability across a gradient of suggesting strong Ca recycling to meet tree de- N-poor to N-rich soils. N in surface mineral soil mands. Overall, the biogeochemical response of ranged from 0.15 to 1.05% N, and was positively these Douglas-fir forests to gradients in soil N is related to a doubling of foliar N across sites. Foliar N similar to changes associated with chronic N in half of the sites exceeded 1.4% N, which is deposition in more polluted temperate regions, and considered above the threshold of N-limitation in raises the possibility that Ca may be deficient on coastal Oregon Douglas-fir. -
Silica Production and the Contribution of Diatoms to New and Primary Production in the Central North Pacific
MARINE ECOLOGY PROGRESS SERIES Vol. 167: 89-104.1998 Published June 18 Mar Ecol Prog Ser Silica production and the contribution of diatoms to new and primary production in the central North Pacific Mark A. ~rzezinskil*:Tracy A. Villarea12,Fredric ~ipschultz~ 'Marine Science Institute and the Department of Ecology Evolution and Marine Biology, University of California, Santa Barbara, California 93106, USA 'The University of Texas at Austin. Marine Science Institute, 750 Channel View Drive, Port Aransas, Texas 78373-5015, USA 3Bermuda Biological Station for Research. Ferry Reach GE 01, Bermuda ABSTRACT: The silica cycle in the upper 200 m of the central North Pacific was examined to further as- sess the role of oligotrophic mid-ocean gyres in the global marine silica cycle and to evaluate the role of diatoms in the regional carbon and nitrogen cycles. Siliceous biomass in the upper 200 m was very low (generally c50 nmol S1 1.' of biogenic silica) with, higher concentrations (100 to 280 nmol Si 1.') ob- served occasionally in the deep chlorophyll maximum and in the nitracline Doubling times for biogenic silica were generally between 2 and 5 d, suggesting fairly rapid diatom growth. Ki~ieiicexperiments showed widespread limitation of silica production rates by ambient silicic acid concentrations (0.9 to 3.0 pM). Inputs of iron inferred from high concentrations of lithogenic silica (up to 300 nmol Si 1-l) in surface waters did not stimulate silica production. lntegrated silica production rates averaged 1.24 mm01 Si m-' d-' (range 0.47 to 2.9 mm01 Si m-' d-') This average is 2 to 3 times higher than those reported for other oligotrophic mid-ocean gyres, significantly increasing estimates of the fraction of global silica production occurring in these systems.