Antimicrobial Compositions Comprising Hypohalite And/Or Hypothiocyanite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activation of Microsomal Glutathione S-Transferase. in Tent-Butyl Hydroperoxide-Induced Oxidative Stress of Isolated Rat Liver
Activation of Microsomal Glutathione S-Transferase. in tent-Butyl Hydroperoxide-Induced Oxidative Stress of Isolated Rat Liver Yoko Aniya'° 2 and Ai Daido' 'Laboratory of Physiology and Pharmacology , School of Health Sciences, 2Research Center of Comprehensive Medicine, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-01, Japan Received May 10, 1994 Accepted June 17, 1994 ABSTRACT-The activation of microsomal glutathione S-transferase in oxidative stress was investigated by perfusing isolated rat liver with 1 mM tert-butyl hydroperoxide (t-BuOOH). When the isolated liver was per fused with t-BuOOH for 7 min and 10 min, microsomal, but not cytosolic, glutathione S-transferase activ ity was increased 1.3-fold and 1.7-fold, respectively, with a concomitant decrease in glutathione content. A dimer protein of microsomal glutathione S-transferase was also detected in the t-BuOOH-perfused liver. The increased microsomal glutathione S-transferase activity after perfusion with t-BuOOH was reversed by dithiothreitol, and the dimer protein of the transferase was also abolished. When the rats were pretreated with the antioxidant a-tocopherol or the iron chelator deferoxamine, the increases in microsomal glutathione S-transferase activity and lipid peroxidation caused by t-BuOOH perfusion of the isolated liver was prevented. Furthermore, the activation of microsomal GSH S-transferase by t-BuOOH in vitro was also inhibited by incubation of microsomes with a-tocopherol or deferoxamine. Thus it was confirmed that liver microsomal glutathione S-transferase is activated in the oxidative stress caused by t-BuOOH via thiol oxidation of the enzyme. Keywords: Enzyme activation, Glutathione S-transferase, Liver perfusion, Oxidative stress, tert-Butyl hydroperoxide Glutathione (GSH) S-transferases (EC 2. -
The Peroxiredoxin Tpx1 Is Essential As a H2O2 Scavenger During Aerobic Growth in Fission Yeast Mo´Nica Jara,* Ana P
Molecular Biology of the Cell Vol. 18, 2288–2295, June 2007 The Peroxiredoxin Tpx1 Is Essential as a H2O2 Scavenger during Aerobic Growth in Fission Yeast Mo´nica Jara,* Ana P. Vivancos,* Isabel A. Calvo, Alberto Moldo´n, Miriam Sanso´, and Elena Hidalgo Departament de Cie`ncies Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain Submitted November 27, 2006; Revised March 16, 2007; Accepted March 26, 2007 Monitoring Editor: Thomas Fox Peroxiredoxins are known to interact with hydrogen peroxide (H2O2) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H2O2 sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H2O2. We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169. INTRODUCTION available to form a disulfide bond; the source of the reducing equivalents for regenerating this thiol is not known, al- Peroxiredoxins (Prxs) are a family of antioxidant enzymes though glutathione (GSH) has been proposed to serve as the that reduce hydrogen peroxide (H2O2) and/or alkyl hy- electron donor in this reaction (Kang et al., 1998b). -
Cyanide in Bronchoalveolar Lavage Is Not Diagnostic for Pseudomonas Aeruginosa in Children with Cystic Fibrosis
Eur Respir J 2011; 37: 553–558 DOI: 10.1183/09031936.00024210 CopyrightßERS 2011 Cyanide in bronchoalveolar lavage is not diagnostic for Pseudomonas aeruginosa in children with cystic fibrosis M.D. Stutz*,#, C.L. Gangell*, L.J. Berry*, L.W. Garratt*, B. Sheil*,+ and P.D. Sly*,",+ on behalf of the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF)1 ABSTRACT: Early detection of the cyanobacterium Pseudomonas aeruginosa in the lungs of AFFILIATIONS young children with cystic fibrosis (CF) is considered the key to delaying chronic pulmonary *Division of Clinical Sciences, Telethon Institute for Child Health disease. We investigated whether cyanide in bronchoalveolar lavage (BAL) fluid could be used as Research and Centre for Child Health an early diagnostic biomarker of infection. Research, University of Western Cyanide was measured in 226 BAL samples (36 P. aeruginosa infected) obtained from 96 infants Australia. # and young children with CF participating in an early surveillance programme involving annual School of Biological Sciences and Biotechnology, Faculty of BAL. Sustainability, Environmental and Life Cyanide was detected in 97.2% of P. aeruginosa infected and 60.5% of uninfected samples. Sciences, Murdoch University and Cyanide concentrations were significantly higher in BALs infected with P. aeruginosa (median "Dept of Respiratory Medicine, (25th–75th percentile) 27.3 (22.1–33.3) mM) than those which were not (17.2 (7.85–23.0) mM, Princess Margaret Hospital for Children, Perth, Australia. p,0.001). The best sensitivity, specificity, positive and negative predictive values were obtained +These authors shared senior author with a cut-off concentration of 20.6 mM, and were 83%, 66%, 32% and 96%, respectively. -
Microbial Peroxidases and Their Applications
International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 ISSN 2229-5518 474 Microbial Peroxidases and their applications Divya Ghosh, Saba Khan, Dr. Sharadamma N. Divya Ghosh is currently pursuing master’s program in Life Science in Mount Carmel College, Bangalore, India, Ph: 9774473747; E- mail: [email protected]; Saba Khan is currently pursuing master’s program in Life Science in Mount Carmel College, Bangalore, India, Ph: 9727450944; E-mail: [email protected]; Dr. Sharadamma N is an Assistant Professor in Department of Life Science, Mount Carmel College, Autonomous, Bangalore, Karnataka- 560052. E-mail: [email protected] Abstract: Peroxidases are oxidoreductases that can convert many compounds into their oxidized form by a free radical mechanism. This peroxidase enzyme is produced by microorganisms like bacteria and fungi. Peroxidase family includes many members in it, one such member is lignin peroxidase. Lignin peroxidase has the potential to degrade the lignin by oxidizing phenolic structures in it. The microbes that have shown efficient production of peroxidase are Bacillus sp., Providencia sp., Streptomyces, Pseudomonas sp. These microorganisms were optimized to produce peroxidase efficiently. These microbial strains were identified by 16S rDNA and rpoD gene sequences and Sanger DNA sequencing techniques. There are certain substrates on which Peroxidase acts are guaiacol, hydrogen peroxide, etc. The purification of peroxidase was done by salt precipitation, ion-exchange chromatography, dialysis, anion exchange, and molecular sieve chromatography method. The activity of the enzyme was evaluated with different parameters like enzyme activity, protein concentration, specific activity, total activity, the effect of heavy metals, etc. -
Structural and Functional Studies of Rubrerythrin From
STRUCTURAL AND FUNCTIONAL STUDIES OF RUBRERYTHRIN FROM DESULFOVIBRIO VULGARIS by SHI JIN (Under the direction of Dr. Donald M. Kurtz, Jr.) ABSTRACT Rubrerythrin (Rbr), found in anaerobic or microaerophilic bacteria and archaea, is a non-heme iron protein containing an oxo-bridged diiron site and a rubredoxin-like [Fe(SCys)4] site. Rbr has NADH peroxidase activity and it has been proposed as one of the key enzyme pair (Superoxide Reductase/Peroxidase) in the oxidative stress protection system of anaerobic microorganisms. In order to probe the mechanism of the electron pathway in Rbr peroxidase reaction, X-ray crystallography and rapid reaction techniques were used. Recently, the high-resolution crystal structures of reduced Rbr and its azide adduct were determined. Detailed information of the oxidation state changes of the irons at the metal-binding sites during the oxidation of Rbr by hydrogen peroxide was obtained using stopped-flow spectrophotometry and freeze quench EPR. The structures and activities of Rbrs with Zn(II) ions substituted for iron(III) ions at different metal-binding sites, which implicate the influence of positive divalent metal ions to the Rbr, are also investigated. The molecular mechanism for Rbr peroxidase reaction during the turnover based on results from X-ray crystallography and kinetic studies is proposed. INDEX WORDS: Rubrerythrin, Desulfovibrio vulgaris, NADH peroxidase, Alternative oxidative stress defense system, Crystal structures, Oxidized form, Reduced form, Azide adduct, Hydrogen peroxide, Internal electron transfer, Zinc ion derivatives STRUCTURAL AND FUNCTIONAL STUDIES OF RUBRERYTHRIN FROM DESULFOVIBRIO VULGARIS by SHI JIN B.S., Peking University, P. R. China, 1998 A Dissertation Submitted to the Graduate Faculty of The University Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2002 © 2002 Shi Jin All Rights Reserved STRUCTURAL AND FUNCTIONAL STUDIES OF RUBRERYTHRIN FROM DESULFOVIBRIO VULGARIS by SHI JIN Approved: Major Professor: Donald M. -
Increased Concentration of Iodide in Airway Secretions Is Associated with Reduced RSV Disease Severity Rachel J
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Veterinary Pathology Publications and Papers Veterinary Pathology 2-2014 Increased Concentration of Iodide in Airway Secretions is Associated with Reduced RSV Disease Severity Rachel J. Derscheid Iowa State University, [email protected] Albert G. van Geelen Iowa State University Abigail R. Berkebile University of Iowa Jack M. Gallup Iowa State University, [email protected] Shannon J. Hostetter IFoowlalo Swta tthie Usn iaverndsit ay,dd smitjoneions@ial wasorktates.e duat: http://lib.dr.iastate.edu/vpath_pubs Part of the Veterinary Microbiology and Immunobiology Commons, and the Veterinary See next page for additional authors Pathology and Pathobiology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ vpath_pubs/65. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Veterinary Pathology at Iowa State University Digital Repository. It has been accepted for inclusion in Veterinary Pathology Publications and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Increased Concentration of Iodide in Airway Secretions is Associated with Reduced RSV Disease Severity Abstract Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN−), and secreted lactoperoxidase (LPO). -
New Automatically Built Profiles for a Better Understanding of the Peroxidase Superfamily Evolution
University of Geneva Practical training report submitted for the Master Degree in Proteomics and Bioinformatics New automatically built profiles for a better understanding of the peroxidase superfamily evolution presented by Dominique Koua Supervisors: Dr Christophe DUNAND Dr Nicolas HULO Laboratory of Plant Physiology, Dr Christian J.A. SIGRIST University of Geneva Swiss Institute of Bioinformatics PROSITE group. Geneva, April, 18th 2008 Abstract Motivation: Peroxidases (EC 1.11.1.x), which are encoded by small or large multigenic families, are involved in several important physiological and developmental processes. These proteins are extremely widespread and present in almost all living organisms. An important number of haem and non-haem peroxidase sequences are annotated and classified in the peroxidase database PeroxiBase (http://peroxibase.isb-sib.ch). PeroxiBase contains about 5800 peroxidase sequences classified as haem peroxidases and non-haem peroxidases and distributed between thirteen superfamilies and fifty subfamilies, (Passardi et al., 2007). However, only a few classification tools are available for the characterisation of peroxidase sequences: InterPro motifs, PRINTS and specifically designed PROSITE profiles. However, these PROSITE profiles are very global and do not allow the differenciation between very close subfamily sequences nor do they allow the prediction of specific cellular localisations. Due to the rapid growth in the number of available sequences, there is a need for continual updates and corrections of peroxidase protein sequences as well as for new tools that facilitate acquisition and classification of existing and new sequences. Currently, the PROSITE generalised profile building manner and their usage do not allow the differentiation of sequences from subfamilies showing a high degree of similarity. -
Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 3-10-2019 Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater Neda Mashhadi University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Mashhadi, Neda, "Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater" (2019). Electronic Theses and Dissertations. 7646. https://scholar.uwindsor.ca/etd/7646 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater By Neda Mashhadi A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2019 © 2019 Neda Mashhadi Oxidative Polymerization of Heterocyclic Aromatics Using Soybean Peroxidase for Treatment of Wastewater by Neda Mashhadi APPROVED BY: _____________________________ A. -
NADH PEROXIDASE Ph
Enzymatic Assay of NADH PEROXIDASE (EC 1.11.1.1) PRINCIPLE: NADH Peroxidase ß-NADH + H2O2 > ß-NAD + 2H2O Abbreviations used: ß-NADH = ß-Nicotinamide Adenine Dinucleotide, Reduced Form ß-NAD = ß-Nicotinamide Adenine Dinucleotide, Oxidized Form CONDITIONS: T = 25°C, pH 6.0, A365nm, Light path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 200 mM Tris Acetate Buffer, pH 6.0 at 25°C (Prepare 100 ml in deionized water using Trizma Acetate, Sigma Prod. No. T-1258. Adjust to pH 6.0 at 25°C with 1 M HCl.) B. 0.30% (w/w) Hydrogen Peroxide Solution (H2O2) (Prepare 10 ml in deionized water using Hydrogen Peroxide 30% (w/w) Solution, Sigma Prod. No. H-1009.) C. 12 mM ß-Nicotinamide Adenine Dinucleotide, Reduced Form, Solution (NADH) (Dissolve the contents of one 10 mg vial of ß-Nicotinamide Adenine Dinucleotide, Reduced Form, Sodium Salt, Sigma Stock No. 340-110, in the appropriate volume of deionized water.) D. NADH Peroxidase Enzyme Solution (Immediately before use, prepare a solution containing 0.2 - 0.4 unit of NADH Peroxidase in cold deionized water.) SPHYDR04 Page 1 of 3 Revised: 01/17/97 Enzymatic Assay of NADH PEROXIDASE (EC 1.11.1.1) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Reagent A (Buffer) 3.00 3.00 Reagent C (NADH) 0.10 0.10 Reagent D (Enzyme Solution) 0.10 ------ Deionized Water ------ 0.10 Mix by inversion and equilibrate to 25°C. Monitor the baseline at A365nm for 5 minutes in order to determine any NADH oxidase activity which may be present.1 Then add: Reagent B (H2O2) 0.10 0.10 Immediately mix by inversion and monitor the decrease in A365nm for approximately 5 minutes. -
GRAS Notice 665, Lactoperoxidase System
GRAS Notice (GRN) No. 665 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION 000001 Mo•·gan Lewis Gf<N Ob()&h5 [R1~~~~~~[Q) Gary L. Yingling Senior Counsel JUL 1 8 2016 + 1.202. 739 .5610 gary.yingling@morganlewis .com OFFICE OF FOO~ ADDITIVE SAFETY July 15, 2016 VIA FEDERAL EXPRESS Dr. Antonia Mattia Director Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Re: GRAS Notification for the Lactoperoxidase System Dear Dr. Mattia: On behalf of Taradon Laboratory C'Taradon"), we are submitting under cover of this letter three paper copies and one eCopy of DSM's generally recognized as safe ("GRAS'') notification for its lactoperoxidase system (''LPS''). The electronic copy is provided on a virus-free CD, and is an exact copy of the paper submission. Taradon has determined through scientific procedures that its lactoperoxidase system preparation is GRAS for use as a microbial control adjunct to standard dairy processing procedures such as maintaining appropriate temperatures, pasteurization, or other antimicrobial treatments to extend the shelf life of the products. In many parts of the world, the LPS has been used to protect dairy products, particularly in remote areas where farmers are not in close proximity to the market. In the US, the LPS is intended to be used as a processing aid to extend the shelf life of avariety of dairy products, specifically fresh cheese including mozzarella and cottage cheeses, frozen dairy desserts, fermented milk, flavored milk drinks, and yogurt. -
Discovery of Industrially Relevant Oxidoreductases
DISCOVERY OF INDUSTRIALLY RELEVANT OXIDOREDUCTASES Thesis Submitted for the Degree of Master of Science by Kezia Rajan, B.Sc. Supervised by Dr. Ciaran Fagan School of Biotechnology Dublin City University Ireland Dr. Andrew Dowd MBio Monaghan Ireland January 2020 Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Master of Science, is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ID No.: 17212904 Kezia Rajan Date: 03rd January 2020 Acknowledgements I would like to thank the following: God, for sending me angels in the form of wonderful human beings over the last two years to help me with any- and everything related to my project. Dr. Ciaran Fagan and Dr. Andrew Dowd, for guiding me and always going out of their way to help me. Thank you for your patience, your advice, and thank you for constantly believing in me. I feel extremely privileged to have gotten an opportunity to work alongside both of you. Everything I’ve learnt and the passion for research that this project has sparked in me, I owe it all to you both. Although I know that words will never be enough to express my gratitude, I still want to say a huge thank you from the bottom of my heart. -
In-Vitro Virucidal Activity of Hypothiocyanite and Hypothiocyanite/Lactoferrin Mix Against SARS-Cov- 2
In-vitro Virucidal Activity of Hypothiocyanite and Hypothiocyanite/lactoferrin Mix Against SARS-CoV- 2 Luca Cegolon ( [email protected] ) Local Health Unit N.2 "Marca Trevigiana", Public Health Department, Treviso, Italy Mattia Mirandola Padua University, Department of Molecular Medicine, Padua, Italy Claudio Salaris Padua University, Department of Molecular Medicine, Padua, Italy Maria Salvati Padua University, Department of Molecular Medicine, Padua, Italy Cristiano Salata Padua University, Department of Molecular Medicine, Padua, Italy Giuseppe Mastrangelo Padua University, Department of Cardiac, Thoracic, Vascular Sciences, & Public Health, Padua, Italy Research Article Keywords: Hypothiocyanite, Lactoferrin, Lactoperoxidase system, ALX-009, SARS-CoV-2, COVID-19 Posted Date: December 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-131956/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/11 Abstract SARS-CoV-2 replicates eciently in the upper airways during the prodromal stage, with resulting viral shedding into the environment from patients with active COVID-19 as well as from asymptomatic individuals. There is a need to nd pharmacological interventions to mitigate the spread of COVID-19. Hypothiocyanite and lactoferrin are molecules of the innate immune system with a large spectrum cidal activity and easy to administer by aerosol inhalation. The combination of the above two molecules was designated as orphan drug by the Food and Drug Administration and the European Medicines Agency. Here we found a dose-dependent as well as time-dependent virucidal activity of hypothiocyanite at micromolar concentrations, slightly improved by lactoferrin, against SARS-CoV-2. The two substances individually tested were devoid of any cytotoxicity.