1 Molecular Approach to the Identification and Phylogenetic

Total Page:16

File Type:pdf, Size:1020Kb

1 Molecular Approach to the Identification and Phylogenetic Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2018 doi:10.20944/preprints201809.0299.v1 Peer-reviewed version available at Regional Studies in Marine Science 2020, 35; doi:10.1016/j.rsma.2020.101109 Molecular approach to the identification and phylogenetic biogeography of snail Telescopium telescopium using mt-COI gene sequences Satheesh Kumar Palanisamy1,2 , Prasanna Kumar Chinnamani3, Purushothaman Paramasivam4, Umamaheswari Sundaresan5 1Central Marine Fisheries Research Institute, Kochi - 682018, India 2Department of Zoology, School of Natural Science and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91TK33, Galway 3Institute of Marine Microbes and Ecosphere, State Key Laboratory for Marine Environmental Sciences, Xiamen University, Xiamen, Fujian, (361102) China PR. 4Crustacean Fisheries Division, Central Marine Fisheries Research Institute, Kochi - 682018, India. 5Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India Correspondence: [email protected] Tel.: +353899608763 Abstract: We aimed to apply DNA barcoding tool for the molecular identification of horn snails T. telescopium using mitochondrial cytochrome oxidase I gene (mt-COI) and to investigate their evolutionary relationship along with location-specific bio-geographical variations. The molecular data sets of this study indicate that strong probability of T. telescopium species taxonomic confirmation using mt-COI sequences. Results of the phylogenetic analysis suggest that Telescopium sp. was monophyletic with disseminated nodes and the evolution of group II originated from group I. The substantial genetic distance among the mt-COI sequences (0.005 to 0.184) were noticed. Large divergence between the south-west coast of India and Australia region population indicates limited gene flow between the two continents. Our study suggests that the genera Telescopium is globally ubiquitous but genetically showing inter-region differentiation. We conclude that mt-COI gene can be used to identify gastropod T. telescopium species. Keywords: Barcoding, biodiversity, genetics, mollusc, phylogeny, snails, taxonomy 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2018 doi:10.20944/preprints201809.0299.v1 Peer-reviewed version available at Regional Studies in Marine Science 2020, 35; doi:10.1016/j.rsma.2020.101109 1. Introduction Indian coastal waters are receiving more attention from the scientific community due to their enormous fishery and shellfish potential resources [1]. In the Indian Ocean, Bay of Bengal waters hosts an extent range of molluscan (bivalves and gastropods) faunal distribution, species diversity and they are ecologically important to many communities [2]. However, this group diversity is highly underestimated [3]. Molluscs are the most diverse marine phylum and represent higher species diversity has resulted in a considerable taxonomic problem [4]. Some species in Indian coast remain uncertain; there is a need to incorporate molecular methods. Molecular markers especially mitochondrial DNA cytochrome oxidase I (mt-COI) are considered as a better choice for species discrimination due to non-recombinant and environment independent nature [4]. The application of DNA barcoding brings substantial benefits to other fields, such as border biosecurity [5], biodiversity conservation [6], ecological monitoring [7]. DNA barcoding has successfully utilized for the taxonomic confirmation of marine organisms, the molecular phylogeny of gastropod molluscs is extensively studied using morphometric characteristics and DNA sequences [8]. The standard pairwise distance method such as Neighbour-Joining tree (NJ) based on Kimura 2-parameter distance (K2P) and GC content divergence assessment is currently the principal approach used to analyze patterns of diversity with COI barcode region. It has been informative at the species-level discrimination across the range of several groups from terrestrial, freshwater and marine environment [9]. The accuracy of such results depends particularly on the delineation between intra-specific variation and inter-specific DNA sequence divergence [10]. The strong molecular identification of marine gastropods requires the creation of comprehensive reference library of DNA barcode matching of each specimen to a diagnostic barcode sequence [11]. Gastropod mollusc Telescopium telescopium lives in mud-flats of mangrove forest in throughout the coastlines of Indian Ocean waters. Mangrove horn snail or mud whelks T. telescopium is the only living organism of this genus from the family Potamidae (Gastropoda), found abundantly and frequently dominated in mud-flats of mangrove forest in West and Central Indo-Pacific regions due in part of its central locations at the meeting of oceanic waters has the greatest diversity of mangrove forest. The distribution of this species is likely impacted locally by the loss of habitat [e.g. mangrove deforestation, marine pollution] [12]. So far, no reliable information available to deal the estimated population of this species in Indian waters. Houbrick et al. [13] was reported the revised systematics and phylogeny of this taxa, following that Bandel et al. [14] was recognized two sub families, Potamidinae and Telescopinae, the 2 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2018 doi:10.20944/preprints201809.0299.v1 Peer-reviewed version available at Regional Studies in Marine Science 2020, 35; doi:10.1016/j.rsma.2020.101109 later on included all the living potamidids except the genus Potamides in the family Potamididae. With the recent development of molecular techniques, the evolutionary relationship of Potamididae and their ecological association with mangrove ecosystem has also been studied using mt-COI sequence data [15]. The further research of this genus will reveal to complete understanding of the evolutionary relationship of this species in family Potamidae, ecological association with mangrove forest and their potential application in pollution monitoring [16] and marine bio-discovery program [17, 18]. The DNA sequence of mt-COI gene data facilitate not only the inference the phylogenetic relationships of fauna but also providing an efficient method for species-level identification under the term of molecular taxonomy or DNA Barcoding [19]. 1.1 Evolutionary significant of horn snail Mangrove horn snail or mud whelks T. telescopium is the only living organism of this genus from the family Potamidae (Gastropoda), found abundantly and frequently dominated in mud-flats of mangrove forest in West and Central Indo-Pacific regions due in part of its central locations at the meeting of oceanic waters has the greatest diversity of mangrove forest. The distribution of this species is likely impacted locally by the loss of habitat [e.g. mangrove deforestation, marine pollution] [12]. So far, no reliable information available to deal the estimated population of this species in Indian waters. Houbrick et al. [13] was reported the revised systematics and phylogeny of this taxa, following that Bandel et al. [14] was recognized two sub families, Potamidinae and Telescopinae, the later on included all the living potamidids except the genus Potamides in the family Potamididae. With the recent development of molecular techniques, the evolutionary relationship of Potamididae and their ecological association with mangrove ecosystem has also been studied using mt-COI sequence data [15]. The further research of this genus will reveal to complete understanding of the evolutionary relationship of this species in family Potamidae, ecological association with mangrove forest and their potential application in pollution monitoring [16] and marine bio-discovery program [17, 18]. The DNA sequence of mt-COI gene data facilitate not only the inference the phylogenetic relationships of fauna but also providing an efficient method for species-level identification under the term of molecular taxonomy or DNA Barcoding [19]. The aim of this present study, to improve the systematics of the genus Telescopium by the integration of morphometric characteristics and DNA barcoding of T. telescopium shells found in the Bay of Bengal waters. ii) to determine their evolutionary relationship by bio- geographical variations based on mt-COI sequences. 3 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2018 doi:10.20944/preprints201809.0299.v1 Peer-reviewed version available at Regional Studies in Marine Science 2020, 35; doi:10.1016/j.rsma.2020.101109 2. Material and methods 2.1 Collection of samples Horn snails used in this study were collected in Parangipettai coast, Bay of Bengal - India during March to August 2011 and their taxonomy was identified using [13]. All the specimens (n=10) were preserved in 95% ethanol for DNA molecular analysis. 2.2 DNA Isolation and Sequencing Total DNA was extracted from the muscle tissue/eggs of each specimen using Qiagen DNA Easy blood and tissue kit (Hilden, Germany). Universal Primers LCO 1490 and HCO2198 as described in Folmer et al. [20] were used for the amplification of a fragment of mt-COI gene. PCRs were performed in a 12.5 µl volume with 6.25 µl of 10% trehalose, 1.25 µl PCR buffer [200 mM Tris– HCl (pH 8.4), 500 mM KCl], 2 .85 µl of nuclease free water, 0.625 µl MgCl2 (50 mM), 0.5 µl of each primer (10 µM), and 1 µl of DNA template.
Recommended publications
  • (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA
    Mitochondrial DNA Part B Resources ISSN: (Print) 2380-2359 (Online) Journal homepage: https://www.tandfonline.com/loi/tmdn20 The complete mitogenome of the invasive Japanese mud snail Batillaria attramentaria (Gastropoda: Batillariidae) from Elkhorn Slough, California, USA Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A. Hernandez-Salazar, Jeffery R. Hughey, Héctor Jácome-Sáenz, Luis A. Jimenez, Eli R. Kallison, Mylisa S. King, Luis J. Lazaro, Feifei Zhai Lorenzo, Isaac Madrigal, Savannah Madruga, Adrian J. Maldonado, Alexander M. Medina, Marcela Mendez-Molina, Ali Mendez, David Murillo Martinez, David Orozco, Juan Orozco, Ulises Ortiz, Jennifer M. Pantoja, Alejandra N. Ponce, Angel R. Ramirez, Israel Rangel, Eliza Rojas, Adriana Roque, Beatriz Rosas, Colt Rubbo, Justin A. Saldana, Elian Sanchez, Alicia Steinhardt, Maria O. Taveras Dina, Judith Torres, Silvestre Valdez-Mata, Valeria Vargas, Paola Vazquez, Michelle M. Vazquez, Irene Vidales, Frances L. Wong, Christian S. Zagal, Santiago Zamora & Jesus Zepeda Amador To cite this article: Hartnell College Genomics Group, Paulina Andrade, Lisbeth Arreola, Melissa Belnas, Estefania Bland, Araceli Castillo, Omar Cisneros, Valentin Contreras, Celeste Diaz, Kevin T. Do, Carlos Donate, Estevan Espinoza, Nathan Frater, Garry G. Gabriel, Eric A. Gomez, Gino F. Gonzalez, Myrka Gonzalez, Paola Guido, Dylan Guidotti, Mishell Guzman Espinoza, Ivan Haro, Javier Hernandez Lopez, Caden E. Hernandez, Karina Hernandez, Jazmin A.
    [Show full text]
  • Diversity of Malacofauna from the Paleru and Moosy Backwaters Of
    Journal of Entomology and Zoology Studies 2017; 5(4): 881-887 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(4): 881-887 Diversity of Malacofauna from the Paleru and © 2017 JEZS Moosy backwaters of Prakasam district, Received: 22-05-2017 Accepted: 23-06-2017 Andhra Pradesh, India Darwin Ch. Department of Zoology and Aquaculture, Acharya Darwin Ch. and P Padmavathi Nagarjuna University Nagarjuna Nagar, Abstract Andhra Pradesh, India Among the various groups represented in the macrobenthic fauna of the Bay of Bengal at Prakasam P Padmavathi district, Andhra Pradesh, India, molluscs were the dominant group. Molluscs were exploited for Department of Zoology and industrial, edible and ornamental purposes and their extensive use has been reported way back from time Aquaculture, Acharya immemorial. Hence the present study was focused to investigate the diversity of Molluscan fauna along Nagarjuna University the Paleru and Moosy backwaters of Prakasam district during 2016-17 as these backwaters are not so far Nagarjuna Nagar, explored for malacofauna. A total of 23 species of molluscs (16 species of gastropods belonging to 12 Andhra Pradesh, India families and 7 species of bivalves representing 5 families) have been reported in the present study. Among these, gastropods such as Umbonium vestiarium, Telescopium telescopium and Pirenella cingulata, and bivalves like Crassostrea madrasensis and Meretrix meretrix are found to be the most dominant species in these backwaters. Keywords: Malacofauna, diversity, gastropods, bivalves, backwaters 1. Introduction Molluscans are the second largest phylum next to Arthropoda with estimates of 80,000- 100,000 described species [1]. These animals are soft bodied and are extremely diversified in shape and colour.
    [Show full text]
  • Revised January 19, 2018 Updated June 19, 2018
    BIOLOGICAL EVALUATION / BIOLOGICAL ASSESSMENT FOR TERRESTRIAL AND AQUATIC WILDLIFE YUBA PROJECT YUBA RIVER RANGER DISTRICT TAHOE NATIONAL FOREST REVISED JANUARY 19, 2018 UPDATED JUNE 19, 2018 PREPARED BY: MARILYN TIERNEY DISTRICT WILDLIFE BIOLOGIST 1 TABLE OF CONTENTS I. EXECUTIVE SUMMARY ........................................................................................................... 3 II. INTRODUCTION.......................................................................................................................... 4 III. CONSULTATION TO DATE ...................................................................................................... 4 IV. CURRENT MANAGEMENT DIRECTION ............................................................................... 5 V. DESCRIPTION OF THE PROPOSED PROJECT AND ALTERNATIVES ......................... 6 VI. EXISTING ENVIRONMENT, EFFECTS OF THE PROPOSED ACTION AND ALTERNATIVES, AND DETERMINATION ......................................................................... 41 SPECIES-SPECIFIC ANALYSIS AND DETERMINATION ........................................................... 54 TERRESTRIAL SPECIES ........................................................................................................................ 55 WESTERN BUMBLE BEE ............................................................................................................. 55 BALD EAGLE ...............................................................................................................................
    [Show full text]
  • Based on Food Sources in Mangrove Ecosystem
    Plant Archives Vol. 19 No. 1, 2019 pp. 913-916 e-ISSN:2581-6063 (online), ISSN:0972-5210 FOOD PREFERENCE ON TELESCOPIUM TELESCOPIUM (MOLLUSCA : GASTROPODA) BASED ON FOOD SOURCES IN MANGROVE ECOSYSTEM Dafit Ariyanto Department of Aquaculture, Agricultural Faculty, Asahan University, Kisaran, North Sumatera, 21224 Indonesia. Abstract Bacteria has a important role on mechanism nutrition and energy on ecosystem. The research was conducted September 2016 – July 2017. This purpose research was to determine a various food type on gastropods in mangrove ecosystem. The relationship between gastropod and mangrove productivity using Correspondence Analysis (CA). the sediment was taken with depth ± 10 cm and leaf litter was taken a litter trap 1 m x 1 m. The result showed that based on a chain food cycle that happened in mangrove ecosystem and tropic level. Gastropod T. telescopium choosed a food on mangrove sediment. T. telescopium has a similiar in bacteria Staphylococcus aureus. Key words : Bacteria, leaf litter, mollusca, soil sediment. Introduction Bacteria can be found on marine organisms. Banggi coast is located on the North Coast of Java, Gastropods have the highest abundance in the mangrove Central Java, Indonesia. The Banggi coast in Rembang, ecosystem. Gastropods perform symbiosis at various Central Java is fringed by various species of mangrove tropical levels to adapt with environmental conditions. such as Rhizophora mucronata Lam., Rhizophora Gastropods demonstrate a variety of feeding and apiculata Blume, Rhizophora stylosa Griff and morphological strategies and are found in areas that utilize Sonneratia alba Sm (Ariyanto et al., 2018a). The many food sources so that there will be a symbiosis mangrove ecosystem is a region rich in organic matter.
    [Show full text]
  • Molecular Phylogenetic Relationship of Thiaridean Genus Tarebia Lineate
    Journal of Entomology and Zoology Studies 2017; 5(3): 1489-1492 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Molecular phylogenetic relationship of Thiaridean JEZS 2017; 5(3): 1489-1492 © 2017 JEZS genus Tarebia lineate (Gastropoda: Cerithioidea) Received: 23-03-2017 Accepted: 24-04-2017 as determined by partial COI sequences Chittaranjan Jena Department of Biotechnology, Vignan’s University (VFSTRU), Chittaranjan Jena and Krupanidhi Srirama Vadlamudi, Andhra Pradesh, India Abstract An attempt was made to investigate phylogenetic affinities of the genus Tarebia lineata sampled from Krupanidhi Srirama the Indian subcontinent using partial mitochondrial COI gene sequence. The amplified partial mt-COI Department of Biotechnology, gene sequence using universal primers, LCO1490 and HCO2198 resulted into ~700 base pair DNA Vignan’s University (VFSTRU), Vadlamudi, Andhra Pradesh, fragment. The obtained nucleotide sequence of partial COI gene of T. lineata was submitted to BLAST India analysis and 36 close relative sequences of the chosen genera, Cerithioidea were derived. Maximum likelihood (ML) algorithm in-biuilt in RAxML software tool was used to estimate phylogenetic their affinities. The present analysis revealed that a single assemblage of the family Thiaridae supported by a bootstrap value of 96% is earmarked at the base of the derived cladogram as a cluster and emerged as a sister group with another four Cerithioideans. Our dataset brought add-on value to the current taxonomy of Thiaridae of the clade Sorbeconcha by clustering them as sister and non-sister groups indicating the virtual relations. Out of seven genera, Tarebia and Melanoides formed as primary and secondary clusters within the Thiaridae. The monophyly of Thiaridae and its conspecifics were depicted in the cladogram.
    [Show full text]
  • 8. the Mollusk Fauna of the Monte Postale
    Rendiconti della Società Paleontologica Italiana, 4, 2014, pp. 89-94 Excursion guidebook CBEP 2014-EPPC 2014-EAVP 2014-Taphos 2014 Conferences The Bolca Fossil-Lagerstätten: A window into the Eocene World (editors C.A. Papazzoni, L. Giusberti, G. Carnevale, G. Roghi, D. Bassi & R. Zorzin) 8. The mollusk fauna of the Monte Postale Stefano DOMINICI S. Dominici, Museo di Storia Naturale, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy; !$`"$ Fossil marine mollusks from Monte Postale, about one mile NE of Bolca (Verona and Vicenza Provinces) and 300 m N of the “Pesciara” (see the map in Papazzoni & Trevisani, 2006), were collected and catalogued at least since the 18th`[ seen, in the second decade of the 19th century, as means to date the rocks, and the already O"~P`[` geologists. In 1823, on the footsteps of Alberto Fortis (1778), Alexandre Brongniart drew stratigraphic sections and collected fossils in the Vicenza province, assigning the Bolca and Roncà invertebrates to one and the same geological interval. In the newly introduced 5~`[` Paris Basin. This meant to Brongniart that they belonged to the older Tertiary, and were distinct from the fossil shells described by Giambattista Brocchi in 1814, typifying the younger Tertiary (Rudwick, 2005). “I can relate the calcareous-trappic terrains of Northern Italy to the lower formation, the most ancient of the upper sediment [i.e., the Tertiary]. I’m struck by the analogy between these two terrains, their utter similarity under almost any aspect. Nothing of the lower terrains of the Parisian limestone is missing in Bolca, Roncà, etc.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Constructional Morphology of Cerithiform Gastropods
    Paleontological Research, vol. 10, no. 3, pp. 233–259, September 30, 2006 6 by the Palaeontological Society of Japan Constructional morphology of cerithiform gastropods JENNY SA¨ LGEBACK1 AND ENRICO SAVAZZI2 1Department of Earth Sciences, Uppsala University, Norbyva¨gen 22, 75236 Uppsala, Sweden 2Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden. Present address: The Kyoto University Museum, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan (email: [email protected]) Received December 19, 2005; Revised manuscript accepted May 26, 2006 Abstract. Cerithiform gastropods possess high-spired shells with small apertures, anterior canals or si- nuses, and usually one or more spiral rows of tubercles, spines or nodes. This shell morphology occurs mostly within the superfamily Cerithioidea. Several morphologic characters of cerithiform shells are adap- tive within five broad functional areas: (1) defence from shell-peeling predators (external sculpture, pre- adult internal barriers, preadult varices, adult aperture) (2) burrowing and infaunal life (burrowing sculp- tures, bent and elongated inhalant adult siphon, plough-like adult outer lip, flattened dorsal region of last whorl), (3) clamping of the aperture onto a solid substrate (broad tangential adult aperture), (4) stabilisa- tion of the shell when epifaunal (broad adult outer lip and at least three types of swellings located on the left ventrolateral side of the last whorl in the adult stage), and (5) righting after accidental overturning (pro- jecting dorsal tubercles or varix on the last or penultimate whorl, in one instance accompanied by hollow ventral tubercles that are removed by abrasion against the substrate in the adult stage). Most of these char- acters are made feasible by determinate growth and a countdown ontogenetic programme.
    [Show full text]
  • Ecology and Behavior of Telescopium Telescopium (Linnaeus, 1758), (Mollusca: Gastropoda: Potamididae) from Chemaguri Mudflats, S
    International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 4 Issue 4 || April 2015 || PP.16-21 Ecology and behavior of Telescopium Telescopium (Linnaeus, 1758), (Mollusca: Gastropoda: Potamididae) from Chemaguri mudflats, Sagar Island, Sundarbans, India 1, Hafizul Haque, 2, Amalesh Choudhury 1, 2, S. D. Marine Biological Research Institute Sagar Island, Sundarbans, 24 Prgs (S), Pin.-743373, India ABSTRACT: The ecology and behavior of Telescopium telescopium in the marine mangrove mudflats of Chemaguri, Sagar Island, Sundarbans is described during the period of January 2014 to December 2014.The surface air temperature and flood water temperature vary between 34°C to 24°C and 29⁰C to 14⁰C.. The salinity in the habitat was found to vary between 11‰ during monsoon, post monsoon season and 23‰ during premonsoon season. Hydrogen ion Concentration (pH), dissolved oxygen (DO) of flood water have been recorded. KEY WORDS: Ecology, Behavior, Telescopim telescopium, Chemaguri, Community I. INTRODUCTION Among the 60 odd numbers of gastropod species occurring in Sundarbans marine mangrove, Telescopium telescopium is a typical large snail and found in abundance and exploring the mudfloors of Indian Sundarbans.It feeds on organic detritus and surface algae and common on the exposed areas of small ditches, shallow pools or canals with a little flow of water during low tide or at extreme high tide mark in the soft mud or on pneumatophores of mangroves. Population (8-10 nos /m²) reaching upto 20-25 in the mangrove environment regions. Eggs are laid in gelatinous mass and juveniles recorded during April-May often found associated with Balanas sp.
    [Show full text]
  • Seasonal Reproductive Anatomy and Sperm Storage in Pleurocerid Gastropods (Cerithioidea: Pleuroceridae) Nathan V
    989 ARTICLE Seasonal reproductive anatomy and sperm storage in pleurocerid gastropods (Cerithioidea: Pleuroceridae) Nathan V. Whelan and Ellen E. Strong Abstract: Life histories, including anatomy and behavior, are a critically understudied component of gastropod biology, especially for imperiled freshwater species of Pleuroceridae. This aspect of their biology provides important insights into understanding how evolution has shaped optimal reproductive success and is critical for informing management and conser- vation strategies. One particularly understudied facet is seasonal variation in reproductive form and function. For example, some have hypothesized that females store sperm over winter or longer, but no study has explored seasonal variation in accessory reproductive anatomy. We examined the gross anatomy and fine structure of female accessory reproductive structures (pallial oviduct, ovipositor) of four species in two genera (round rocksnail, Leptoxis ampla (Anthony, 1855); smooth hornsnail, Pleurocera prasinata (Conrad, 1834); skirted hornsnail, Pleurocera pyrenella (Conrad, 1834); silty hornsnail, Pleurocera canaliculata (Say, 1821)). Histological analyses show that despite lacking a seminal receptacle, females of these species are capable of storing orientated sperm in their spermatophore bursa. Additionally, we found that they undergo conspicuous seasonal atrophy of the pallial oviduct outside the reproductive season, and there is no evidence that they overwinter sperm. The reallocation of resources primarily to somatic functions outside of the egg-laying season is likely an adaptation that increases survival chances during winter months. Key words: Pleuroceridae, Leptoxis, Pleurocera, freshwater gastropods, reproduction, sperm storage, anatomy. Résumé : Les cycles biologiques, y compris de l’anatomie et du comportement, constituent un élément gravement sous-étudié de la biologie des gastéropodes, particulièrement en ce qui concerne les espèces d’eau douce menacées de pleurocéridés.
    [Show full text]
  • Structure and Function of the Digestive System in Molluscs
    Cell and Tissue Research (2019) 377:475–503 https://doi.org/10.1007/s00441-019-03085-9 REVIEW Structure and function of the digestive system in molluscs Alexandre Lobo-da-Cunha1,2 Received: 21 February 2019 /Accepted: 26 July 2019 /Published online: 2 September 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The phylum Mollusca is one of the largest and more diversified among metazoan phyla, comprising many thousand species living in ocean, freshwater and terrestrial ecosystems. Mollusc-feeding biology is highly diverse, including omnivorous grazers, herbivores, carnivorous scavengers and predators, and even some parasitic species. Consequently, their digestive system presents many adaptive variations. The digestive tract starting in the mouth consists of the buccal cavity, oesophagus, stomach and intestine ending in the anus. Several types of glands are associated, namely, oral and salivary glands, oesophageal glands, digestive gland and, in some cases, anal glands. The digestive gland is the largest and more important for digestion and nutrient absorption. The digestive system of each of the eight extant molluscan classes is reviewed, highlighting the most recent data available on histological, ultrastructural and functional aspects of tissues and cells involved in nutrient absorption, intracellular and extracellular digestion, with emphasis on glandular tissues. Keywords Digestive tract . Digestive gland . Salivary glands . Mollusca . Ultrastructure Introduction and visceral mass. The visceral mass is dorsally covered by the mantle tissues that frequently extend outwards to create a The phylum Mollusca is considered the second largest among flap around the body forming a space in between known as metazoans, surpassed only by the arthropods in a number of pallial or mantle cavity.
    [Show full text]
  • Three Aboriginal Shell Mounds at Hope Inlet: Evidence for Coastal, Not Maritime Late Holocene Economies on the Beagle Gulf Mainland, Northern Australia
    Three Aboriginal shell mounds at Hope Inlet: Evidence for coastal, not maritime Late Holocene economies on the Beagle Gulf mainland, northern Australia Patricia M. Bourke Abstract Many hundreds of Aboriginal shell mounds exist on the northern coasts of Australia. Though these archaeological features increasingly figure in broad constructions of past coastal hunter-gatherer economies, few have been analysed in any detail. This paper describes the excavation and analysis of three Anadara-dominated shell mounds situated in adjacent microenvironments at Hope Inlet, Shoal Bay near Darwin on the Northern Territory coast. These stratified deposits, formed over some 15 centuries between about 2000 and 500 years B.P., provide a relatively fine- grained record of subsistence and settlement strategies of hunter-gatherer peoples during this Late Holocene period. This study finds that these North Australian coastal groups practiced not a specialised marine or maritime subsistence economy focused on offshore resources, but a generalised and flexible coastal subsistence economy tied to the land. Introduction Many hundreds of Aboriginal shell mounds exist on Australia’s northern coasts. Though these archaeological features increasingly figure in broad constructions of past coastal hunter-gatherer economies, relatively few have been excavated and analysed in fine detail. This paper describes the excavation and analysis of three shell mounds at Hope Inlet, Shoal Bay on the Northern Territory coast near Darwin, undertaken in 1996 with the permission and help of traditional owners, the Larrakia community. The excavated sites are three of hundreds of mounds dominated by Location of Hope Inlet on the North Australian Anadara granosa shell, recorded during surveys for a PhD Figure 1 coast, showing places mentioned in the text.
    [Show full text]