Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living Human

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living Human Quantitative optical coherence tomography PNAS PLUS angiography of vascular abnormalities in the living human eye Yali Jiaa, Steven T. Baileya, Thomas S. Hwanga, Scott M. McClintica, Simon S. Gaoa, Mark E. Pennesia, Christina J. Flaxela, Andreas K. Lauera, David J. Wilsona, Joachim Horneggerb, James G. Fujimotoc, and David Huanga,1 aCasey Eye Institute, Oregon Health & Science University, Portland, OR 97239; bPattern Recognition Lab and School of Advanced Optical Technologies, University Erlangen-Nuremberg, D-91058 Erlangen, Germany; and cDepartment of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Morton Goldberg, The Johns Hopkins Wilmer Eye Institute, Baltimore, MD, and accepted by the Editorial Board March 26, 2015 (received for review January 6, 2015) Retinal vascular diseases are important causes of vision loss. A develop a no-injection, dye-free method for 3D visualization of detailed evaluation of the vascular abnormalities facilitates diagno- ocular circulation. sis and treatment in these diseases. Optical coherence tomography In recent years, several OCT angiography methods have been (OCT) angiography using the highly efficient split-spectrum ampli- developed to detect changes in the OCT signal caused by flowing tude decorrelation angiography algorithm offers an alternative to red blood cells in blood vessels. Initially, Doppler OCT angiog- conventional dye-based retinal angiography. OCT angiography has raphy methods were investigated for the visualization and mea- several advantages, including 3D visualization of retinal and cho- surement of blood flow (3–8). Because Doppler OCT is only roidal circulations (including the choriocapillaris) and avoidance of sensitive to motion parallel to the OCT probe beam, it is limited dye injection-related complications. Results from six illustrative in its ability to image retinal and choroidal circulations, which cases are reported. In diabetic retinopathy, OCT angiography can are predominantly perpendicular to the OCT beam. More recent detect neovascularization and quantify ischemia. In age-related approaches, based on detecting variation in the speckle pattern macular degeneration, choroidal neovascularization can be ob- over time, are sensitive to both transverse and axial flow. Several served without the obscuration of details caused by dye leakage types of speckle-based techniques have been described, including in conventional angiography. Choriocapillaris dysfunction can be amplitude-based (9–11), phase-based (12), or a combination of detected in the nonneovascular form of the disease, furthering our both amplitude and phase (13) variance methods. ’ understanding of pathogenesis. In choroideremia, OCT s ability to We developed an amplitude-based method called split-spectrum show choroidal and retinal vascular dysfunction separately may be amplitude-decorrelation angiography (SSADA). The SSADA al- valuable in predicting progression and assessing treatment re- gorithm detects motion in the blood vessel lumen by measuring the sponse. OCT angiography shows promise as a noninvasive alter- variation in reflected OCT signal amplitude between consecutive native to dye-based angiography for highly detailed, in vivo, 3D, cross-sectional scans. The novelty of SSADA lies in how the OCT quantitative evaluation of retinal vascular abnormalities. optical coherence tomography angiography | ophthalmic imaging | Significance ocular circulation Retinal vascular diseases are a leading cause of blindness. Optical coherence tomography (OCT) has become the standard ptical coherence tomography (OCT) has become the most imaging modality for evaluating fluid accumulation in these commonly used imaging modality in ophthalmology. It pro- O diseases and for guiding treatment. However, fluorescein an- vides cross-sectional and 3D imaging of the retina and optic giography (FA) is still required for initial evaluation of retinal nerve head with micrometer-scale depth resolution. Structural ischemia and choroidal neovascularization, which are not visi- OCT enhances the clinician’s ability to detect and monitor fluid ble in conventional structural OCT. The limitations of FA include exudation associated with retinal vascular diseases. Whereas poor penetration of fluorescence through blood and pigment, anatomical alterations that impact vision are readily visible, inability to determine the depth of the pathology due to its structural OCT has a limited ability to image the retinal or two-dimensional nature, and some uncommon but potentially choroidal vasculatures. Furthermore, it is unable to directly de- severe complications. As a noninvasive three-dimensional al- tect capillary dropout or pathologic new vessel growth (neo- ternative, OCT angiography may be used in routine screening MEDICAL SCIENCES vascularization) that are the major vascular changes associated and monitoring to provide new information for clinical diag- with two of the leading causes of blindness, age-related macular nosis and management. degeneration (AMD) and diabetic retinopathy (1). To visualize these changes, traditional i.v. contrast dye-based angiography Author contributions: Y.J., S.T.B., T.S.H., M.E.P., C.J.F., A.K.L., D.J.W., and D.H. designed re- techniques are currently used. search; J.H. and J.G.F. contributed new reagents/analytic tools; Y.J., S.T.B., T.S.H., S.M.M., S.S.G., Fluorescein dye is primarily used to visualize the retinal vas- M.E.P., C.J.F., A.K.L., D.J.W., and D.H. analyzed data; and Y.J., S.T.B., T.S.H., S.M.M., S.S.G., M.E.P., culature. A separate dye, indocyanine green (ICG), is necessary and D.H. wrote the paper. ENGINEERING to evaluate the choroidal vasculature. Both fluorescein angiog- Conflict of interest statement: Oregon Health & Science University (OHSU), Y.J., J.G.F., and D.H. have a significant financial interest in Optovue, Inc., a company that may have a raphy (FA) and ICG angiography require i.v. injection, which is commercial interest in the results of this research and technology. These potential con- time consuming, and which can cause nausea, vomiting, and, flicts of interest have been reviewed and managed by OHSU. J.G.F. and D.H. receive rarely, anaphylaxis (2). Dye leakage or staining provides infor- royalties on an optical coherence tomography patent licensed by the Massachusetts In- mation regarding vascular incompetence (e.g., from abnormal stitute of Technology (MIT) to Carl Zeiss Meditec. J.G.F. and J.H. receive royalties from intellectual property owned by MIT and licensed to Optovue, Inc. Other authors do not capillary growth), but it also obscures the image and blurs the have financial interest in the subject of this article. boundaries of neovascularization. Additionally, conventional an- This article is a PNAS Direct Submission. M.G. is a guest editor invited by the Editorial giography is 2D, which makes it difficult to distinguish vascular Board. abnormalities within different layers. Therefore, it is desirable to 1To whom correspondence should be addressed. Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1500185112 PNAS | Published online April 20, 2015 | E2395–E2402 Downloaded by guest on September 25, 2021 signal is processed to enhance flow detection and reject axial bulk this technique, both blood flow and retinal structural information motion noise. Compared with the full-spectrum amplitude method, are presented on a single image. SSADA using fourfold spectral splits improved the signal-to-noise En face presentation of OCT angiography is comparable to ratio (SNR) by a factor of two, which is equivalent to reducing the the traditional view of dye-based angiography and is necessary scan time by a factor of four (14). More recent SSADA imple- for clinicians to identify vascular patterns. Segmented en face mentations use even more than a fourfold split to further enhance OCT angiograms can be displayed as individual retinal and the SNR of flow detection. This highly efficient algorithm gener- choroidal circulations (Fig. 1 C and E). In healthy eyes, the vit- ates high-quality angiograms of both the retina and choroid. The reous and outer retinal layers are colored black (Fig. 1 B and D), angiograms have capillary-level detail and can be obtained with representing the absence of flow. currently available commercial OCT systems. In vivo imaging of the choroid is limited with current imaging This article uses six illustrative cases and highlights the various modalities (15). High-quality OCT angiograms of the chorioca- μ types of vascular pathologies that can be detected and measured pillaris can be obtained by segmenting a thin slice (10 m) of the ’ E using SSADA and an OCT angiography system of visualization. inner choroid below Bruch s membrane (Fig. 1 ). The larger and Additionally, we describe techniques designed to help clinicians deeper choroidal vessels are more difficult to visualize with rapidly interpret OCT angiograms and to easily identify patho- SSADA-based OCT angiography because choriocapillaris flow logical vascular features. These techniques include (i) separation causes a flow projection artifact in the deeper layers. Selective removal of this artifact is impossible, given the near confluent of the 3D angiogram into individual vascular beds via segmenta- nature of the choriocapillaris. Another reason is that high flow in tion algorithms, (ii) presentation of en face OCT angiograms, the larger choroidal vessels reduces the OCT signal due to
Recommended publications
  • Emily Y. Chew, M.D
    CURRICULUM VITAE Name: Emily Y. Chew Place of Birth: Canton, China Citizenship: United States Marital Status: Married, three children Education 1971-1972 University of British Columbia, Vancouver, B.C., Canada (1st year sciences) 1972-1973 University of Toronto, Canada (2nd year of arts and sciences) 1974-1977 University of Toronto, School of Medicine (6-year program post-high school) 1977-1978 Internship in Internal Medicine, University of Toronto 1978-1981 Residency in Ophthalmology, University of Toronto 1982-1983 Fellowships in Medical Retina & Genetics Johns Hopkins University, Baltimore, (Irene Maumenee, MD, Arnall Patz, MD) University of Nijmegen, Nijmegen, the Netherlands (August Deutman, MD) Brief Chronology of Employment: 1983-1984 Lecturer, University of Toronto, Dept. of Ophthalmology 1985-1986 Assist. Professor, University of Toronto, Dept. of Ophthalmology 1987-1991 Visiting Scientist, Biometry & Epidemiology Program, NEI/NIH 1991-now Medical Officer, Division of Biometry & Epidemiology, NEI/NIH 2000-2017 Deputy Director, Division of Epidemiology and Clinical Applications, NEI. 2008-now Deputy Clinical Director, National Eye Institute 2009-now Chief of Clinical Trials Branch, National Eye Institute 2017-now Director, Division of Epidemiology and Clinical Applications, NEI/NIIH Honors and Other Scientific Recognition: 1981 Research Prize, Ophthalmology, U. of Toronto 1982 E.A. Baker Scholarship for Advanced Training in Ophthalmology 1986 Best Teacher’s Award, Ophthalmology, U. of Toronto 1996 American Academy of Ophthalmology Honors Award 2001 NEI Director’s Award (Achievements in the Age-Related Eye Disease Study) 2001 NEI Director’s Award (Compassion in patient care) 2003 NIH Director’s Award for Excellence in Mentoring 2004 Award of Merit in Retina Research, Schepens Lecture (Retina Society) shared with F.L.
    [Show full text]
  • Copyright and Use of This Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Copyright Service. sydney.edu.au/copyright Clinical Studies into the Causes of Idiopathic Macular Telangiectasia Type 2: Sleep Apnoea and Macular Telangiectasia: The SAMTel Project Martin Lee Submitted to the Faculty of Medicine in fulfillment of the requirements of the degree Masters of Philosophy (Medicine) Department of Clinical Ophthalmology & Eye Health University of Sydney January 2015 Acknowledgements: To my family, especially parents, Anne and Russell, and siblings Alison and Frances, thank you for your unbridled support and endless encouragement to enable me to continue to pursue my educational interests.
    [Show full text]
  • Macular Telangiectasia Type 2: Quantitative Analysis of a Novel
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Macular telangiectasia type 2: quantitative analysis of a novel phenotype and implications for the pathobiology of the disease Mali Okada, MBBS, MMed*; Catherine A Egan, FRANZCO*†; Tjebo FC Heeren, MD*‡; Adnan Tufail, MD, FRCOphth*; Marcus Fruttiger, PhD‡; Peter M Maloca, MD*§ * Moorfields Eye Hospital NHS Foundation Trust, London, UK † Department of Ophthalmology, University of Bonn, Bonn, Germany ‡ UCL Institute of Ophthalmology, London, United Kingdom § Department of Ophthalmology, University of Basel, Basel, Switzerland Short Title: Retinal microcystoid spaces in MacTel 2 Funding: Supported by the Lowy Medical Research Institute, Sydney, Australia as part of The Macular Telangiectasia Project (MO, CE). AT receives a proportion of funding from the National Institute for Health Research (NIHR) and Biomedical Research Centre at Moorfields Eye Hospital and the University College London Institute of Ophthalmology. The views expressed in the publication are those of the authors and not necessarily those of the Department of Health. Financial Disclosures: AT is on the advisory board for Heidelberg engineering (Heidelberg, Germany) and Optovue (Optovue Inc, USA). PM receives fees for lectures from Heidelberg engineering (Heidelberg, Germany) 1 Address for correspondence: Peter M Maloca, MD Moorfields Eye Hospital 162 City Road, London EC1V 2PD London, United Kingdom Tel: +44 20 72533411 Fax: +44 20 72534696 [email protected] Key words Macular telangiectasia type 2; spectral domain optical coherence tomography; volume rendering; microcystoid spaces; cystoid macular oedema; microcystic macular oedema; inner nuclear layer cysts; microcysts; microcavitations Summary Statement Retinal microcystoid spaces are a novel phenotype of Macular Telangiectasia (MacTel) type 2 on optical coherence tomography.
    [Show full text]
  • Genetic Disruption of Serine Biosynthesis Is a Key Driver Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934356; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genetic Disruption of Serine Biosynthesis is a Key 2 Driver of Macular Telangiectasia Type 2 Etiology and 3 Progression 4 5 RoBerto Bonelli,1,2 Brendan R E Ansell,1,2 Luca Lotta,3 Thomas Scerri,1,2 Traci E Clemons,4 Irene Leung,5 The 6 MacTel Consortium,6 Tunde Peto,7 Alan C Bird,8 Ferenc Sallo,9 Claudia LangenBerg,3 and Melanie Bahlo*1,2. 7 8 9 1 Department of Medical Biology, The University of Melbourne, 3052, Parkville, Victoria, Australia. 10 2 Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Victoria, 11 Australia. 12 3 MRC Epidemiology Unit, University of Cambridge, CB2 0SL, Cambridge, UK. 13 4 The EMMES Corporation, Rockville, 20850, Maryland, United States. 14 5 Department of Research and Development, Moorfields Eye Hospital NHS Foundation Trust, EC1V 2PD, London, United 15 Kingdom. 16 6 A list of members and affiliations is provided in Table S8. 17 7 Department of Ophthalmology, Queen’s University, Belfast, BT7 1NN, United Kingdom. 18 8 Inherited Eye Disease, Moorfields Eye Hospital NHS Foundation Trust, EC1V 2PD, London, United Kingdom. 19 9 Department of Ophthalmology, University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Fondation Asile des aveugles, 20 Switzerland.
    [Show full text]
  • Rotational Three-Dimensional OCTA
    www.nature.com/scientificreports OPEN Rotational Three-dimensional OCTA: a Notable New Imaging Tool to Characterize Type 3 Macular Neovascularization Enrico Borrelli 1, Riccardo Sacconi 1, Gerd Klose2, Luis de Sisternes3, Francesco Bandello1 & Giuseppe Querques 1* This study explored whether rotational three-dimensional (3D) visualization of optical coherence tomography angiography (OCTA) volume data may yield valuable information regarding type 3 macular neovascularization (MNV). In this retrospective, cross-sectional study, we collected data from 15 eyes (13 patients) with treatment-naïve type 3 MNV in their post-nascent stage and age-related macular degeneration (AMD). Subjects were imaged with the SS-OCT system (PLEX Elite 9000, Carl Zeiss Meditec Inc., Dublin, CA, USA). The OCTA volume data were processed with a prototype volume projection removal algorithm and then analyzed using volumetric visualization techniques in order to obtain a 3D visualization of the region occupied by type 3 MNV. The two-dimensional and three-dimensional OCTA images were investigated. Mean ± SD age was 75.1 ± 7.4 years. BCVA was 0.42 ± 0.21 LogMAR in the study eyes. Considering the cohort of analyzed eyes, on rotational 3D OCTA images, a total of 35 neovascular lesions (vs 22 lesions detected on 2D OCTA images) rising from the deep vascular complex and variably spanning the outer retinal layers and eventually reaching the RPE/sub-RPE space were detected. Nine of 35 lesions had a saccular shape, while the remaining cases had a fliform shape. On rotational 3D OCTA images, these lesions were inclined on the three planes, instead of perpendicular to the RPE/Bruch’s membrane.
    [Show full text]
  • Improving Anti-VEGF Drugs in the Vitreous by Eda Isil Altiok A
    Improving Anti-VEGF Drugs in the Vitreous By Eda Isil Altiok A dissertation submitted in partial satisfaction of the Requirement for the degree of Joint Doctor of Philosophy with UC San Francisco In Bioengineering In the graduate division Of the University of California, Berkeley Committee in charge: Professor Kevin E. Healy, Chair Professor David Schaffer Professor Tejal Desai Professor Anthony Adams Fall 2015 Improving Anti-VEGF Drugs in the Vitreous © 2015 by Eda Isil Altiok University of California, Berkeley Abstract Improving Anti-VEGF Drugs in the Vitreous By Eda Isil Altiok Doctor of Philosophy in Bioengineering University of California, Berkeley Professor Kevin Healy, Chair The work described in this dissertation present a novel technique utilizing multivalent hyaluronic acid bioconjugates with an anti-VEGF protein for improving the action of drugs in the vitreous. This technology, which has shown efficacy both in vitro and in vivo has the potential to enhance the bioactivity of drugs used for treating patients with diseases including diabetic retinopathy, wet AMD and other neovascular diseases of the retina. Chapter 2 described our initial efforts in creating multivalent conjugates of the anti-VEGF protein, sFlt. Before beginning in vivo studies, we wanted to determine what parameters would maximize the bioactivity of mvsFlt. We investigated the use of several HyA molecular weights and valencies of sFlt molecules to HyA chains. The characterization and in vitro experiments were carried out with 6 mvsFlt conjugates of 300 kDa, 650 kDa and 1 MDa molecular weights with feed ratios of 10 sFlt per 1 HyA chain (termed low conjugation ratio (LCR)) and 30 sFlt per 1 HyA chain (termed high conjugation ratio (HCR)).
    [Show full text]
  • Idiopathic Juxtafoveal Telangiectasis
    RETINA HEALTH SERIES | Facts from the ASRS The Foundation American Society of Retina Specialists Committed to improving the quality of life of all people with retinal disease. Idiopathic Juxtafoveal Telangiectasis (pronounced tell an gee ACT te sis) (JFT), also known as SYMPTOMS perifoveal telangiectasis or mac-tel for macular telangiectasia, Patients with JFT may experience: is a condition in which abnormalities develop in blood vessels • Blurred vision at the center of the retina. This central part of the retina, • Metamorphopsia (pronounced called the fovea, is responsible for the sharp vision needed met a morf OP see ah)—a visual disturbance where straight lines for reading and recognizing faces (see retina diagram). appear wavy; parts of the central vision may also appear blank. • Difficulty reading • Visual field defects in one or both eyes The condition may be diagnosed before it causes any symptoms at all. WHAT IS THE RETINA? Early frames of the fluorescein angiogram show Later frames of the fluorescein angiogram show telangiectatic vessels in temporal macula. staining in the temporal macula. Photo courtesy Image courtesy of John Thompson, MD of John1 Thompson, MD 1 Causes and Risk Factors: There are several classifications of idiopathic (of an unknown cause) juxtafoveal telan- giectasis (JFT), but the most common one divides JFT into Types 1, 2 and 3. Types 1 and 3 are rare—the vast majority of patients with JFT have Type 2. JFT occurs when tiny abnormal blood THE RETINA is a thin layer of vessels (or telangiectasias—pronounced light-sensitive nerve tissue that lines tell an gec TAY shuhs) occur in the fovea.
    [Show full text]
  • KAMAL KISHORE, MD 3602 Marquette Road Peru, IL 61354 Phone: (815)223-7400 E-Mail: [email protected]
    KAMAL KISHORE, MD 3602 Marquette Road Peru, IL 61354 Phone: (815)223-7400 e-mail: [email protected] EDUCATION/EXPERIENCE Aug, 02 – Present President, Illinois Retina Institute, S.C. Aug, 99 – Jul, 02 Retina Surgeon, Bond Eye Associates, Peoria, IL Jul, 97 – Jun, 99 Fellow in Vitreo-Retinal Surgery Louisiana State University, New Orleans, LA Jul, 94 - Jun, 97 Residency in Ophthalmology UMDNJ-New Jersey Medical School, Newark, NJ Chief Resident: Jul, 96 - Jun, 97 Jan, 94 - Jun, 94 Research Fellowship in Ocular Oncology with Dr. Char UCSF, San Francisco, CA Jan, 92 - Dec, 93 SUNY at Stony Brook Program B Resident in Internal Medicine at Nassau County Med Ctr, NY Jan, 89 - Dec, 91 Senior Resident at Dr. R.P.Ctr for Ophth Sci., AIIMS, New Delhi, India Jan, 86 - Dec, 88 Residency in Ophthalmology Dr. R.P. Center for Oph Sci, AIIMS, New Delhi Jan, 85 - Dec, 85 Compulsory Internship (part of MBBS) Aug, 80 - Dec, 84 MBBS (Graduate Medical Education) All India Institute of Medical Sciences, New Delhi BOARD STATUS ABO Certified, October 1998 Recertified, January 1, 2009; January 1, 2019 LICENSURE California License #A 053457, dated 8/24/94, inactive IL Physician and Surgeon License #036-100858, 8/3/99 1 SCHOLARSHIPS AND AWARDS Jul, 77 - Jun, 79 Merit Scholarship Jul, 79 - Dec, 88 National Talent Scholarship Year 1982 Medal for best medical student in Microbiology Merit Award for standing first in Pathology Year 1988 Medal for best graduate in Ophthalmology Aug, 1992 House Officer of the month, Nassau County Med Ctr Jun, 1997 Alfonse Cinotti Award for best graduate at UMDNJ August, 2014 Technovisionary Award, Film Festival, ASRS, San Diego, CA July, 2015 Honor Award, American Society of Retina Specialists, (ASRS) August, 2017 Senior Honor Award, ASRS, Boston, MA PUBLICATIONS Book Chapters Kishore K.
    [Show full text]
  • Ucla Stein Eye Institute Vision-Science Campus
    SPRING 2020 VOLUME 38 NUMBER 1 UCLA STEIN EYE INSTITUTE EYEVISION-SCIENCE CAMPUS LETTER FROM THE CHAIR To have 20/20 vision is to see clearly, and for the UCLA Department of Ophthalmology, the year 2020 heralds in both a new decade and a focus on our mission to preserve sight and end avoidable blindness. Research is core to this aim, and in this issue of EYE Magazine, we highlight basic scientists in the UCLA Stein Eye Institute’s Vision Science Division who are studying the fundamental mechanisms of visual function and using that knowledge to define, identify, and ultimately cure eye disease. Clinical research trials are also underway at Stein Eye and the Doheny Eye Centers UCLA, and include the first in-human trial of autologous cultivated limbal cell therapy to treat limbal stem cell deficiency, a blinding corneal disease; evaluation of an investiga- tional medication to treat graft-versus-host disease, a potentially EYE MAGAZINE is a publication of the serious complication after transplant procedures; comparison of UCLA Stein Eye Institute drug-delivery systems to determine which is most effective for DIRECTOR treatment of diabetic macular edema; and analysis of regenerative Bartly J. Mondino, MD strategies for treatment of age-related macular degeneration. MANAGING EDITOR UCLA Department of Ophthalmology award-winning researchers Tina-Marie Gauthier conduct investigations of depth and magnitude, and the Depart- c/o Stein Eye Institute 100 Stein Plaza, UCLA ment has taken a central role in transforming vision science as a Los Angeles, California 90095–7000 powerful platform for discovery. I thank our faculty and staff for their [email protected] sight-saving endeavors, and I thank you, our donors and friends, for PUBLICATION COMMITTEE supporting our scientific explorations.
    [Show full text]
  • Engelbert CV
    Michael Engelbert, MD PhD 460 Park Avenue, 5th Floor New York, NY 10022 Phone: (212) 861-9797 Fax: (212) 628-0698 Education Ph.D. Oklahoma University Health Sciences Center, Oklahoma, USA – Microbiology and Immunology Thesis presented at “Hot Topics in Microbiology,” ARVO 2004 M.D. Ludwig-Maximilians-Universität, München, Germany – Medical School, magna cum laude Last Year Electives and Final Board Exam, ECFMG certification Technische Universität, München, Germany – Medical School Clinical Semesters Student Government Representative 2001 – 2002 Universität RegensBurg, Germany – Premedicine Baccalaureate Hans-Carossa Preparatory School, Landshut, Germany, amongst top 10 graduates Postgraduate Training • ColumBia University, Dr. Stanley Chang 2008 – 2010 Vitreous Retina Macula Consultants oF New York, Dr. Lawrence A. Yannuzzi New York Eye and Ear InFirmary, Dr. Richard Rosen Clinical and Surgical Fellow in Diseases of the Retina and Vitreous • ColumBia University, Edward S. Harkness Eye Institute 2005 – 2008 Resident and Chief Resident in Ophthalmology • GriFFin Hospital / Yale University School oF Medicine, Vincent A. De 2004 – 2005 Luca Intern of the Year Award Medical Internship Current Employment • Vitreous Retina Macula Consultants oF New York, Associate 2010 – Present • New York University, Research Assistant Professor 2010 – Present • Bellevue Hospital, Assistant Attending 2010 – Present • New York Eye and Ear InFirmary; Manhattan Eye, Ear & Throat 2010 – Present Hospital, Attending Physician Michael Engelbert, MD PhD Page 2 Honors and Awards • Permanent Resident Status awarded as physician-scientist at top of 2009 his particular field • Best Poster Presentation, Euretina Winter Meeting – Rome, Italy 2014 • Macula Foundation Travel Awards o Euretina 2008, 2010 o ARVO 2009, 2011 • Circle of Excellence, Arnold P. Gold Foundation’s Humanism and 2008 Excellence in Teaching Award • AAO Advocacy Day, travel award by New York State 2007 Ophthalmological Society • Travel Award to attend Heed Foundation Residency Retreat 2006 • Vincent A.
    [Show full text]
  • Idiopathic Peripheral Retinal Telangiectasia in Adults: a Case Series and Literature Review
    Journal of Clinical Medicine Article Idiopathic Peripheral Retinal Telangiectasia in Adults: A Case Series and Literature Review Maciej Gaw˛ecki Dobry Wzrok Ophthalmological Clinic, 80-822 Gdansk, Poland; [email protected]; Tel.: +48-501-788-654 Abstract: Idiopathic peripheral retinal telangiectasia (IPT), often termed as Coats disease, can present in a milder form with the onset in adulthood. The goal of this case series study and literature review was to describe and classify different presenting forms and treatment of this entity and to review contemporary methods of its management. Six cases of adult onset IPT were described with the following phenotypes based on fundus ophthalmoscopy, fluorescein angiography, and optical coherence tomography findings: IPT without exudates or foveal involvement, IPT with peripheral exudates without foveal involvement, IPT with peripheral exudates and cystoid macular edema, and IPT with peripheral and macular hard exudates. Treatments applied in this series included observation, laser photocoagulation, and anti-vascular endothelial growth factor (VEGF) treatment with variable outcomes depending upon the extent of IPT, the aggressiveness of laser treatment, and the stringency of follow-up. The accompanying literature review suggests that ablative therapies, especially laser photocoagulation, remain the most effective treatment option in adult-onset IPT, with anti-VEGF therapy serving as an adjuvant procedure. Close follow-up is necessary to achieve and maintain reasonable good visual and morphological results. Keywords: Coats disease; peripheral retinal telangiectasia; laser photocoagulation; anti-VEGF treatment Citation: Gaw˛ecki,M. Idiopathic Peripheral Retinal Telangiectasia in 1. Introduction Adults: A Case Series and Literature Review. J. Clin. Med. 2021, 10, 1767. Idiopathic peripheral retinal telangiectasia (IPT), usually referred to as Coats disease, https://doi.org/10.3390/jcm10081767 has been well-described in the medical literature since its discovery in 1908 [1].
    [Show full text]
  • Art for Macular Holes: Outcomes of the World Study
    s DIVERSITY AND INCLUSION Retina Around the World Experts share the latest research and preferred techniques for macular holes, nonexudative macular neovascularization, myopic traction maculopathy, and more. BY JUDY E. KIM, MD; LIHTEH WU, MD; TAMER H. MAHMOUD, MD, PHD; GIUSEPPE QUERQUES, MD, PHD; KAZUAKI KADONOSONO, MD, PHD; GEMMY CHEUNG, MD; PAUL S. BERNSTEIN, MD, PHD; AND JOSE A. ROCA, MD Despite the pandemic, our colleagues around the world continue to explore ways to improve the diagnosis and management of various retinal conditions. Because of COVID-19, perhaps the world has become smaller, as we share information in virtual settings. During the virtual 2020 annual meeting of the AAO, we gathered an international group of experts to share their knowledge and learn the latest research findings from various corners of the world. We are excited to share with you their summaries of the research they presented. – Judy E. Kim, MD, and Lihteh Wu, MD neurosensory layers (ANL). When the graft is first placed, ART FOR MACULAR HOLES: vertical lines appear on OCT between the graft and sur- OUTCOMES OF THE WORLD STUDY rounding macular tissue. Within weeks, these lines gradually fade, details of the graft layers can be detected, and they By Tamer H. Mahmoud, MD, PhD align with similar layers in the surrounding host macular A multicenter international interventional tissue (ie, plexiform to plexiform, nuclear to nuclear, etc.). study with 33 participating surgeons looked This could suggest that the macular tissue recognizes the at 130 eyes that underwent autologous reti- peripheral retinal tissue and may be trying to connect to nal transplant (ART) for repair of macular corresponding layers, leading to integration of the transplant holes (MH) and MH retinal detachment (MHRD) to deter- and, thus, better visual outcomes.
    [Show full text]