Triassic-Jurassic Stratigraphy in Southwestern Colorado S.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mesozoic—Dinos!
MESOZOIC—DINOS! VOLUME 9, ISSUE 8, APRIL 2020 THIS MONTH DINOSAURS! • Dinosaurs ○ What is a Dinosaur? page 2 DINOSAURS! When people think paleontology, ○ Bird / Lizard Hip? page 5 they think of scientists ○ Size Activity 1 page 10 working in the hot sun of ○ Size Activity 2 page 13 Colorado National ○ Size Activity 3 page 43 Monument or the Badlands ○ Diet page 46 of South Dakota and ○ Trackways page 53 Wyoming finding enormous, ○ Colorado Fossils and fierce, and long-gone Dinosaurs page 66 dinosaurs. POWER WORDS Dinosaurs safely evoke • articulated: fossil terror. Better than any bones arranged in scary movie, these were Articulated skeleton of the Tyrannosaurus rex proper order actually living breathing • endothermic: an beasts! from the American Museum of Natural History organism produces body heat through What was the biggest dinosaur? be reviewing the information metabolism What was the smallest about dinosaurs, but there is an • metabolism: chemical dinosaur? What color were interview with him at the end of processes that occur they? Did they live in herds? this issue. Meeting him, you will within a living organism What can their skeletons tell us? know instantly that he loves his in order to maintain life What evidence is there so that job! It doesn’t matter if you we can understand more about become an electrician, auto CAREER CONNECTION how these animals lived. Are mechanic, dancer, computer • Meet Dr. Holtz, any still alive today? programmer, author, or Dinosaur paleontologist, I truly hope that Paleontologist! page 73 To help us really understand you have tremendous job more about dinosaurs, we have satisfaction, like Dr. -
Biochronology of the Triassic Tetrapod Footprints
Geological Society, London, Special Publications Tetrapod footprints - their use in biostratigraphy and biochronology of the Triassic Hendrik Klein and Spencer G. Lucas Geological Society, London, Special Publications 2010; v. 334; p. 419-446 doi:10.1144/SP334.14 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 15 June 2010 © 2010 Geological Society of London Tetrapod footprints – their use in biostratigraphy and biochronology of the Triassic HENDRIK KLEIN1,* & SPENCER G. LUCAS2 1Ru¨bezahlstraße 1, D-92318 Neumarkt, Germany 2New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 USA *Corresponding author (e-mail: [email protected]) Abstract: Triassic tetrapod footprints have a Pangaea-wide distribution; they are known from North America, South America, Europe, North Africa, China, Australia, Antarctica and South Africa. They often occur in sequences that lack well-preserved body fossils. Therefore, the question arises, how well can tetrapod footprints be used in age determination and correlation of stratigraphic units? The single largest problem with Triassic footprint biostratigraphy and biochronology is the non- uniform ichnotaxonomy and evaluation of footprints that show extreme variation in shape due to extramorphological (substrate-related) phenomena. Here, we exclude most of the countless ichnos- pecies of Triassic footprints, and instead we consider ichnogenera and form groups that show distinctive, anatomically-controlled features. Several characteristic footprint assemblages and ichnotaxa have a restricted stratigraphic range and obviously occur in distinct time intervals. -
Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO
Cyclicity, Dune Migration, and Wind Velocity in Lower Permian Eolian Strata, Manitou Springs, CO by James Daniel Pike, B.S. A Thesis In Geology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dustin E. Sweet Chair of Committee Tom M. Lehman Jeffery A. Lee Mark Sheridan Dean of the Graduate School August, 2017 Copyright 2017, James D. Pike Texas Tech University, James Daniel Pike, August 2017 ACKNOWLEDGMENTS I would like to extend my greatest thanks to my advisor Dr. Dustin Sweet, who was an excellent advisor during this research. Dr. Sweet was vital throughout the whole process, be it answering questions, giving feedback on figures, and imparting his extensive knowledge of the ancestral Rocky Mountains on me; for this I am extremely grateful. Dr. Sweet allowed me to conduct my own research without looking over my shoulder, but was always available when needed. When I needed a push, Dr. Sweet provided it. I would like to thank my committee memebers, Dr. Lee and Dr. Lehman for providing feedback and for their unique perspectives. I would like to thank Jenna Hessert, Trent Jackson, and Khaled Chowdhury for acting as my field assistants. Their help in taking measurements, collecting samples, recording GPS coordinates, and providing unique perspectives was invaluable. Thank you to Melanie Barnes for allowing me to use her lab, and putting up with the mess I made. This research was made possible by a grant provided by the Colorado Scientific Society, and a scholarship provided by East Texas Geological Society. -
Message from the New Chairman
Subcommission on Devonian Stratigraphy Newsletter No. 21 April, 2005 MESSAGE FROM THE NEW CHAIRMAN Dear SDS Members: This new Newsletter gives me the pleasant opportunity to thank you for your confidence which should allow me to lead our Devonian Subcommission successfully through the next four years until the next International Geological Congress in Norway. Ahmed El Hassani, as Vice-Chairman, and John Marshall, as our new Secretary, will assist and help me. As it has been our habit in the past, our outgoing chairman, Pierre Bultynck, has continued his duties until the end of the calendar year, and in the name of all the Subcommission, I like to express our warmest thanks to him for all his efforts, his enthusi- asm for our tasks, his patience with the often too slow progress of research, and for the humorous, well organized and skil- ful handling of our affairs, including our annual meetings. At the same time I like to thank all our outgoing Titular Members for their partly long-time service and I express my hope that they will continue their SDS work with the same interest and energy as Corresponding Members. The new ICS rules require a rather constant change of voting members and the change from TM to CM status should not necessarily be taken as an excuse to adopt the lifestyle of a “Devonian pensioner”. I see no reason why constantly active SDS members shouldn´t become TM again, at a later stage. On the other side, the rather strong exchange of voting members should bring in some fresh ideas and some shift towards modern stratigraphical tech- niques. -
Distribution of Elements in Sedimentary Rocks of the Colorado Plateau a Preliminary Report
Distribution of Elements in Sedimentary Rocks of the Colorado Plateau A Preliminary Report GEOLOGICAL SURVEY BULLETIN 1107-F Prepared on behalf of the U.S. Atomic Energy Commission Distribution of Elements in Sedimentary Rocks of the Colorado Plateau A Preliminary Report By WILLIAM L. NEWMAN CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1107-F Prepared on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. CONTENTS Page Abstract____________________________-__-__-_---_-___-___ 337 Introduction ______________________________________________________ 339 Physical features of sedimentary rocks------_--__----_------------__- 339 Precambrian sedimentary rocks.________________________________ 341 Cambrian system____________________________________________ 342 Ordovician system..___________________________________________ 344 Devonian system._____________________________________________ 344 Mississippian system.._________________________________________ 346 Pennsylvanian system________________________________________ 346 Permian system _______________________________________________ 349 Triassic system______________________________________________ 352 Moenkopi formation _______________________________________ 352 Chinle formation..._______________________________________ -
New Mexico Geological Society Spring Meeting Abstracts
the surface water system. Snow melt in the high VOLCANIC STRATIGRAPHY OF THE WEST- mountains recharges shallow perched aquifers ERN SIERRA BLANCA VOLCANIC FIELD, Abstracts that discharge at springs that feed streams and SOUTH-CENTRAL NEW MEXICO, S. A. Kel- ponds where evaporation occurs. Water in ponds ley, [email protected], and D. J. Koning, and streams may then recharge another shallow New Mexico Bureau of Geology and Mineral perched aquifer, which again may discharge at a Resources, New Mexico Institute of Mining and spring at a lower elevation. This cycle may occur Technology, Socorro, New Mexico 87801; K. A. New Mexico Geological Society several times until the water is deep enough to be Kempter, 2623 Via Caballero del Norte, Santa Fe, spring meeting isolated from the surface water system. A deeper New Mexico 87505; K. E. Zeigler, Zeigler Geo- regional aquifer may exist in this area. East of logic Consulting, Albuquerque, New Mexico The New Mexico Geological Society annual Mayhill along the Pecos Slope, regional ground 87123; L. Peters, New Mexico Bureau of Geology spring meeting was held on April 16, 2010, at the water flow is dominantly to the east toward the and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mex- Macey Center, New Mexico Tech, Socorro. Fol- Roswell Artesian Basin. Some ground water also ico 87801; and F. Goff, Department of Earth and lowing are the abstracts from all sessions given flows to the southeast toward the Salt Basin and to the west into the Tularosa Basin. Planetary Sciences, University of New Mexico, at that meeting. -
English Information
National Park Service U.S. Department of the Interior Capitol Reef National Park … the light seems to flow or shine out of the rock rather than to be reflected English from it. – Clarence Dutton, geologist and early explorer of Capitol Reef, 1880s A Wrinkle in the Earth A vibrant palette of color spills across the landscape before bridges, and twisting canyons. Over millions of years geologic forces you. The hues are constantly changing, altered by the play shaped, lifted, and folded the earth, creating this rugged, remote area of light against the towering cliffs, massive domes, arches, known as the Waterpocket Fold. Panorama Point at Sunset Erosion creates waterpockets and potholes that collect The Castle is made of fractured Wingate Sandstone perched upon grey Chinle and red Moenkopi Formations. rainwater and snowmelt, enhancing a rich ecosystem. From the east, the Waterpocket Fold appears as a formidable barrier Capitol Dome reminded early travelers of the US Capitol to travel, much like a barrier reef in an ocean. building and later inspired the name of the park. Creating the Waterpocket Fold Capitol Reef’s defining geologic feature is a wrinkle in Uplift: Between 50 and 70 million years ago, an ancient fault was Earth’s crust, extending nearly 100 miles from Thousand reactivated during a time of tectonic activity, lifting the layers to the Lake Mountain to Lake Powell. It was created over time by west of the fault over 7,000 feet higher than those to the east. Rather three gradual, yet powerful processes—deposition, uplift, than cracking, the rock layers folded over the fault line. -
Geology and Stratigraphy Column
Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it. -
Geologic Cross Section C–C' Through the Appalachian Basin from Erie
Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p. -
Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart. -
Mesozoic Stratigraphy at Durango, Colorado
160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs. -
The Geology of Quail Creek State Park Itself, the Park Is Surrounded by a Landscape of Enormous Geological and Human Interest
TT HH EE G E O L OO GG Y OO FF Q UU AA II LL C R E E K SS T A TT EE PP A R K T H E G E O L O G Y O F Q U A I L C R E E K S T A T E P A R K T H E GEOLO G Y O F Q UA IL CREEK STAT E PA R K by Robert F. Biek Introduction . 1 Layers of Rock. 3 Regional overview . 3 Moenkopi Formation . 4 Shnabkaib Member . 6 Upper red member . 7 Chinle Formation . 7 Shinarump Conglomerate Member . 7 Petrified Forest Member . 8 Surficial deposits . 9 Talus deposits . 9 Mixed river and slopewash deposits . 9 Landslides. 9 The Big Picture . 10 Geological Highlights . .14 Virgin anticline . .14 Faults . .14 Gypsum . .14 “Picture stone” . .15 Boulders from the Pine Valley Mountains . .16 Catastrophic failure of the Quail Creek south dike . .17 Acknowledgments . .19 References . .19 T H E G E O L O G Y O F Q U A I L C R E E K S T A T E P A R K I N T R O D U C T I O N The first thing most visitors to Quail Creek State Park notice, apart from the improbably blue and refreshing waters of the reservoir itself, are the brightly colored, layered rocks of the surrounding cliffs. In fact, Quail Creek State Park lies astride one of the most remarkable geologic features in southwest- ern Utah. The park lies cradled in the eroded core of the Virgin anticline, a long upwarp of folded rock that trends northeast through south-central Washington County.