Moenkopi Formation

Total Page:16

File Type:pdf, Size:1020Kb

Moenkopi Formation MOENKOPI FORMATION EARLY-MIDDLE TRIASSIC LITHOLOGY: FOSSILS: SEDIMENTARY DEPOSITIONAL PALEOGEOGRAPHY/ MISCELLANEOUS: (Spathian to Anisian) Mudstone, sand- Amphibians, STRUCTURES: ENVIRONMENT: TECTONIC SETTING: The Moenkopi Formation 245 to 240 Million Years Ago stone, shale, dark reptiles, fresh- Mudcracks, salt River channels, delta, Westward-sloping thickens to the west, where red to brown; water clams, crystal casts, ripple tidal flat, arid coastal coastal plain of North it was partly deposited in gypsum land plants marks, cross-beds plain where evaporite America shallow marine environ- minerals (salts) are ments in southwestern deposited Utah and Nevada During the early Triassic, the supercontinent Pangaea showed signs of break- ing apart, as the North American continent began to separate from Africa and Europe and move westward. The Colorado Plateau was located just above the equator and formed part of a large, flat coastal plain near the edge of the continent. Sediments were carried to this plain by rivers that started as far away as the Appalachians, which at that time, formed the continental divide. The sea also contributed sedimentary deposits through tidal flows and by overrunning the flat-lying plain during periods of sea-level rise. The Moenkopi Formation contains many ripple marks and mudcracks, as well as tracks of reptiles and amphibians, however, few bones have been found. Both marine and terrestrial life forms were challenged during the early Triassic by the depleted biosphere that followed the Permian extinction. Outcrop of Moenkopi Formation near Holbrook, Arizona Tracks of Evidence of an Aqueous Environment Cheirotherium, or in the Moenkopi Formation “hand-beast,” have been found in North America, Casts of mudcracks Europe, and Africa, but formed by drying of no bones for this creature mud on river flood have ever been discov- plains in the ered. The name refers to Moenkopi Formation the outermost toe, which extended to the side like a Moenkopi thumb, and may have provided a firmer grip in mud. Ripple marks formed by Reptiles replaced waves on tidal flats in amphibians as the Moenkopi the dominant Formation land-dwelling animal following the Permian extinction. Reptiles produce Salt crystal casts in Generalized map of environments an egg contain- Moenkopi mudstone, across Arizona during the early ing nutrients the result of evapora- Triassic period, the time of deposi- within a protec- tion of sea water on tion of the Moenkopi Formation. tive shell, which keeps the embryo inside from drying out. tidal flats (modified from Blakey, This adaptation allowed reptiles to move away from waterside Basham, and Cook, 1993) habitats and colonize drier regions, because unlike amphib- ians, they do not need to return to water to lay their eggs. (Image courtesy of the Lunar and Planetary Institute) All images courtesy of Dale Nations, (Based on Geological Society of America timescale, 2009) unless otherwise noted. Information provided by WESTCARB at www.westcarb.org.
Recommended publications
  • Biochronology of the Triassic Tetrapod Footprints
    Geological Society, London, Special Publications Tetrapod footprints - their use in biostratigraphy and biochronology of the Triassic Hendrik Klein and Spencer G. Lucas Geological Society, London, Special Publications 2010; v. 334; p. 419-446 doi:10.1144/SP334.14 Email alerting click here to receive free email alerts when new articles cite this service article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 15 June 2010 © 2010 Geological Society of London Tetrapod footprints – their use in biostratigraphy and biochronology of the Triassic HENDRIK KLEIN1,* & SPENCER G. LUCAS2 1Ru¨bezahlstraße 1, D-92318 Neumarkt, Germany 2New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 USA *Corresponding author (e-mail: [email protected]) Abstract: Triassic tetrapod footprints have a Pangaea-wide distribution; they are known from North America, South America, Europe, North Africa, China, Australia, Antarctica and South Africa. They often occur in sequences that lack well-preserved body fossils. Therefore, the question arises, how well can tetrapod footprints be used in age determination and correlation of stratigraphic units? The single largest problem with Triassic footprint biostratigraphy and biochronology is the non- uniform ichnotaxonomy and evaluation of footprints that show extreme variation in shape due to extramorphological (substrate-related) phenomena. Here, we exclude most of the countless ichnos- pecies of Triassic footprints, and instead we consider ichnogenera and form groups that show distinctive, anatomically-controlled features. Several characteristic footprint assemblages and ichnotaxa have a restricted stratigraphic range and obviously occur in distinct time intervals.
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • The Geology of Quail Creek State Park Itself, the Park Is Surrounded by a Landscape of Enormous Geological and Human Interest
    TT HH EE G E O L OO GG Y OO FF Q UU AA II LL C R E E K SS T A TT EE PP A R K T H E G E O L O G Y O F Q U A I L C R E E K S T A T E P A R K T H E GEOLO G Y O F Q UA IL CREEK STAT E PA R K by Robert F. Biek Introduction . 1 Layers of Rock. 3 Regional overview . 3 Moenkopi Formation . 4 Shnabkaib Member . 6 Upper red member . 7 Chinle Formation . 7 Shinarump Conglomerate Member . 7 Petrified Forest Member . 8 Surficial deposits . 9 Talus deposits . 9 Mixed river and slopewash deposits . 9 Landslides. 9 The Big Picture . 10 Geological Highlights . .14 Virgin anticline . .14 Faults . .14 Gypsum . .14 “Picture stone” . .15 Boulders from the Pine Valley Mountains . .16 Catastrophic failure of the Quail Creek south dike . .17 Acknowledgments . .19 References . .19 T H E G E O L O G Y O F Q U A I L C R E E K S T A T E P A R K I N T R O D U C T I O N The first thing most visitors to Quail Creek State Park notice, apart from the improbably blue and refreshing waters of the reservoir itself, are the brightly colored, layered rocks of the surrounding cliffs. In fact, Quail Creek State Park lies astride one of the most remarkable geologic features in southwest- ern Utah. The park lies cradled in the eroded core of the Virgin anticline, a long upwarp of folded rock that trends northeast through south-central Washington County.
    [Show full text]
  • Magnetic Mineralogy of Continental Deposits, San Juan Basin, New Mexico, and Clark's Fork Basin, Wyoming Robert F
    University of Portland Pilot Scholars Environmental Studies Faculty Publications and Environmental Studies Presentations 9-10-1982 Magnetic Mineralogy of Continental Deposits, San Juan Basin, New Mexico, and Clark's Fork Basin, Wyoming Robert F. Butler University of Portland, [email protected] Follow this and additional works at: http://pilotscholars.up.edu/env_facpubs Part of the Environmental Sciences Commons, and the Geophysics and Seismology Commons Citation: Pilot Scholars Version (Modified MLA Style) Butler, Robert F., "Magnetic Mineralogy of Continental Deposits, San Juan Basin, New Mexico, and Clark's Fork Basin, Wyoming" (1982). Environmental Studies Faculty Publications and Presentations. 13. http://pilotscholars.up.edu/env_facpubs/13 This Journal Article is brought to you for free and open access by the Environmental Studies at Pilot Scholars. It has been accepted for inclusion in Environmental Studies Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact [email protected]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87, NO. B9, PAGES 7843-7852, SEPTEMBER 10, 1982 Magnetic Mineralogy of Continental Deposits, San Juan Basin, New Mexi~o, and Clark's Fork Basin, Wyoming 1 ROBERT F. BUTLER U.S. Geological Survey, Menlo Park, California 94025 .Magnetic concentra~es were o?tained from nine bulk samples from the Late Cretaceous through middle Paleocene contmental sedimentary section in the San Juan Basin, New Mexico, and from two bulk samples from the late.Paleocene and early Eocene section in the Clark's Fork Basin, Wyoming. s.trong-fiel.d thermomagn~ttc (J,-n curves of almost all the San Juan Basin concentrates show only a smg!e Cu!"le temperat1;1re m the 17_5"-195°C range, indicating that the dominant ferrimagnetic mineral is detntal tttanomagnet1te (Fe3-xT1x04) of composition 0.51 :5 x :5 0.54.
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Walnut Canyon National Monument GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Walnut Canyon National Monument waca_geology.pdf Version: 5/7/2019 I Walnut Canyon National Monument Geologic Resources Inventory Map Document for Walnut Canyon National Monument Table of Contents Geologic Resourc..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e..n...t............................................................................ 1 About the NPS Ge..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Map an...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t.i.o...n...................................................................................... 5 Index Map .................................................................................................................................................................... 5 Map Unit List ............................................................................................................................. 6 Map Unit Descript.i.o...n..s...................................................................................................................... 7 Qcc - Volcan..ic.. .a..s..h.. .(.Q...u..a..t.e..r.n..a..r.y..)....................................................................................................................................
    [Show full text]
  • 020 Metals in the Moenkopi Formation.Pdf
    \ Geochemical Distribution of Some Metals in the Moenkopi Formation and Related Strata, Colorado Plateau Region By ROBERT A. CADIGAN GEOLOGICAL SURVEY BULLETIN 1344 A study of the concentrations of metals, their covariance, and geochemical associations in members and sedimentary rock facies of the Moenkofli Formation and related lithologic units UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 197 1 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY W. A. Radlinski, Acting Director Library of Congress CatalOg-Card No. 74-179646 For sale by the Superintendent of Documents, U.S. Government Printing OWce Washington, D.C. 20402 - Price 35 cents (paper cover) Stock Number 2401-1197 CONTENTS Page Abstract ................................................................................................................ 1 Introduction ............................................................................................................ 2 Purpose and scope of investigation.......................................................... 2 Geographic and geologic setting.............................................................. 3 Previous work .............................................................................................. 4 Acknowledgments ........................................................................................ 4 !* Stratigraphy ........................................................................................................ 4 Petrology .............................................................................................................
    [Show full text]
  • Gypsum Veins in the Triassic Moenkopi Formation
    GYPSUM VEINS IN THE TRIASSIC MOENKOPI FORMATION, SOUTHERN UTAH: DIAGENETIC AND TECTONIC IMPLICATIONS AND ANALOG RELEVANCE TO MARS by Brennan William Young A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science in Geology Department of Geology and Geophysics The University of Utah August 2016 Copyright © Brennan William Young 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of _________________ Brennan William Young has been approved by the following supervisory committee members: Marjorie A. Chan_______________ , Chair 4/25/2016 Date Approved Brenda Bowen_________________ , Member 4/25/2016 Date Approved Thure E. Cerling_______________ , Member 4/25/2016 Date Approved and by ___________________ John M. Bartley___________________ , Chair/Dean of the Department/College/School o f ____________ Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Gypsum vein geometry and chemistry are evaluated in the Triassic Moenkopi Formation in order to determine the source of mineral fill and conditions and timing of vein emplacement. Moenkopi veins are similar to veins at Endeavour and Gale craters on Mars. Mapping, geochemical, geometric, and basin analysis techniques are employed to better understand the Moenkopi vein network, assess them as an analog to Mars veins, and update a geologic map of the study area at the 1:24,000 scale. A three-part classification scheme organizes observations by vein geometry, vein distribution, and vein mineralogical characteristics to hypothesize vein network generation and evolution processes. The Moenkopi vein network is geometrically complex, stratigraphically distributed, and exhibits multiple varieties of gypsum.
    [Show full text]
  • Geologic Map of the Divide Quadrangle Washington County Utah
    GEOLOGIC MAP OF THE DIVIDE QUADRANGLE, WASHINGTON COUNTY, UTAH by Janice M. Hayden This geologic map was funded by the Utah Geological Survey and the U.S. Geological Survey, National Cooperative Geologic Mapping Program, through Statemap Agreement No. 98HQAG2067. ISBN 1-55791-597-0 ,Ill MAP197 I"_.\\ Utah Geological Survey ..,, a division of 2004 Utah Department of Natural Resources STATE OF UTAH Olene S. Walker, Govenor DEPARTMENT OF NATURAL RESOURCES Robert Morgan, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map/Bookstore 1594 W. North Temple telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: http://mapstore.utah.gov email: [email protected] THE UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 website: http://geology.utah.gov Although this product represents the work of professional scientists, the Uah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur­ vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The views and conclusions contains in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Govemmenrt. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability. For information or complaints regarding discrimination, contact Executive Director, Utah Department of Natural Resources, 1594 West North Temple #3710, Box 145610, Salt Lake City, UT 84JJ6-5610 or Equal Employment Opportunity Commission, 1801 L Street, MY, Wash­ ington DC 20507.
    [Show full text]
  • The Scenic Drive , ,, , ,,,
    The Scenic Drive Along the Scenic Drive, you will be introduced a wagon road in about 1884. It was used by the settlers, to the fascinating cultural and geologic history of Mormon church leaders, miners, and by cattle and Capitol Reef National Park. After passing through part sheep ranchers when they moved their herds between of the Fruita Rural Historic District, the road follows the high country to the west and the lowlands to the the western face of the Waterpocket Fold and spur east. The road was unpaved and passed through the roads allow exploration into beautiful Grand Wash and dangerous narrows at Capitol Gorge. Flash floods Capitol Gorge. There are eleven stops along the drive. periodically transformed the usually dry stream bed The Scenic Drive is a portion of the original in the gorge into a raging river, sometimes stranding road through the Waterpocket Fold. Ancient peoples unwary travelers. This gravel road was the only one used the route for centuries. After settlement along the through the Waterpocket Fold until the completion Fremont River, the ancient trail was developed into of Highway 24 in 1962. To Torrey Written and Produced by Thomas H. Morris, Ph.D, and Elizabeth Morris. Graphic design by Kirsten Thompson. Published in cooperation with N Capitol Reef National Park and the Capitol Reef Natural History Association. Paved Highway I , , Paved Road , Graded Road Further information about , Ungraded (4W) Road the cultural, geologic and ~ PARK Hiking Trail -----1 , natural history of Capitol ,B '0 Reef National Park is , u available at the Visitor , n :d Center.
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]
  • Triassic Vertebrate Fossils in Arizona
    Heckert, A.B., and Lucas, S.G., eds., 2005, Vertebrate Paleontology in Arizona. New Mexico Museum of Natural History and Science Bulletin No. 29. 16 TRIASSIC VERTEBRATE FOSSILS IN ARIZONA ANDREW B. HECKERT1, SPENCER G. LUCAS2 and ADRIAN P. HUNT2 1Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608-2607; [email protected]; 2New Mexico Museum of Natural History & Science, 1801 Mountain Road NW, Albuquerque, NM 87104-1375 Abstract—The Triassic System in Arizona has yielded numerous world-class fossil specimens, includ- ing numerous type specimens. The oldest Triassic vertebrates from Arizona are footprints and (largely) temnospondyl bones from the Nonesian (Early Triassic: Spathian) Wupatki Member of the Moenkopi Formation. The Perovkan (early Anisian) faunas of the Holbrook Member of the Moenkopi Formation are exceptional in that they yield both body- and trace fossils of Middle Triassic vertebrates and are almost certainly the best-known faunas of this age in the Americas. Vertebrate fossils of Late Triassic age in Arizona are overwhelmingly body fossils of temnospondyl amphibians and archosaurian reptiles, with trace fossils largely restricted to coprolites. Late Triassic faunas in Arizona include rich assemblages of Adamanian (Carnian) and Revueltian (early-mid Norian) age, with less noteworthy older (Otischalkian) assemblages. The Adamanian records of Arizona are spectacular, and include the “type” Adamanian assemblage in the Petrified Forest National Park, the world’s most diverse Late Triassic vertebrate fauna (that of the Placerias/Downs’ quarries), and other world-class records such as at Ward’s Terrace, the Blue Hills, and Stinking Springs Mountain. The late Adamanian (Lamyan) assemblage of the Sonsela Member promises to yield new and important information on the Adamanian-Revueltian transition.
    [Show full text]
  • Moenkopi Posters
    Triassic Pre-Dinosaurian Communities, National Park’s Land, Utah: The Oldest Megatracksite in North America MICKELSON, Debra L., University of Colorado at Boulder, Boulder CO 80309, KVALE, Erik P., Indiana University, Bloomington, IN; 47405 Location WORTHINGTON, David, Capitol Reef National Park, Torrey UT 84775; Inclined Heterolithic Structures SANTUCCI, Vincent L., Fossil Butte National Monument, Kemmerer, WY 83101; HENDERSON, Norm R., Glen Canyon National Recreation Area, Page, AZ 86040 Abstract Recent exploration in the Capitol Reef National Park (CRNP) and Glen Canyon National Recreation Area (GCNRA) has revealed new sites of terrestrial and subaqueous vertebrate traces and is the oldest and most laterally extensive megatracksite surface documented in Track-Bearing Surfaces North America. Two different vertebrate track types (Chirotherium) Hintze, 1988 and (Rhynchosauroides) and rare fish fin drag marks (Undichna) have been identified in the Torrey Member of the Moenkopi Formation (Early Triassic). Multiple vertebrate ichnostratigraphic units are distinguished in the Torrey Member based on the strati- Geology graphic occurrence of track sites within CRNP and GCNRA Park's B The Torrey Member of the Moenkopi Formation has been the boundaries. Tracks are preserved as convex hyporelief sandstone E D subject of investigation for almost 50 years (Mckee, 1954; Smith et al, 1963; casts filling impressions in the underlying mudstones. Exposed Blakey, 1973 and 1977; Stokes 1980). However, these studies were more A broad based regional studies, and only recently has the Torrey Member been traces occur on the undersides of resistant sandstone ledges where the C studied in stratigraphic detail with emphasis on the extensive tetrapod track- mudstone has eroded away.
    [Show full text]