Pumice Mining and Environmental Concerns in New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Pumice Mining and Environmental Concerns in New Mexico Pumicemining and environmental concerns in New Mexico byGeorge S. Austin,New Mexico Bureau ol Minesand Mineral Resources, Socorro, New Mexico 87801 Abstract collected,and the miningcompany is releasedfrom its obligations outlined in the operationplan only afterall requiredreclamation hasbeen completed. A balancedapproach, in which the needfor mineralsis consideredalong with the needfor properreclamation of mining sites,is necessaryto maintaina productiveindustry in a scenicarea of New Mexico. Introduction Pumice is a light-colored, light-weight igneous rock with cel- lular structure and is formed by a processof explosive volcanism. It commonly has a rhyolitic (siliceous)composition but may have a rhyodacitic composition with increasing sodium content (Bates and fackson, 1987).Pumice occurs as fragmentalaggregates of volcanic glassfroth in which individual particlesrange from coarse- sand size to blocks meters in diameter. Very finely divided frag- ments are called pumicite (alsocalled volcanic ash or dust), which consists largely of angular and curved particles of the shattered vesicle(bubble) walls of pumice(Thrush, 1968). Pumicite has been subjected to additional explosive forcesduring the volcanic event whereby the previously formed cellular structure is broken down to form a very fine, unconsolidatedmaterial. Because of the cel- lular structure,light weight, and insulatingproperties, both pum- ice and pumicite have been used extensivelyas building materials since the Roman Empire (Meisinger, 1985).Before World War II, it was used largely as an abrasive;nearly all consumption since has been in the constructionindustry. Pumice and pumicite are currently mined by open-pit methods (Meisinger, 1985).Removal of overburdenis by standardearth- moving equipment and is usually kept to a minimum by careful selection of the mining site. Becausemost deposits are uncon- solidated (Fig. 1), mining equipment such as bulldozers, pan scrapers,draglines, and power shovelscan be usedwithout blast- ing. Modern highway constructionuses much the same equip- ment. Alsoin thisissue 1994summer volunteer programs p.6 Paleokarst,paleosols, cave fillings, and breccias at the FusselmanDolomitFPercha Shale unconformity,Silver City area p.7 1995NMGS Fall Field Conference p. 13 StuartA. Northrop(1904-1994) p.14 1993Mineral Symposium abstracts p. 15 Upcomingmeetings p.16 Galleryof Geology-ZuniSalt Lake maar p.17 Service/News p.18 Staffnotes p. 19 FIGURE l-General Pumice mine on the east flank of the Valles caldera showing unconsolidatedpumice that is moved by bulldozer to the screen- Topographicmaps p.19 ing plant (structure near center)that loads truckslor movement to market. in 1991 and 1992, but there was a reduction in the number of producersand operationsas well as in the number of employees engagedin pumice mining. In 1983,employment at U.S. pumice and pumicite mining and milling operations was approximately 60 workers, and averageannual productivity was approximately 7,500mt per production employee(Meisinger, 1985). However, office personnel, mechanics,and other serviceemployees greatly increase the number of paid employeesinvolved in pumice min- ing. Copar Pumice,Inc., has two mines in the |emez Mountains, Las Conchas and Guaje Canyon pumice mines, and in 1992they employed 12 people at those mines and two plants plus 9 indi- viduals as contact haulers; the same year total New Mexico em- ployment in the pumice mines and mills was 44 and included 13 contract haulers (K. S. Hatton, written communication 1993). Adding clericalstaff brings the number of individuals employed in mining of pumice by one company to a significant number. Pumiceproducers'salaries generate addition support jobs in nearby commercial centers. This multiplier effect is enhanced because many pumice operationsare rural. ductivity. New Mexico pumice Before the Spanish colonial period began in the 16th century, the Bandelier Tuff was used by Native Americans who carved or enlarged caves to form defensible living areas, as in Bandelier National Monument. Most of theseopenings are on south-facing canyon walls to take advantage of the sun for solar heating and light during colder months of the year. At Puy6 Pueblo on the east flank of the femez Mountains, tuff and pumice blocks from the Bandelier Tuff were used as building stone. The Bandelier Tuff is an extensive body of indurated volcanic ash that is thickest on the east and souih flanks of the Iemez . .Or9g91_ryasthe largest domestic producer of pumice and pum- icite in 1993,followed in descending order by New Mefco, Cal- ifornia, Atizona,Idaho, and Kansas.California, New Mexico, and Oregon produced about 85% of the national total (Bolen, oral communication 194). Inl992, New Mexico produced about 60,500 New A4exlc@ mt of pumice with a value of 91.5million (K. S. Hatton, written communication 1993). The U.S. construction industries con- GEOLOGV . Scienceand Seruice tssN (,196-94aX Volume 16, No. 1, February 1994 Editor:Carol A. Hiellming Published quarterly by New Mexico Bureau of Mines and Mineral Resources Domestic production in 1983was 407,000 a division of New Mexico lnstitute of - mtby 2L producers Mining & Technology from22 operationsin eight westem states(Meising6r, 19^85). fhese figures represent about the same tonnage of product produced BOARD OF REGENTS Ex-Officio Bruce King, Gooertor ol Nru Mexico Alan Morgan, Supoifttendentol Publiclnstruction Appointed Charles Zimmerly, Pres,191-197, Suorro Diane D Denish, SeclTreas ,1992-7997, Albuqwrque J- Michael Kelly, 1992-197, Rosuell Steve Tores, 199I-1997, Albuquerque Lt Gen. Leo Marquez, 1989-19%,Albuquerque New Mexico lnstitute of Minint & Tehnology President Daniel H L6pez New Mexico Bureau of Mines & Mineral Resources Directorand StateCeologist Charles E Chapin Sub{tiptiffi: I$ued quartedt FebMry May, Au8ust, November; subscription price $6 0O/calendaryear. Editorial Mttq: Articles submitted for Dublication should be in the editor'shands a minimum of five (5) months before date of pubtication (February May, August, or November) and shoLrldbe no longer than 20 typewritten, double-spacedpages Alt scientific papers will be reviewed by at least two people in the apprcpriate field of study. Address inquiies to Carol A Hjellming, Editor of Nru Merio Geology,New Mexico Bureau of Mines & Mineral Resources,Scono, NM 878014796 Publishedas pablic domoin, threfore reproduciblewithout permissionSource credit requsted FIGURE 2-Bags of siz4 pumice, covered with shrink-wrap plastic, on Circulation:7,m pallets_atthe American Pumice plant, SantaFe, ready for Ioiding on rail Printer: U^iversity of New Mexico Printint Seruices or truck transport. .. February 7994 Nrrt Mexico Geology FIGURE 3-A nearly vertical wall of grayish-white Guaje pumice Bed of FIGURE 4-Loosely consolidated, light-colored Guaie Pumice Bed of the the Otowi Member of the Bandelier Tuff in an abandoned mine on the Otowi Member of the Bandelier Tuff overlain by the welded Tshirege east flank of the Jemez Mountains. Horizontal orientation of the long axis Member at a road cut of NM-4 east of Los Alamos The Guaie Pumice of most pumice clasts is responsible for the indistinct bedding. Bed rests on the irregular upper surface of lava. FIGURE S-Coarse El Caiete pumice in Las Conchas mine near the south FIGURE 6-Screening plant in Las Conchas mine. Fragments in pile to rim of the Valles caldera, Jemez Mountains, New Mexico. Note hammer the left are about fist-size. The pile to the right has fragments two to three for scale at lower right times fist-size. Mountains in north-centralNew Mexico (Smith et al., 1970).It beds greater than 25 m thick adjacent to NM-4 (J. W. Hawley, was depositedfrom turbulent ash flows originating in the Valles oral communication 1993). Hoffer (in press) estimates El Cajete caldera on the crest of the femez Mountaiis. thJ t.+S-mithon- contains approximately 310,000 mt of minable pumice. The U.S. Forest Service classifies pumice into two varieties based on fragment size. If pumice has a large amount of material greater than 1.9 cm (">314 in."), recent case Iaw has held this to be designated as "uncommon" pumice and thus is considered Iocatable under the general mining laws (Verity and Young, 1973). This size material ensures that it can be sold for a premium market price for garment finishing, currently as high as 9286/mt in the El Paso market area (Hoffer, oral communication 1994). In addi- tion, no royalty fees are required on the pumice. The USFS can not prohibit mining locatable pumice, but it can require such reasonable measures as may be necessary to protect the surface environment. An even larger-size variet, "block" pumice, con- tains a large proportion of fragments greater than 5 cm (">2 in.") and is also designated "uncommon" or locatable. Common pum- ice, or nonlocatable pumice, has a larger proportion of material smaller than 1.9 cm and is considered a "mineral material." This designation gives the USFS the discretion to prohibit mining if it is in conflict with other uses of the forest, is publicly controversial, or would affect cultural resources or threatened and endangered species. The Guale Pumice Bed is considered to be "common" pumice and the Cajete Member of the Valles Rhyolite is consid- ered to contain "uncommon" pumice. (;r New Mexico Geology Febrtary 1994 RIOARRIBA I Vallesvolgo I caldera l------lo.17-1.4s7-1.45Ma L__ L. FIGURE8-Abandoned pumicemine on southeastflank of EastGrants Ridgewith light-coloredpumice below both thedark-colored overburden of scoriaand a volcaniccone.
Recommended publications
  • Characterization of Volcanic Deposits with Ground-Penetrating Radar
    Bull Volcanol (1997) 58:515–527 Q Springer-Verlag 1997 ORIGINAL PAPER J. K. Russell 7 M. V. Stasiuk Characterization of volcanic deposits with ground-penetrating radar Received: 10 May 1996 / Accepted: 27 December 1996 Abstract Field-based studies of surficial volcanic de- Key words Ground-penetrating radar 7 Volcanic posits are commonly complicated by a combination of deposits 7 Stratigraphy 7 Dielectric constant 7 Radar poor exposure and rapid lateral variations controlled velocity 7 Pyroclastic flow 7 Airfall 7 Lava by unknown paleotopography. The potential of ground-penetrating radar (GPR) as an aid to volcano- logical studies is shown using data collected from trav- erses over four well-exposed, Recent volcanic deposits Introduction in western Canada. The deposits comprise a pumice airfall deposit (3–4 m thick), a basalt lava flow (3–6 m Studies of surficial volcanic deposits are commonly lim- thick), a pyroclastic flow deposit (15 m thick), and an ited by incomplete exposure. Estimates of the physical internally stratified pumice talus deposit (60 m thick). properties, distributions, thicknesses, and internal Results show that GPR is effective in delineating major structures of the deposits are usually derived from stud- stratigraphic contacts and hence can be used to map ies on a few well-dissected outcrops. Ground-penetrat- unexposed deposits. Different volcanic deposits also ing radar (GPR) is a portable geophysical technique exhibit different radar stratigraphic character, suggest- which can provide ancillary information on the unex- ing that deposit type may be determined from radar posed parts of deposits, thereby facilitating many volca- images. In addition, large blocks within the pyroclastic nological studies.
    [Show full text]
  • Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens
    Anatomy of a Volcanic Eruption: Case Study: Mt. St. Helens Materials Included in this Box: • Teacher Background Information • 3-D models of Mt. St. Helens (before and after eruption) • Examples of stratovolcano rock products: Tuff (pyroclastic flow), pumice, rhyolite/dacite, ash • Sandbox crater formation exercise • Laminated photos/diagrams Teacher Background There are several shapes and types of volcanoes around the world. Some volcanoes occur on the edges of tectonic plates, such as those along the ‘ring of fire’. But there are also volcanoes that occur in the middle of tectonic plates like the Yellowstone volcano and Kilauea volcano in Hawaii. When asked to draw a volcano most people will draw a steeply sided, conical mountain that has a depression (crater) at the top. This image of a 'typical' volcano is called a stratovolcano (a.k.a. composite volcano). While this is the often visualized image of a volcano, there are actually many different shapes volcanoes can be. A volcano's shape is mostly determined by the type of magma/lava that is created underneath it. Stratovolcanoes get their shape because of the thick, sticky (viscous) magma that forms at subduction zones. This magma/lava is layered between ash, pumice, and rock fragments. These layers of ash and magma will build into high elevation, steeply sided, conical shaped mountains and form a 'typical' volcano shape. Stratovolcanoes are also known for their explosive and destructive eruptions. Eruptions can cause clouds of gas, ash, dust, and rock fragments to eject into the atmosphere. These clouds of ash can become so dense and heavy that they quickly fall down the side of the volcanoes as a pyroclastic flow.
    [Show full text]
  • Impact of Trace Metal Concentrations on Coccolithophore Growth and Morphology: Laboratory Simulations of Cretaceous Stress
    Biogeosciences Discuss., doi:10.5194/bg-2017-138, 2017 Manuscript under review for journal Biogeosciences Discussion started: 21 April 2017 c Author(s) 2017. CC-BY 3.0 License. Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress. Giulia Faucher1, Linn Hoffmann2, Lennart T. Bach3, Cinzia Bottini1, Elisabetta Erba1, Ulf Riebesell3 1 Earth Sciences Department “Ardito Desio”, Università degli Studi di Milano, Milan, Italy 5 2 Department of Botany, University of Otago, Dunedin, New Zealand 3 Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany Correspondence to: Giulia Faucher ([email protected]) 10 Abstract. The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification process in past oceans. In order to verify this hypothesis, we explored the potential effect of a 15 mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. These taxa are phylogenetically linked to the Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interaction with living coccolithophores algae. 20 Our laboratory experiments demonstrated that elevated trace metal concentrations not only affect coccolithophore algae production but, similarly to the fossil record, coccolith size and/or weight.
    [Show full text]
  • Properties of Volcanic Ash and Pumice Concrete
    Properties of volcanic ash and pumice concrete Autor(en): Hossain, Khandaker M.A. Objekttyp: Article Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte Band (Jahr): 81 (1999) PDF erstellt am: 27.09.2021 Persistenter Link: http://doi.org/10.5169/seals-61426 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch 145 IABSE COLLOQUIUM PHUKET 1999 \ Properties of Volcanic Ash and Pumice Concrete Khandaker M. A. HOSSAIN Khandaker M. A. Hossain, born in 1963, Lecturer in Civil Engineering received BSc and MSc in civil engineering from Bangladesh University of Engineering The PNG University of Technology & Technology, Dhaka and PhD from Lae, Papua New Guinea Strathclyde University, Glasgow, UK.
    [Show full text]
  • Respiratory Health Effects of Volcanic Ash with Special Reference To
    The Clinical Respiratory Journal REVIEW ARTICLE Respiratory health effects of volcanic ash with special reference to Iceland. A reviewcrj_231 2..9 Gunnar Gudmundsson1,2 1 Landspitali University Hospital, Reykjavik, Iceland 2 Faculty of Medicine, University of Iceland, Reykjavik, Iceland Abstract Key words Background and Aims: Volcano eruptions occur around the world and can have an health – respiratory – review – volcanic ash – impact on health in many ways both locally and on a global scale as a result of volcanic gases airborne dispersion of gases and ash or as impact on climate. In this review, a recent Correspondence volcanic eruption in Eyjafjallajökull in Iceland is described and its effects on avia- Gunnar Gudmundsson, MD, PhD, Department tion around the globe and on respiratory health in those exposed to the volcanic of Respiratory Medicine, Allergy and Sleep, ash in Iceland. Also, the effects of a large volcano eruption in Iceland in 1789 are Landspitali-University Hospital, E-7 Fossvogur, described that also had effect on a global scale by causing air pollution. IS-108 Methods and Results: The available studies reviewed here suggest that the acute Reykjavik, Iceland. and chronic health effects of volcanic ash depend on particle size (how much Tel: +354-5436876 Fax: +354-5436568 respirable), mineralogical composition (crystalline silica content) and the physico- email: [email protected] chemical properties of the surfaces of ash particles. These can vary between volca- noes and even between eruptions, making comparison difficult. Acute respiratory Received: 05 October 2010 symptoms suggesting asthma and bronchitis have been well described. Exacerba- Revision requested: 17 October 2010 tions of pre-existing lung and heart disease are common after inhalation of volcanic Accepted: 20 October 2010 ash.
    [Show full text]
  • Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: the Indonesian Example
    geosciences Review Review of Local and Global Impacts of Volcanic Eruptions and Disaster Management Practices: The Indonesian Example Mukhamad N. Malawani 1,2, Franck Lavigne 1,3,* , Christopher Gomez 2,4 , Bachtiar W. Mutaqin 2 and Danang S. Hadmoko 2 1 Laboratoire de Géographie Physique, Université Paris 1 Panthéon-Sorbonne, UMR 8591, 92195 Meudon, France; [email protected] 2 Disaster and Risk Management Research Group, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] (C.G.); [email protected] (B.W.M.); [email protected] (D.S.H.) 3 Institut Universitaire de France, 75005 Paris, France 4 Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Kobe City 658-0022, Japan * Correspondence: [email protected] Abstract: This paper discusses the relations between the impacts of volcanic eruptions at multiple- scales and the related-issues of disaster-risk reduction (DRR). The review is structured around local and global impacts of volcanic eruptions, which have not been widely discussed in the literature, in terms of DRR issues. We classify the impacts at local scale on four different geographical features: impacts on the drainage system, on the structural morphology, on the water bodies, and the impact Citation: Malawani, M.N.; on societies and the environment. It has been demonstrated that information on local impacts can Lavigne, F.; Gomez, C.; be integrated into four phases of the DRR, i.e., monitoring, mapping, emergency, and recovery. In Mutaqin, B.W.; Hadmoko, D.S. contrast, information on the global impacts (e.g., global disruption on climate and air traffic) only fits Review of Local and Global Impacts the first DRR phase.
    [Show full text]
  • Pumice Data Sheet
    128 PUMICE AND PUMICITE (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2019, 10 operations in five States produced pumice and pumicite. Estimated production1 was 510,000 tons with an estimated processed value of about $17 million, free on board (f.o.b.) plant. Pumice and pumicite were mined in California, Oregon, Idaho, New Mexico, and Kansas, in descending order of production. The porous, lightweight properties of pumice are well suited for its main uses. Mined pumice was used in the production of abrasives, concrete admixtures and aggregates, lightweight building blocks, horticultural purposes, and other uses, including absorbent, filtration, laundry stone washing, and road use. Salient Statistics—United States: 2015 2016 2017 2018 2019e Production, mine1 310 374 383 496 510 Imports for consumption 64 170 166 159 110 Exportse 11 9 11 11 12 Consumption, apparent2 363 535 538 644 610 Price, average value, dollars per ton, f.o.b. mine or mill 33 38 39 32 33 Employment, mine and mill, number 140 140 140 140 140 Net import reliance3 as a percentage of apparent consumption 15 30 29 23 17 Recycling: Little to no known recycling. Import Sources (2015–18): Greece, 93%; Iceland, 5%; and Mexico, 2%. Tariff: Item Number Normal Trade Relations 12–31–19 Pumice, crude or in irregular pieces, including crushed 2513.10.0010 Free. Pumice, other 2513.10.0080 Free. Depletion Allowance: 5% (Domestic and foreign). Government Stockpile: None. Events, Trends, and Issues: The amount of domestically produced pumice and pumicite sold or used in 2019 was estimated to be 3% more than that in 2018.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Wyoming's Bentonite and Trona Resources
    Wyoming’s Bentonite and Trona Resources By Chamois Andersen, Wyoming State Geological Survey (Fall 2014) Many of the Earth’s minerals are used for industrial purposes, but consumers may not realize they also benefit from these minerals in a number of their everyday products. Bentonite and trona are two such resources, with Wyoming being home to some of the largest deposits in the world and leading the nation in their production. Bentonite is an important mineral to the energy industry because of its use in drilling mud for oil and natural gas wells. Consumers use bentonite when they buy kitty litter and cosmetics. Many industrial minerals have unique characteristics that make them particularly useful. Bentonite, for example, can swell up to 16 times its original size and hold up to 10 times its weight in water. Known as the “clay of 1,000 uses,” the mineral is also used in pharmaceuticals and as a bonding agent in molds for castings in iron and steel foundries, among many other uses. Wyoming has 70 percent of the known bentonite deposits in the world. In 2013, the state mined more than 4 million tons of bentonite. While much of this resource is used in cat litter, recent increases in overall mining and production of bentonite in the state can be directly linked to oil and gas drilling. The same is true for trona. It has a wide variety of manufacturing uses as well as consumer uses. Trona is mined to make soda ash, which is used to make flat glass for the automotive and construction industries.
    [Show full text]
  • DOGAMI Special Paper 25, Pumice in Oregon
    .., N a: w c.. c( c.. .J c( 0 w 1'1. (/) PUMICE IN OREGON 1992 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES DONALD A. HULL, STATE GEOLOGIST STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 965 State Office Building, 800 NE Oregon Street # 28 Portland, Oregon 97232 SPECIAL PAPER 25 PUMICE IN OREGON By Ronald P. Geitgey Oregon Department of Geology and Mineral Industries 1992 Conducted and published in conformance with ORS 516.030 GOVERNING BOARD STATE GEOLOGIST Ronald K. Culbertson, Chair Myrtle Creek Donald A. Hull John W. Stephens Portland D EPUTY STATE GEOLOGIST Jacqueline G. Haggerty-Foster Pendleton John D. Beaulieu COVER PHOTOGRAPHS (top to bottom) I. One of several mining pits of Central Oregon Pu tni(;e Company in Bend. Des(;hutes County. 2. Lightweight concrete block made with pumke aggregate. 3. Section in finely vesicular pumice, transverse to the direction of vesicle elongation. 4. Example showing the ce llular characteristics of pumice retained even in small fragments. Oregon Department of Geology and Mi neral Industries Special Papers, ISSN 0278-3703 ii CONTENTS Page SUMMARY ......... ... ...... ... ................................. ... ...................... I ACKNOWLEDGMENTS . I INTRODUCTION ......... .. .. ... ... ... ............................................ 2 PURPOSE AND SCOPE OF STUDY ........................ .. .. ......................... .... ... ....... 2 UN ITS USED IN STUDY .... .. .. .. ............................ .. .............. ... ... ... ... 2 GEOLOGY AND CHARACTERISTICS OF
    [Show full text]