Displacement Current and Maxwell's Equations

Total Page:16

File Type:pdf, Size:1020Kb

Displacement Current and Maxwell's Equations Chapter 17: Displacement Current and Maxwell’s Equations Chapter Learning Objectives: After completing this chapter the student will be able to: Use the continuity equation to determine the charge density or current density at a point. List and explain the significance of Maxwell’s Equations. Use Maxwell’s Equations to model the behavior of a magnetic field inside a conductor. You can watch the video associated with this chapter at the following link: Historical Perspective: James Clerk Maxwell (1831-1879) was a Scottish scientist who formulated a comprehensive mathematical model that unites electricity, magnetism, and light into one phenomenon. He is often considered the third greatest physicist of all time, after Newton and Einstein. Photo credit: https://upload.wikimedia.org/wikipedia/commons/5/57/James_Clerk_Maxwell.png, [Public domain], via Wikimedia Commons. 1 17.1 The Continuity Equation We have only one more piece of the puzzle to add before Maxwell’s Equations are complete. As you may recall, I have mentioned that we still need to add one more term to Ampere’s Law before it is in its final form. To understand the need for this additional term, let’s first consider the continuity equation. The continuity equation can be derived from the conservation of matter. We know that if a net flow of particles is leaving a region, then this will necessarily cause a decrease in the density of those particles within the region. Stated another way, every particle that crosses the boundary of the region will (1) contribute to a positive flow out of the region, and (2) decrease the total population within the region. This principle is illustrated in Figure 17.1. Figure 17.1. Particles leaving a region reduce the particles contained within the region. When the “particles” are electrical charges, we can write an equation to model this relationship: (Equation 17.1) The negative sign in this equation represents the fact that positive current leaving a region will lead to a decrease in charge within the region. Equation 17.1 can be re-written in terms of a surface integral over current density and a volume integral over charge density: (Equation 17.2) The divergence theorem, which is true for any vector field, states that the surface integral of the vector field over a closed surface (the amount of the vector leaving the field) is equal to the volume integral of the divergence of the vector field (the net source of the vector field within the same region): (Equation 17.3) 2 Applying this equation to the left side of Equation 17.2, we find: (Equation 17.4) Now, since both sides of this equation are volume integrals over the same volume, the functions being integrated must be equal: (Equation 17.5) This important result, known as the continuity equation, is typically written with both terms on the left side: (Equation 17.6) Since this result was derived from first principles (rather than from experimental observations), we know that it must be valid in all circumstances. If we find a case that violates it, then we will have to correct this problem. Example 17.1: Assume that free charges are somehow injected into the interior of a conductor. We know that free charges in a conductor will move to the surface, leaving the interior empty of free charges and with zero internal electric field. Use the continuity equation to derive a function that describes how quickly this will happen. How long will it take the charge to dissipate to 1% of its initial value in copper ( = 6 x 107 S/m)? 3 17.2 Completing Ampere’s Law: Displacement Current Recall that we have previously derived a point form of Ampere’s Law, which gives a relationship between current density J and magnetic flux density B. (Copy of Equation 11.12) However, this equation is incomplete. We can observe two problems with this form of the equation. Problem #1: Disagreement with the Continuity Equation: If we take the divergence of both sides, we find: (Equation 17.7) But mathematicians have told us that the divergence of the curl of any vector field is always equal to zero, so this reduces to: (Equation 17.8) Yet, this disagrees with the continuity equation (Equation 17.6). Since we know that the continuity equation is always correct, there must be a problem with Equation 11.12. Problem #2: Magnetic Field Near a Capacitor Consider Figure 17.2, in which an AC voltage source is connected to a capacitor. (I have drawn the capacitor to be extra-wide here to better illustrate the point.) We know that as current flows around the circuit, illustrated by the arrows, there will be a non-zero value of I and therefore of J, and Equation 11.12 tells us that there will be a magnetic field circulating around the wire at every point. I I=0 I B B=0? B I I B B I B B I B ~ B I I V Figure 17.2. Is there a magnetic field between the plates of a capacitor? 4 But what happens between the plates of the capacitor? There is no actual current flowing between the plates, so from Equation 11.12, it would seem that there is an abrupt gap in the magnetic field, ending at one capacitor plate and beginning again at the other. But that doesn’t match our experimental results. When we set up this circuit and measure the magnetic field, we find it circulating around every point of the wire (as expected), but we also find it circulating around the space between the capacitor plates (as definitely not expected). Where is this magnetic field coming from? The only thing between the plates is an electric field E (or D, if there is a dielectric), as shown in Figure 17.3. E I I B B B I I B B I B B I B ~ B I I V Figure 17.3. Why is there a magnetic field between the plates of a capacitor? It turns out that changes to the electric field between the plates are causing the magnetic field. We can see how this comes to be by going back to the continuity equation: (Copy of Equation 17.6) We will then go way back to chapter 8, where we saw the final form of Gauss’s Law, including the effect of dielectric materials: (Copy of Equation 8.6) Substituting Equation 8.6 in the right side of Equation 17.6, we obtain: (Equation 17.9) 5 We can then factor the divergence out of these two terms: (Equation 17.10) Notice how, in this equation, the partial derivative of D with respect to t seems to be a term very similar to the current J. This suggests that this derivative term might be treated in some ways as a current. We will call this term the displacement current, since it is related to the displacement field D: (Equation 17.11) With this new terminology, Equation 17.10 can now be rewritten as: (Equation 17.12) Remember that inside a conductor, E=D=0, so Jd will also be zero inside a conductor. If there is no electric field, there can be no displacement current. Conversely, inside an insulator or in free space, v=0, so conduction current J (the “normal” current caused by moving charges) is also equal to zero. Conduction current J only exists in conductors, and displacement current Jd only exists in insulators or free space. We can now go back to the incomplete form of Ampere’s Law: (Copy of Equation 11.12) Notice how the right side includes a term for conduction current J but not for displacement current Jd. Maxwell’s greatest insight, which took him decades to discover, was to modify Ampere’s Law to include displacement current (which is the partial derivative of D with respect to t). Moving the permeability term to the left side and adding the displacement in derivative form, we get: (Equation 17.13) This is the final form of Ampere’s Law in Point Form, and it is the fourth and final of Maxwell’s Equations. 6 If we take the surface integral of both sides of Equation 17.13, we find: (Equation 17.14) Applying Stoke’s Theorem from the previous chapter to the left side, this becomes: (Equation 17.15) Then applying B=0H to the left side: (Equation 17.16) This is the final form of Ampere’s Law in Integral Form. Example 17.2: Demonstrate that the magnetic field surrounding the capacitor in Figure 17.3 has the same magnitude as the magnetic field surrounding the conductor. Assume that V(t)=V0sint. 7 17.3 Maxwell’s Equations Assembled Maxwell really only added one piece to one of the four fundamental equations, but it really was the hardest piece, and it also happened to be the last piece, so he gets his name attached to the collection of four equations as a result. Here are the integral forms of Maxwell’s Equations: (Faraday’s Law of Induction) (Ampere’s Law with Displacement Current) (Gauss’s Law) (Gauss’s Law for Magnetic Fields i.e., no magnetic monopoles) Here are the equations in point form: (Faraday’s Law of Induction) (Ampere’s Law with Displacement Current) (Gauss’s Law) (Gauss’s Law for Magnetic Fields i.e., no magnetic monopoles) 8 There are also three “helper” equations, called the Constitutive Equations: (Effect of Dielectric Material) (Effect of Ferromagnetic Material) (Ohm’s Law) There is one other equation that you should be prepared to use, which is the Lorentz Force Equation, describing the forces caused by both electric and magnetic fields: Everything until this point has been building toward these 12 equations, and everything else from here on will be derived from one of these equations.
Recommended publications
  • Chapter 3 Dynamics of the Electromagnetic Fields
    Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j.
    [Show full text]
  • Chapter 2 Introduction to Electrostatics
    Chapter 2 Introduction to electrostatics 2.1 Coulomb and Gauss’ Laws We will restrict our discussion to the case of static electric and magnetic fields in a homogeneous, isotropic medium. In this case the electric field satisfies the two equations, Eq. 1.59a with a time independent charge density and Eq. 1.77 with a time independent magnetic flux density, D (r)= ρ (r) , (1.59a) ∇ · 0 E (r)=0. (1.77) ∇ × Because we are working with static fields in a homogeneous, isotropic medium the constituent equation is D (r)=εE (r) . (1.78) Note : D is sometimes written : (1.78b) D = ²oE + P .... SI units D = E +4πP in Gaussian units in these cases ε = [1+4πP/E] Gaussian The solution of Eq. 1.59 is 1 ρ0 (r0)(r r0) 3 D (r)= − d r0 + D0 (r) , SI units (1.79) 4π r r 3 ZZZ | − 0| with D0 (r)=0 ∇ · If we are seeking the contribution of the charge density, ρ0 (r) , to the electric displacement vector then D0 (r)=0. The given charge density generates the electric field 1 ρ0 (r0)(r r0) 3 E (r)= − d r0 SI units (1.80) 4πε r r 3 ZZZ | − 0| 18 Section 2.2 The electric or scalar potential 2.2 TheelectricorscalarpotentialFaraday’s law with static fields, Eq. 1.77, is automatically satisfied by any electric field E(r) which is given by E (r)= φ (r) (1.81) −∇ The function φ (r) is the scalar potential for the electric field. It is also possible to obtain the difference in the values of the scalar potential at two points by integrating the tangent component of the electric field along any path connecting the two points E (r) d` = φ (r) d` (1.82) − path · path ∇ · ra rb ra rb Z → Z → ∂φ(r) ∂φ(r) ∂φ(r) = dx + dy + dz path ∂x ∂y ∂z ra rb Z → · ¸ = dφ (r)=φ (rb) φ (ra) path − ra rb Z → The result obtained in Eq.
    [Show full text]
  • Lecture 5: Displacement Current and Ampère's Law
    Whites, EE 382 Lecture 5 Page 1 of 8 Lecture 5: Displacement Current and Ampère’s Law. One more addition needs to be made to the governing equations of electromagnetics before we are finished. Specifically, we need to clean up a glaring inconsistency. From Ampère’s law in magnetostatics, we learned that H J (1) Taking the divergence of this equation gives 0 H J That is, J 0 (2) However, as is shown in Section 5.8 of the text (“Continuity Equation and Relaxation Time), the continuity equation (conservation of charge) requires that J (3) t We can see that (2) and (3) agree only when there is no time variation or no free charge density. This makes sense since (2) was derived only for magnetostatic fields in Ch. 7. Ampère’s law in (1) is only valid for static fields and, consequently, it violates the conservation of charge principle if we try to directly use it for time varying fields. © 2017 Keith W. Whites Whites, EE 382 Lecture 5 Page 2 of 8 Ampère’s Law for Dynamic Fields Well, what is the correct form of Ampère’s law for dynamic (time varying) fields? Enter James Clerk Maxwell (ca. 1865) – The Father of Classical Electromagnetism. He combined the results of Coulomb’s, Ampère’s, and Faraday’s laws and added a new term to Ampère’s law to form the set of fundamental equations of classical EM called Maxwell’s equations. It is this addition to Ampère’s law that brings it into congruence with the conservation of charge law.
    [Show full text]
  • 6.007 Lecture 5: Electrostatics (Gauss's Law and Boundary
    Electrostatics (Free Space With Charges & Conductors) Reading - Shen and Kong – Ch. 9 Outline Maxwell’s Equations (In Free Space) Gauss’ Law & Faraday’s Law Applications of Gauss’ Law Electrostatic Boundary Conditions Electrostatic Energy Storage 1 Maxwell’s Equations (in Free Space with Electric Charges present) DIFFERENTIAL FORM INTEGRAL FORM E-Gauss: Faraday: H-Gauss: Ampere: Static arise when , and Maxwell’s Equations split into decoupled electrostatic and magnetostatic eqns. Electro-quasistatic and magneto-quasitatic systems arise when one (but not both) time derivative becomes important. Note that the Differential and Integral forms of Maxwell’s Equations are related through ’ ’ Stoke s Theorem and2 Gauss Theorem Charges and Currents Charge conservation and KCL for ideal nodes There can be a nonzero charge density in the absence of a current density . There can be a nonzero current density in the absence of a charge density . 3 Gauss’ Law Flux of through closed surface S = net charge inside V 4 Point Charge Example Apply Gauss’ Law in integral form making use of symmetry to find • Assume that the image charge is uniformly distributed at . Why is this important ? • Symmetry 5 Gauss’ Law Tells Us … … the electric charge can reside only on the surface of the conductor. [If charge was present inside a conductor, we can draw a Gaussian surface around that charge and the electric field in vicinity of that charge would be non-zero ! A non-zero field implies current flow through the conductor, which will transport the charge to the surface.] … there is no charge at all on the inner surface of a hollow conductor.
    [Show full text]
  • This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
    This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics.
    [Show full text]
  • A Problem-Solving Approach – Chapter 2: the Electric Field
    chapter 2 the electric field 50 The Ekelric Field The ancient Greeks observed that when the fossil resin amber was rubbed, small light-weight objects were attracted. Yet, upon contact with the amber, they were then repelled. No further significant advances in the understanding of this mysterious phenomenon were made until the eighteenth century when more quantitative electrification experiments showed that these effects were due to electric charges, the source of all effects we will study in this text. 2·1 ELECTRIC CHARGE 2·1·1 Charginl by Contact We now know that all matter is held together by the aurae· tive force between equal numbers of negatively charged elec· trons and positively charged protons. The early researchers in the 1700s discovered the existence of these two species of charges by performing experiments like those in Figures 2·1 to 2·4. When a glass rod is rubbed by a dry doth, as in Figure 2-1, some of the electrons in the glass are rubbed off onto the doth. The doth then becomes negatively charged because it now has more electrons than protons. The glass rod becomes • • • • • • • • • • • • • • • • • • • • • , • • , ~ ,., ,» Figure 2·1 A glass rod rubbed with a dry doth loses some of iu electrons to the doth. The glau rod then has a net positive charge while the doth has acquired an equal amount of negative charge. The total charge in the system remains zero. £kctric Charge 51 positively charged as it has lost electrons leaving behind a surplus number of protons. If the positively charged glass rod is brought near a metal ball that is free to move as in Figure 2-2a, the electrons in the ball nt~ar the rod are attracted to the surface leaving uncovered positive charge on the other side of the ball.
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • Section 2: Maxwell Equations
    Section 2: Maxwell’s equations Electromotive force We start the discussion of time-dependent magnetic and electric fields by introducing the concept of the electromotive force . Consider a typical electric circuit. There are two forces involved in driving current around a circuit: the source, fs , which is ordinarily confined to one portion of the loop (a battery, say), and the electrostatic force, E, which serves to smooth out the flow and communicate the influence of the source to distant parts of the circuit. Therefore, the total force per unit charge is a circuit is = + f fs E . (2.1) The physical agency responsible for fs , can be any one of many different things: in a battery it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted into an electrical impulse; in a thermocouple it’s a temperature gradient that does the job; in a photoelectric cell it’s light. Whatever the mechanism, its net effect is determined by the line integral of f around the circuit: E =fl ⋅=d f ⋅ d l ∫ ∫ s . (2.2) The latter equality is because ∫ E⋅d l = 0 for electrostatic fields, and it doesn’t matter whether you use f E or fs . The quantity is called the electromotive force , or emf , of the circuit. It’s a lousy term, since this is not a force at all – it’s the integral of a force per unit charge. Within an ideal source of emf (a resistanceless battery, for instance), the net force on the charges is zero, so E = – fs. The potential difference between the terminals ( a and b) is therefore b b ∆Φ=− ⋅ = ⋅ = ⋅ = E ∫Eld ∫ fs d l ∫ f s d l .
    [Show full text]
  • Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant
    Chapter 4. Electric Fields in Matter 4.4 Linear Dielectrics 4.4.1 Susceptibility, Permittivity, Dielectric Constant PE 0 e In linear dielectrics, P is proportional to E, provided E is not too strong. e : Electric susceptibility (It would be a tensor in general cases) Note that E is the total field from free charges and the polarization itself. If, for instance, we put a piece of dielectric into an external field E0, we cannot compute P directly from PE 0 e ; EE 0 E0 produces P, P will produce its own field, this in turn modifies P, which ... Breaking where? To calculate P, the simplest approach is to begin with the displacement D, at least in those cases where D can be deduced directly from the free charge distribution. DEP001 e E DE 0 1 e : Permittivity re1 : Relative permittivity 0 (Dielectric constant) Susceptibility, Permittivity, Dielectric Constant Problem 4.41 In a linear dielectric, the polarization is proportional to the field: P = 0e E. If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each one is likewise proportional to the field p = E. What is the relation between atomic polarizability and susceptibility e? Note that, the atomic polarizability was defined for an isolated atom subject to an external field coming from somewhere else, Eelse p = Eelse For N atoms in unit volume, the polarization can be set There is another electric field, Eself , produced by the polarization P: Therefore, the total field is The total field E finally produce the polarization P: or Clausius-Mossotti formula Susceptibility, Permittivity, Dielectric Constant Example 4.5 A metal sphere of radius a carries a charge Q.
    [Show full text]
  • PHYS 352 Electromagnetic Waves
    Part 1: Fundamentals These are notes for the first part of PHYS 352 Electromagnetic Waves. This course follows on from PHYS 350. At the end of that course, you will have seen the full set of Maxwell's equations, which in vacuum are ρ @B~ r~ · E~ = r~ × E~ = − 0 @t @E~ r~ · B~ = 0 r~ × B~ = µ J~ + µ (1.1) 0 0 0 @t with @ρ r~ · J~ = − : (1.2) @t In this course, we will investigate the implications and applications of these results. We will cover • electromagnetic waves • energy and momentum of electromagnetic fields • electromagnetism and relativity • electromagnetic waves in materials and plasmas • waveguides and transmission lines • electromagnetic radiation from accelerated charges • numerical methods for solving problems in electromagnetism By the end of the course, you will be able to calculate the properties of electromagnetic waves in a range of materials, calculate the radiation from arrangements of accelerating charges, and have a greater appreciation of the theory of electromagnetism and its relation to special relativity. The spirit of the course is well-summed up by the \intermission" in Griffith’s book. After working from statics to dynamics in the first seven chapters of the book, developing the full set of Maxwell's equations, Griffiths comments (I paraphrase) that the full power of electromagnetism now lies at your fingertips, and the fun is only just beginning. It is a disappointing ending to PHYS 350, but an exciting place to start PHYS 352! { 2 { Why study electromagnetism? One reason is that it is a fundamental part of physics (one of the four forces), but it is also ubiquitous in everyday life, technology, and in natural phenomena in geophysics, astrophysics or biophysics.
    [Show full text]
  • Displacement Current and Ampère's Circuital Law Ivan S
    ELECTRICAL ENGINEERING Displacement current and Ampère's circuital law Ivan S. Bozev, Radoslav B. Borisov The existing literature about displacement current, although it is clearly defined, there are not enough publications clarifying its nature. Usually it is assumed that the electrical current is three types: conduction current, convection current and displacement current. In the first two cases we have directed movement of electrical charges, while in the third case we have time varying electric field. Most often for the displacement current is talking in capacitors. Taking account that charge carriers (electrons and charged particles occupy the negligible space in the surrounding them space, they can be regarded only as exciters of the displacement current that current fills all space and is superposition of the currents of the individual moving charges. For this purpose in the article analyzes the current configuration of lines in space around a moving charge. An analysis of the relationship between the excited magnetic field around the charge and the displacement current is made. It is shown excited magnetic flux density and excited the displacement current are linked by Ampere’s circuital law. ъ а аа я аъ а ъя (Ива . Бв, аав Б. Бв.) В я, я , я , яя . , я : , я я. я я, я я . я . К , я ( я я , я, я я я. З я я я. я я. , я я я я . 1. Introduction configurations of the electric field of moving charge are shown on Fig. 1 and Fig. 2. First figure represents The size of electronic components constantly delayed potentials of the electric field according to shrinks and the discrete nature of the matter is Liénard–Wiechert and this picture is not symmetrical becomming more obvious.
    [Show full text]
  • Physics 2102 Lecture 2
    Physics 2102 Jonathan Dowling PPhhyyssicicss 22110022 LLeeccttuurree 22 Charles-Augustin de Coulomb EElleeccttrriicc FFiieellddss (1736-1806) January 17, 07 Version: 1/17/07 WWhhaatt aarree wwee ggooiinngg ttoo lleeaarrnn?? AA rrooaadd mmaapp • Electric charge Electric force on other electric charges Electric field, and electric potential • Moving electric charges : current • Electronic circuit components: batteries, resistors, capacitors • Electric currents Magnetic field Magnetic force on moving charges • Time-varying magnetic field Electric Field • More circuit components: inductors. • Electromagnetic waves light waves • Geometrical Optics (light rays). • Physical optics (light waves) CoulombCoulomb’’ss lawlaw +q1 F12 F21 !q2 r12 For charges in a k | q || q | VACUUM | F | 1 2 12 = 2 2 N m r k = 8.99 !109 12 C 2 Often, we write k as: 2 1 !12 C k = with #0 = 8.85"10 2 4$#0 N m EEleleccttrricic FFieieldldss • Electric field E at some point in space is defined as the force experienced by an imaginary point charge of +1 C, divided by Electric field of a point charge 1 C. • Note that E is a VECTOR. +1 C • Since E is the force per unit q charge, it is measured in units of E N/C. • We measure the electric field R using very small “test charges”, and dividing the measured force k | q | by the magnitude of the charge. | E |= R2 SSuuppeerrppoossititioionn • Question: How do we figure out the field due to several point charges? • Answer: consider one charge at a time, calculate the field (a vector!) produced by each charge, and then add all the vectors! (“superposition”) • Useful to look out for SYMMETRY to simplify calculations! Example Total electric field +q -2q • 4 charges are placed at the corners of a square as shown.
    [Show full text]