Past and Projected Trends in Climate and Sea Level for South Florida

Total Page:16

File Type:pdf, Size:1020Kb

Past and Projected Trends in Climate and Sea Level for South Florida PPaasstt aanndd PPrroojjeecctteedd TTrreennddss iinn CClliimmaattee aanndd SSeeaa LLeevveell ffoorr SSoouutthh FFlloorriiddaa Photo courtesy of National Aeronautics and Space Administration Hydrologic and Environmental Systems Modeling Technical Report July 2011 PAST AND PROJECTED TRENDS IN CLIMATE AND SEA LEVEL FOR SOUTH FLORIDA July 5, 2011 Team Members: J. Obeysekera J. Park M. Irizarry-Ortiz P. Trimble J. Barnes J. VanArman W. Said E. Gadzinski Hydrologic and Environmental Systems Modeling South Florida Water Management District 3301 Gun Club Road West Palm Beach, Florida Contents PAST AND PROJECTED TRENDS IN CLIMATE AND SEA LEVEL FOR SOUTH FLORIDA Table of Contents List of Figures ........................................................................................................... v List of Tables ............................................................................................................ x Acknowledgments ................................................................................................. xii Recommended Citation ....................................................................................... xiii List of Acronyms and Abbreviations ................................................................. xiv Executive Summary ............................................................................................ xvii PAST AND PROJECTED TRENDS IN CLIMATE AND SEA LEVEL FOR SOUTH FLORIDA ........................................................................................ 1 I. Introduction .................................................................................................... 1 II. Modes of Natural Variability that Influence Florida’s Climate ............... 5 El Niño Southern Oscillation ...................................................................................................... 6 Pacific Decadal Oscillation ......................................................................................................... 9 Atlantic Multi-decadal Oscillation ............................................................................................ 12 North Atlantic Oscillation ......................................................................................................... 14 Variations of Solar Activity ...................................................................................................... 15 III. Historical Trends in Florida Temperature and Precipitation .................... 19 Introduction ............................................................................................................................... 19 Previous Studies ........................................................................................................................ 20 Temperature Trends .............................................................................................................. 20 Precipitation Trends .............................................................................................................. 22 iii Technical Report July 5, 2011 Trends in Climate and Sea Level Rise for South Florida Data ........................................................................................................................................... 23 Methods..................................................................................................................................... 26 Mann-Kendall Trend Test and Sen-Theil Regression .......................................................... 26 Trends in Extremes Based on the GEV Distribution ............................................................ 29 Results and Discussion ............................................................................................................. 30 Precipitation .......................................................................................................................... 36 Temperature .......................................................................................................................... 39 Conclusions ............................................................................................................................... 52 IV. Climate Projections ......................................................................................... 55 Introduction ............................................................................................................................... 55 General Circulation Models ...................................................................................................... 55 Precipitation .......................................................................................................................... 58 Temperature .......................................................................................................................... 61 GCM projections ................................................................................................................... 63 Regional Climate Models ......................................................................................................... 66 Validation of Statistically Downscaled Climate Data .......................................................... 66 Projections of Statistically Downscaled Data ....................................................................... 71 Dynamically Downscaled Climate Data ................................................................................... 79 Data and Methods ................................................................................................................. 80 NARCCAP Model Validation and Projections ..................................................................... 82 Projections............................................................................................................................. 90 Summary ................................................................................................................................... 91 V. Sea Level Rise and Extremes ...................................................................... 93 Introduction ............................................................................................................................... 93 Sea Level Rise Components ..................................................................................................... 94 Historic Sea Level and Projections ........................................................................................... 95 IPCC Projections ................................................................................................................... 96 Government and Working Group Projections ...................................................................... 97 Recent Scientific Literature Projections ............................................................................... 99 iv Technical Report July 5, 2011 Contents Extreme Events in South Florida ............................................................................................ 100 Climate Links to Extreme Events ........................................................................................... 102 AMO Relation to Florida Storm Surge ............................................................................... 102 Analysis............................................................................................................................... 109 Projection of Extreme Events ................................................................................................. 109 Historical Storm Surge Distributions .................................................................................. 110 Surge Projections ................................................................................................................ 112 Analysis............................................................................................................................... 117 Coastal Structure Vulnerability ............................................................................................... 117 Saltwater Intrusion Vulnerability ............................................................................................ 121 Decision Support ..................................................................................................................... 121 Economics ............................................................................................................................... 122 Conclusion – Sea Level Rise .................................................................................................. 123 VI. Water Resources Management Impacts ..................................................127 Simulated Response to Precipitation and Temperature Changes ........................................... 127 Simulated Response to Sea Level Rise ................................................................................... 131 VII. Conclusions and Recommendations ........................................................133 Natural Variability .................................................................................................................. 133 Temperature and Precipitation ................................................................................................ 134 Climate Projections ................................................................................................................. 134 Sea Level Rise ........................................................................................................................
Recommended publications
  • Climate Change: Examining the Processes Used to Create Science and Policy, Hearing
    CLIMATE CHANGE: EXAMINING THE PROCESSES USED TO CREATE SCIENCE AND POLICY HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION THURSDAY, MARCH 31, 2011 Serial No. 112–09 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 65–306PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland DAVID WU, Oregon FRANK D. LUCAS, Oklahoma BRAD MILLER, North Carolina JUDY BIGGERT, Illinois DANIEL LIPINSKI, Illinois W. TODD AKIN, Missouri GABRIELLE GIFFORDS, Arizona RANDY NEUGEBAUER, Texas DONNA F. EDWARDS, Maryland MICHAEL T. MCCAUL, Texas MARCIA L. FUDGE, Ohio PAUL C. BROUN, Georgia BEN R. LUJA´ N, New Mexico SANDY ADAMS, Florida PAUL D. TONKO, New York BENJAMIN QUAYLE, Arizona JERRY MCNERNEY, California CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, JOHN P. SARBANES, Maryland Tennessee TERRI A. SEWELL, Alabama E. SCOTT RIGELL, Virginia FREDERICA S. WILSON, Florida STEVEN M. PALAZZO, Mississippi HANSEN CLARKE, Michigan MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Thursday, March 31, 2011 Page Witness List ............................................................................................................
    [Show full text]
  • Volume 2: Issues Raised by Petitioners on EPA's Use of IPCC
    EPA’s Response to the Petitions to Reconsider the Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act Volume 2: Issues Raised by Petitioners on EPA’s Use of IPCC U.S. Environmental Protection Agency Office of Atmospheric Programs Climate Change Division Washington, D.C. 1 TABLE OF CONTENTS Page 2.0 Issues Raised by Petitioners on EPA’s Use of IPCC.................................................................6 2.1 Claims That IPCC Errors Undermine IPCC Findings and Technical Support for Endangerment ........................................................................................................................6 2.1.1 Overview....................................................................................................................6 2.1.2 Accuracy of Statement on Percent of the Netherlands Below Sea Level..................8 2.1.3 Validity of Himalayan Glacier Projection .................................................................9 2.1.4 Characterization of Climate Change and Disaster Losses .......................................12 2.1.5 Validity of Alps, Andes, and African Mountain Snow Impacts..............................20 2.1.6 Validity of Amazon Rainforest Dieback Projection ................................................21 2.1.7 Validity of African Rain-Fed Agriculture Projection ..............................................23 2.1.8 Summary..................................................................................................................33
    [Show full text]
  • Climate Change: Addressing the Major Skeptic Arguments
    Climate Change: Addressing the Major Skeptic Arguments September 2010 Whitepaper available online: http://www.dbcca.com/research Carbon Counter widget available for download at: www.Know-The-Number.com Research Team Authors Mary-Elena Carr, Ph.D. Kate Brash Associate Director Assistant Director Columbia Climate Center, Earth Institute Columbia Climate Center, Earth Institute Columbia University Columbia University Robert F. Anderson, Ph.D. Ewing-Lamont Research Professor Lamont-Doherty Earth Observatory Columbia University DB Climate Change Advisors – Climate Change Investment Research Mark Fulton Bruce M. Kahn, Ph.D. Managing Director Director Global Head of Climate Change Investment Research Senior Investment Analyst Nils Mellquist Emily Soong Vice President Associate Senior Research Analyst Jake Baker Lucy Cotter Associate Research Analyst 2 Climate Change: Addressing the Major Skeptic Arguments Editorial Mark Fulton Global Head of Climate Change Investment Research Addressing the Climate Change Skeptics The purpose of this paper is to examine the many claims and counter-claims being made in the public debate about climate change science. For most of this year, the volume of this debate has turned way up as the ‘skeptics’ launched a determined assault on the climate findings accepted by the overwhelming majority of the scientific community. Unfortunately, the increased noise has only made it harder for people to untangle the arguments and form their own opinions. This is problematic because the way the public’s views are shaped is critical to future political action on climate change. For investors in particular, the implications are huge. While there are many arguments in favor of clean energy, water and sustainable agriculture – for instance, energy security, economic growth, and job opportunities – we at DB Climate Change Advisors (DBCCA) have always said that the science is one essential foundation of the whole climate change investment thesis.
    [Show full text]
  • Section 2: Observational Evidence of Climate Change Weather Stations Global Historical Climatology Network Stations
    8/31/16 Section 2: Observational Evidence of Climate Change Learning outcomes • how temperature, precipitation are measured • how global averages are calculated • evidence for recent climate change within the climate system • temperature, precipitation, sea level rise, cryosphere, extreme events GEOG 313/513 Global Climate Change Fall 20161 Prof J. Hicke Weather stations weather.usu.edu/htm/observatory-diagram www.inmtn.com/weather-station-installation.html Global Climate Change 2 Prof J. Hicke Global Historical Climatology Network stations Kitchen, 2013 © 2014 Pearson Education, Inc. Global Climate Change 3 Prof J. Hicke 1 8/31/16 Global Historical Climatology Network stations >3800 stations with records >50 years 1600 stations with records >100 years 226 stations with records >150 years longest: Berlin, begun in 1701 (so >300 years) Global Climate Change 4 Prof J. Hicke wind Radiosondes speed, direction air temperature National Weather Service Altitude (log pressure) dew point temperature NOAA Temperature Global Climate Change 5 funnel.sfsu.edu Prof J. Hicke Atmospheric temperature from satellites Microwave sounding unit TIROS Operational Vertical Sounds (TOVS) NOAA en.wikipedia.org/wiki/Satellite_temperature_measurements Global Climate Change 6 Prof J. Hicke 2 8/31/16 Warming in atmosphere Global Climate Change en.wikipedia.org/wiki/Satellite_temperature_measurements7 Prof J. Hicke Three estimates of surface temperature trends Global Climate Change IPCC AR 5, WG I, 8 2013 Prof J. Hicke Most current global mean T from NASA GISS 2015 Global Climate Change 9 Prof J. Hicke 3 8/31/16 Bear in mind the distribution of stations certainty depends on spatial location more certain at global scale Global Climate Change 10 Prof J.
    [Show full text]
  • Impact of Snow Snow-Atmosphere Coupling and Evaluation of Snow Forecasts
    Impact of Snow Snow-atmosphere coupling and evaluation of snow forecasts Emanuel Dutra [email protected] Thanks: Gianpaolo Balsamo, Patricia de Rosnay, Yvan Orsolini, Retish Senan, Yannick Peings © ECMWF November 2, 2015 Overview • Part 1: Snow atmosphere coupling: – Role of snow controlling heat/moisture/momentum exchanges; – Snow influence on atmospheric circulation: known mechanisms; – Sub-seasonal predictability studies: Impact of snow initialization; • Part 2: Current performance of ECMWF reanalysis & sub-seasonal forecasts of snow – Snow representation in the ECMWF model; – Surface reanalysis & forecasts initialization; – Evaluation of sub-seasonal forecasts of snow depth and cover Workshop on sub-seasonal predictability, 2 November 2015, ECMWF October 29, 2014 2 Importance of snow • Several fundamental physical properties of snow modulate the momentum/energy/water exchanges between the surface and the atmosphere: – Surface reflectance: • Albedo, snow-albedo feedback. – Thermal properties: • Effective de-coupling heat and moisture transfers. – Surface roughness: • Smoother than the underlying soil/vegetation: de-coupling of momentum transfers; – Phase changes: • Delayed warming during the melt period. • Snow cover acts as a fast climate switch. Surface temperature falls by about 10 K with fresh snowfall and rises by a similar amount with snowmelt (Betts et al., 2014) • Implications for all forecasts ranges (medium to seasonal). • Predictability impact: role of initial conditions & anomalies persistence; • Climate change impacts.
    [Show full text]
  • Recent Advances in the Historical Climatology of the Tropics and Subtropics
    RECENT ADVANCES IN THE HISTORICAL CLIMATOLOGY OF THE TROPICS AND SUBTROPICS BY DAVID J. NASH And GEORGE C. D. ADAMSON Historical documents from tropical regions contain weather information that can be used to reconstruct past climate variability, the occurrence of tropical storms, and El Niño and La Niña episodes. n comparison with the Northern Hemisphere midlatitudes, the nature of long-term climatic I variability in the tropics and subtropics is poorly understood. This is due primarily to a lack of meteo- rological data. Few tropical countries have continuous records extending back much further than the late nineteenth century. Within Africa, for example, re- cords become plentiful for Algeria in the 1860s and for South Africa in the 1880s (Nicholson et al. 2012a,b). In India, a network of gauging stations was established by the 1870s (Sontakke et al. 2008). However, despite the deliberations of the Vienna Meteorological Congress of 1873, for many other nations, systematic meteo- rological data collection began only in the very late nineteenth or early twentieth century. To reconstruct climate parameters for years prior to the instrumental period, it is necessary to use proxy indicators, either “manmade” or natural. The most important of these for the recent his- FIG. 1. Personal journal entry describing heavy rain torical past are documents such as weather diaries and cold conditions in coastal eastern Madagascar (Fig. 1), newspapers (Fig. 2), personal correspondence, on 9 and 10 Dec 1817, written by the British Agent to government records, and ships’ logs (Bradley 1999; Madagascar, Mr. James Hastie (Mauritius National Carey 2012). These materials, often housed in archival Archive HB 10-01, Journal of Mr Hastie, from 14 Nov collections, are unique sources of climate informa- 1817 to 26 May 1818).
    [Show full text]
  • A Guide to Economic Valuation and Impact Analysis
    ISBN 0-916287-52-1 Copyright © 2002 by the Florida Sea Grant College Program. This publica- tion was supported by the National Sea Grant College Program of the United States Department of Commerce’s National Oceanic and Atmospheric Admin- istration under NOAA Grant #NA16RG-2195. The views expressed herein do not necessarily reflect the views of any of these organizations. SGR 124 FLORIDA COASTAL ENVIRONMENTAL RESOURCES AGUIDE TO ECONOMIC VALUATION AND IMPACT ANALYSIS Edited by David Letson and J. Walter Milon CONTENTS AUTHORS AND AFFILIATIONS v PREFACE vii ECONOMIC VALUATION AND ANALYSIS CHAPTER 1 Economic Value and Environmental Quality: Florida’s Coastal Resources David Letson 1 CHAPTER 2 Principles of Economic Valuation David Letson 7 CHAPTER 3 Methods of Economic Analysis David Letson 15 CHAPTER 4 Valuing Market and Non-Market Goods and Services David Letson 25 CASE STUDIES OF COASTAL RESOURCE VALUATION CHAPTER 5 The Economic Value of Saltwater Marsh to Florida’s Commercial Fisheries Frederick W. Bell 41 CHAPTER 6 Damage Assessment of the Tampa Bay Oil Spill: Travel Cost Method Frederick W. Bell 53 CHAPTER 7 Everglades Restoration Planning: Multiattribute Utility Analysis J. Walter Milon and Alan Hodges 63 CHAPTER 8 Natural Resource Valuation of the Indian River Lagoon J. Walter Milon 77 iii CASE STUDIES OF ECONOMIC IMPACT ANALYSIS CHAPTER 9 Economic Impact of Tourist and Resident Uses of Coastal Resources in the Florida Keys: Survey Methods and Impact Assessment Methodology Vernon R. (Bob) Leeworthy 89 CHAPTER 10 Dairy Rule and Buyout Program in the Lake Okeechobee Watershed: Economic Impact of Non-Point Source Pollution Controls Grace Johns 101 CHAPTER 11 The Everglades Forever Act in the Everglades Agricultural Area: Economic Impacts of Non-Point Source Pollution Controls Grace Johns 117 CHAPTER 12 Economic Importance of the San Carlos Island Shrimp Processing Industry to the Lee County Economy Chuck Adams, David Mulkey and Alan Hodges 131 CHAPTER 13 Bioeconomic Models and the Florida Spiny Lobster Trap Certificate Program Sherry L.
    [Show full text]
  • Local Mitigation Strategy
    E LOCAL MITIGATION STRATEGY WALTON COUNTY 2020 Update Local Mitigation Strategy Table of Contents LOCAL MITIGATION STRATEGY TABLE OF CONTENTS 2 1.0 INTRODUCTION 7 1.1 PURPOSE OF THE LOCAL MITIGATION STRATEGY 8 1.2 BENEFITS 8 2.0 LMS PLANNING PROCESS 9 2.1 STRATEGY PREPARATION AND ORGANIZATION 10 2.2 PUBLIC INVOLVEMENT 11 2.3 COORDINATION WITH OTHER AGENCIES 12 2.4 PLANNING PROCESS 13 2.4.1 HAZARD IDENTIFICATION AND RISK ESTIMATION 13 2.4.2 VULNERABILITY ASSESSMENT 13 2.4.3 DEVELOPING HAZARD MITIGATION INITIATIVES 14 2.4.4 DEVELOPING THE LOCAL MITIGATION ACTION PLAN 14 2.4.5 APPROVAL OF THE CURRENT EDITION OF THE STRATEGY 14 2.4.6 IMPLEMENTATION OF APPROVED MITIGATION INITIATIVES 14 3.0 HAZARD IDENTIFICATION AND RISK ASSESSMENT 15 3.1 COUNTY PROFILE 16 3.2 SUMMARY OF CHANGES 18 3.3 HAZARD IDENTIFICATION 19 3.3.1 FEDERAL DISASTER DECLARATIONS 20 3.3.2 NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION: STORM EVENTS DATA 21 3.4 VULNERABILITY ASSESSMENT OVERVIEW 22 3.4.1 ASSETS, INFRASTRUCTURE, AND CRITICAL FACILITIES 22 3.4.2 CRITICAL FACILITIES 22 3.4.3 BUILDING DATA 23 3.4.4 HAZARD RANKING 24 3.5 HAZARD PROFILES 26 3.5.1 DAM FAILURE 26 DESCRIPTION 26 LOCATION 27 EXTENT 29 2 NOTE: * INDICATES THAT FDEP CLASSIFIES THESE DAMS AS HIGH HAZARD DAMS. N/A INDICATES THE INFORMATION WAS NOT AVAILABLE. 33 PREVIOUS OCCURRENCES 33 PROBABILITY OF FUTURE EVENTS 34 VULNERABILITY AND RISK ASSESSMENT 34 3.5.2 EPIDEMIC / PANDEMIC 36 DESCRIPTION 36 LOCATION AND EXTENT 37 PREVIOUS OCCURRENCES 38 PROBABILITY OF FUTURE EVENTS 39 VULNERABILITY AND RISK ASSESSMENT
    [Show full text]
  • Local Cooling and Warming Effects of Forests Based on Satellite Observations
    ARTICLE Received 6 Oct 2014 | Accepted 10 Feb 2015 | Published 31 Mar 2015 DOI: 10.1038/ncomms7603 OPEN Local cooling and warming effects of forests based on satellite observations Yan Li 1,2,3,4, Maosheng Zhao5, Safa Motesharrei4,6,7, Qiaozhen Mu5,8, Eugenia Kalnay2,4 & Shuangcheng Li1,3 The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. 1 College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland 20742, USA. 3 Key Laboratory for Earth Surface Processes of The Ministry of Education, Peking University, Beijing 100871, China. 4 The Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.
    [Show full text]
  • Florida and Climate Change the Costs of Inaction
    FLORIDA AND CLIMATE CHANGE THE COSTS OF INACTION ELIZABETH A. STANTON FRANK ACKERMAN Tufts University November 2007 EXECUTIVE SUMMARY n July 2007, Governor Charlie Crist established greenhouse gas emission targets for the state of Florida, including an 80 percent reduction below 1990 levels by 2050. Although achieving Ithis target will involve nontrivial expenditures, the failure to avert severe climate change would have even more severe consequences for Florida, in cold hard cash as well as human and ecolog - ical impacts. Arguments against strong action to combat climate change often implicitly assume that inac - tion would be cost-free — that we can chose a future without significant impacts from climate change even if emissions of carbon dioxide and other greenhouse gases continue to grow unchecked. But the overwhelming scientific consensus now holds that this rosy assumption is sim - ply wrong, and that the more greenhouse gases are released, the worse the consequences will be. The stakes are high, the risks of disastrous climate impacts are all too real, and waiting for more information is likely to mean waiting until it is too late to protect ourselves and our de - scendants. If a bad outcome is a real risk — and run-away greenhouse gas emissions lead to a very bad outcome indeed — isn’t it worth buying insurance against it? We buy fire insurance for our homes, even though any one family is statistically unlikely to have a fire next year. Young adults often buy life insurance, out of concern for their families, even though they are very unlikely to die next year.
    [Show full text]
  • Climate-Sensitive Hazards in Florida
    CLIMATE-SENSITIVE HAZARDS IN FLORIDA Identifying and Prioritizing Threats to Build Resilience against Climate Effects Christopher T. Emrich, Daniel P. Morath, Gregg C. Bowser, and Rachel Reeves, Hazards and Vulnerability Research Institute This report was produced under contract for the Florida Department of Health. This project was supported by an award from the Centers for Disease Control and Prevention (grant number U5UE1EH001047-02, Building Community Resilience in Florida through Adaptation and Mitigation). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention. Page ii of xi TABLE OF CONTENTS Table of Contents ....................................................................................................................... iii List of Tables ............................................................................................................................. vi 1. Project Introduction ............................................................................................................. 1 Hurricane Storm Surge, Winds, and Rising Sea Level ............................................................ 8 Heat, Drought, and Wildfires ..................................................................................................10 Priority Climate-Sensitive Threats ..........................................................................................11 Bibliography ..........................................................................................................................13
    [Show full text]
  • "Liquid" Sunshine State by Melissa Griffin, Assistant State Climatologist
    Florida . The "Liquid" Sunshine State By Melissa Griffin, Assistant State Climatologist and Florida CoCoRaHS Coordinator Climate is Florida's most important physical resource, a fact well recognized by its citizens, whose state government officially designated it the Sunshine State in 1970. Florida is mainly a long peninsula, and with the exception of the northwestern part of the state, no place is more than 80 miles from both the Gulf of Mexico and the Atlantic Ocean. This proximity to water has an impact on both temperatures and precipitation across the state. The Atlantic Ocean and the Gulf of Mexico act as major modifiers of the state's temperature during all seasons, but particularly in the winter. During Florida's coldest month (January), average temperatures range from the lower 50s in the north to the upper 60s in the south. The mild temperatures give way to the "dog days of summer," when average temperatures across the entire state are about the same (lower 80s). Florida's summer high temperatures can be extremely draining, even though Florida experiences far fewer days of 100F days than most other states. This is because Florida is among the wettest states in the nation and its atmosphere is so humid that its summers are among the most uncomfortable. Despite these typical temperature patterns, Florida has had its fair share of extremes. The state record for minimum temperature is -2F set in Tallahassee, Florida, on February 13, 1899, while the hottest temperature recorded in the state was 109F on June 29, 1931, in Monticello, Florida. Oddly enough, the two record-holding stations are only 25 miles apart.
    [Show full text]