Wild Ennerdale Survey of NVC Communities 2004

Total Page:16

File Type:pdf, Size:1020Kb

Wild Ennerdale Survey of NVC Communities 2004 Ennerdale Forest National Vegetation Classification Survey Wild Ennerdale Survey of National Vegetation Classification Communities A report by Rigby Jerram Ecological Consultants Rigby Jerram 93 Serpentine Road For Forestry Commission Kendal Cumbria th 15 November 2004 LA9 4PD Tel & Fax: 01539 726618 e-mail: [email protected] Rigby Jerram 1 27/08/15 Ennerdale Forest National Vegetation Classification Survey Contents Introduction ............................................................................................................................................................................... 4 Methods ..................................................................................................................................................................................... 4 Site Description ......................................................................................................................................................................... 5 Vegetation Communities ........................................................................................................................................................... 7 Forestry Communities................................................................................................................................................................ 7 Conifer forest with W11 understorey ........................................................................................................ 7 Conifer forest with W17 understorey ........................................................................................................ 9 Dense conifer forest .............................................................................................................................. 9 Conifer forest with mire vegetation understorey .......................................................................................... 9 Felled and/or replanted conifer forest ...................................................................................................... 10 National Vegetation Classification Communities .................................................................................................................... 14 Native Woodland Communities ............................................................................................................................................... 14 W1 Salix cinerea – Galium palustre woodland ................................................................................... 14 W4 Betula pubescens – Molinia caerulea woodland ............................................................................ 14 W4c Betula pubescens – Molinia caerulea woodland Sphagnum sub-community ........................................ 15 W7 Alnus glutinosa – Fraxinus excelsior – Lysimachia nemorum woodland ............................................ 16 W11 Quercus petraea – Betula pubescens – Oxalis acetosella woodland ................................................... 17 W17 Quercus petraea – Betula pubescens – Dicranum majus woodland .................................................... 18 Non-woodland Communities ................................................................................................................................................... 19 H8b Calluna vulgaris – Ulex gallii heath Danthonia decumbens sub-community ........................................ 19 H8e Calluna vulgaris – Ulex gallii heath Vaccinium myrtillus sub-community .......................................... 19 H10 Calluna vulgaris – Erica cinerea heath ........................................................................................ 19 H12a Calluna vulgaris – Vaccinium myrtillus heath Calluna vulgaris sub-community .................................. 20 H12c Calluna vulgaris – Vaccinium myrtillus heath Galium saxatile – Festuca ovina sub-community .............. 20 M6b Carex echinata – Sphagnum recurvum/auriculatum mire Carex nigra – Nardus stricta sub-community ..... 21 M6c Carex echinata – Sphagnum recurvum/auriculatum mire Juncus effusus sub-community ....................... 22 M6d Carex echinata – Sphagnum recurvum/auriculatum mire Juncus acutiflorus sub-community .................. 23 M10a Carex dioica – Pinguicula vulgaris mire Carex demissa – Juncus bulbosus/kochii sub-community ........... 24 M15b Scirpus cespitosus – Erica tetralix wet heath typical sub-community ................................................. 24 M17 Scirpus cespitosus – Eriophorum vaginatum blanket mire ............................................................... 24 M23a Juncus effusus/acutiflorus – Galium saxatile rush pasture Juncus acutiflorus sub-community ................. 25 M23b Juncus effusus/acutiflorus – Galium saxatile rush pasture Juncus effusus sub-community ...................... 26 M25a Molinia caerulea – Potentilla erecta mire Erica tetralix sub-community ............................................. 26 M25c Molinia caerulea – Potentilla erecta mire Angelica sylvestris sub-community ..................................... 26 M27/M23a Filipendula ulmaria – Angelica sylvestris mire / Juncus effusus/acutiflorus – Galium saxatile rush pasture Juncus acutiflorus sub-community ...................................................... 27 S9 Carex rostrata swamp ............................................................................................................. 28 S19 Eleocharis palustris swamp ...................................................................................................... 28 U4a Festuca ovina – Agrostis capillaris – Galium saxatile grassland typical sub-community ........................ 28 U4b Festuca ovina – Agrostis capillaris – Galium saxatile grassland Holcus lanatus – Trifolium repens sub-community........................................................................ 29 U4e Festuca ovina – Agrostis capillaris – Galium saxatile grassland Vaccinium myrtillus – Deschampsia flexuosa sub-community ......................................................... 29 U5b Nardus stricta – Galium saxatile grassland Agrostis canina – Polytrichum commune sub-community ....... 30 U5c Nardus stricta – Galium saxatile grassland Carex panicea – Viola riviniana sub-community ................... 30 U5d Nardus stricta – Galium saxatile grassland Calluna vulgaris – Danthonia decumbens sub-community ...... 31 U19 Thelypteris (Oreopteris) limbosperma – Blechnum spicant community .............................................. 31 U20a Pteridium aquilinum – Galium saxatile community Anthoxanthum odoratum sub-community ................ 32 MG1 Arrhenatherum elatius grassland ............................................................................................... 32 MG5 Cynosurus cristatus – Centaurea nigra grassland ........................................................................... 33 MG6a Lolium perenne – Cynosurus cristatus grassland typical sub-community ............................................ 34 MG10 Holcus lanatus – Juncus effusus grassland ................................................................................... 35 W23 Ulex europaeus – Rubus fruticosus scrub .................................................................................... 35 References ............................................................................................................................................................................... 36 Rigby Jerram 2 27/08/15 Ennerdale Forest National Vegetation Classification Survey Rigby Jerram 3 27/08/15 Ennerdale Forest National Vegetation Classification Survey Introduction In 2002 the land within The Pillar and Ennerdale Site of Special Scientific Interest and Lake District High Fells candidate Special Area of Conservation was surveyed to National Vegetation Classification standards by English Nature as part of their programme of acquiring up to date information on the distribution of the vegetation communities which form the SAC features of interest (Jerram 2003). The following year the National Trust commissioned a similar survey of the remainder of their fell land in Ennerdale. As part of the Wild Ennerdale project the Forestry Commission commissioned a further survey of the remaining land covered by the Wild Ennerdale project for 2004. This includes the conifer plantations and farmland at the head of Ennerdale Water and to the north and west of the lake. This report presents the results of the 2004 survey which completes the coverage of NVC survey for Wild Ennerdale and includes land owned by the Forestry Commission, National Trust and United Utilities. The mapping of vegetation communities will aid the protection and management of features of biodiversity interest within the project area and aid predictions as to the likely outcome of management regimes in the valley. Methods The vegetation was mapped using the National Vegetation Classification (Rodwell 1991a & b and 1992). Stands of homogeneous vegetation were identified and assigned to NVC communities and sub- communities. The extent of these stands was mapped onto 1:10,000 OS base maps. To ensure that vegetation types were assigned to the correct NVC communities a minimum of two 2 x 2m quadrats were recorded in each vegetation type. Where quadrats were recorded species abundance was recorded using the domin scale: Domin score Percentage ground cover 10 91-100% 9 76-90 8 51-75 7 34-50 6 26-33 5 11-25 4 4-10 3 many individuals 2 <4 several individuals 1 few individuals Constancy
Recommended publications
  • Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
    Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area.
    [Show full text]
  • Irish Vegetation Classification (IVC) Community Synopsis
    Irish Vegetation Classification (IVC) www.biodiversityireland.ie/ivc Community Synopsis Scientific name Trichophorum cespitosum/germanicum – Eriophorum angustifolium bog/heath Common name Deergrass – Common Cottongrass bog/heath Community code BG2F Vegetation Trichophorum cespitosum/germanicum is the main component of this community, forming large wefts of mottled brown stems later in the year. Calluna vulgaris and Erica tetralix form the patchy dwarf shrub layer. Other constants are Eriophorum angustifolium , Molinia caerulea , Potentilla erecta and Narthecium ossifragum . In the bryophyte layer, cushions of Racomitrium lanuginosum are the most regular feature but it tends not to dominate and is frequently joined by Sphagnum tenellum , Sphagnum capillifolium , Hypnum jutlandicum and Pleurozia purpurea . Further investigation amongst these plants will often yield some diminutive strands of Odontoschisma sphagni and Diplophyllum albicans . Several other species of sphagna are occasional. Cladonia uncialis is frequent but provides sparse cover. Ecology This is a community of upland peatlands (mean altitude 370 m, n = 112) occurring on wet, acidic and infertile peats. Mainly these are the deep, ombrogenous peats of upland blanket bog, but this vegetation also occurs on shallower soils as wet heath. Sub-communities No sub-communities have been described for this community. Similar communities In no other community does Trichophorum attain such dominance. In the HE4A Molinia caerulea – Trichophorum cespitosum/germanicum bog/heath, Molinia
    [Show full text]
  • Site Synopsis
    SITE SYNOPSIS SITE NAME: CLOONLOUM MORE BOG NHA SITE CODE: 002307 Cloonloum More Bog NHA is situated approximately 5 km south-west of Tulla, mainly in the townlands of Cloonloum More and Clooncool in Co. Clare. The site comprises a raised bog that includes both areas of high bog and cutover bog. The north-western margin of the site is bounded by a road, while the other margins are bounded by areas of cutover and grassland. The raised bog consists of one crescent-shaped lobe. There is an absence of permanent pools and hummocks/hollows on the high bog and there are large areas of cutover. This raised bog is of particular interest as it is one of the few remaining raised bogs in the county. A small lake, Lough Gara, is included at the south of the site. Much of the high bog vegetation is typical of raised bogs in Ireland, consisting of Ling Heather (Calluna vulgaris), Cross-leaved Heath (Erica tetralix), White Beak- sedge (Rhynchospora alba) and Deergrass (Scirpus cespitosus). Bog-rosemary (Andromeda polifolia) is found on this bog, although not in abundance. The bog moss (Sphagnum spp.) cover is quite variable, with species such as S. capillifolium, S. magellanicum and S. fuscum. The cutover areas surrounding the bog have become dominated by Purple Moor-grass (Molinia caerulea) and Gorse (Ulex europaeus). The lake at the south of the bog is surrounded by the Common Reed (Phragmites australis) and the Bulrush (Typha latifolia). Current landuse on the site consists of peat-cutting around the edge of the high bog, and the drainage associated with this.
    [Show full text]
  • Properties of Trunk and Briarwood of Tree Heath (Erica Arborea L.) From
    Properties of trunk and briarwood of tree heath ( Erica arborea L.) from island Rab Slavko Govor čin 1, Tomislav Sinkovi ć1, Tomislav Sedlar 1, Bogoslav Šefc 2, Iva Ištok 2 1,2 Department for wood science, Faculty of Forestry, University of Zagreb, Croatia, [email protected] , [email protected] , [email protected] , [email protected] , [email protected] ABSTRACT Tree heath (Erica arborea L.) is an evergreen shrub that grows mainly in Mediterranean region. This species tends to grow in areas such as macchia shrub lands, dry evergreen scrublands, forest roadsides and forest outskirts which have a lot of light and sun though daytime. Tree heath is not a commercial timber species, it occurs as a result of forest roads and forest fireroads construction. This wood species is interesting because of its briarwood. Briarwood is tumour like outgrow that develops between root and trunk and it’s commonly used in making bowls of tobacco smoking pipes and knife handles. The trunk can also be used for variety of products because of its relatively good mechanical properties and nice colour and texture. Material for this study was taken from tree heath ( Erica arborea L.) shrubs growing on island of Rab in Croatia. In this study density and dimensional stability of briarwood and trunk of tree heath were investigated . Also some mechanical properties of trunk such as bending strength and compression strength parallel to the grain were studied. Key words: Tree heath ( Erica arborea L.), briarwood, trunk, physical properties, mechanical properties AIM OF RESEARCH Knowing technological characteristics of wood is important postulate for rational usage of wood recourses.
    [Show full text]
  • Ericaceae Five Petals, Sometimes Free, Though Usually the Heather Family Fused Together to Form a Tube, Bell Or Urn
    RHS GENEALOGY FOR GARDENERS EUDICOTS sepals, free or fused at the base, and four or Ericaceae five petals, sometimes free, though usually The heather family fused together to form a tube, bell or urn. The stamens are in whorls of four or five and Hugely useful in the garden, this family of mainly woody plants includes the heathers the pollen is released from the anthers by (Calluna, Erica, Daboecia), azaleas, rhododendrons, wintergreens (Gaultheria), way of pores at the tips. Pieris and mountain laurels (Kalmia). Commercially significant crops include Fruit blueberries and cranberries (Vaccinium). Fruits are typically dry capsules, though fleshy Size Origins fruits, such as blueberries, are not uncommon. One of the larger families, the Ericaceae contains Earliest evidence of this family dates to the Late Leaves over 3,850 species. Within this great diversity are Cretaceous (about 90 million years ago). Fossils many small genera with one or two species, and suggest that Ericaceae was once more diverse in Most Ericaceae have evergreen, alternate leaves and Vaccinium corymbosum, three titans; Rhododendron (with 1,000 species), Europe, which was home to genera now restricted no stipules. Some species, such as many azaleas, highbush blueberry Erica (850 species) and Vaccinium (500 species). to Asia and/or America. are deciduous, while opposite and whorled leaf It should be noted that azaleas are included arrangements are also known. Leaf margins are within Rhododendron. Flowers entire, toothed or curled under, and some species USES FOR THIS FAMILY (including many rhododendrons) have dense hair Great floral diversity is encompassed by this or scales on the lower surfaces.
    [Show full text]
  • Island Biology Island Biology
    IIssllaanndd bbiioollooggyy Allan Sørensen Allan Timmermann, Ana Maria Martín González Camilla Hansen Camille Kruch Dorte Jensen Eva Grøndahl, Franziska Petra Popko, Grete Fogtmann Jensen, Gudny Asgeirsdottir, Hubertus Heinicke, Jan Nikkelborg, Janne Thirstrup, Karin T. Clausen, Karina Mikkelsen, Katrine Meisner, Kent Olsen, Kristina Boros, Linn Kathrin Øverland, Lucía de la Guardia, Marie S. Hoelgaard, Melissa Wetter Mikkel Sørensen, Morten Ravn Knudsen, Pedro Finamore, Petr Klimes, Rasmus Højer Jensen, Tenna Boye Tine Biedenweg AARHUS UNIVERSITY 2005/ESSAYS IN EVOLUTIONARY ECOLOGY Teachers: Bodil K. Ehlers, Tanja Ingversen, Dave Parker, MIchael Warrer Larsen, Yoko L. Dupont & Jens M. Olesen 1 C o n t e n t s Atlantic Ocean Islands Faroe Islands Kent Olsen 4 Shetland Islands Janne Thirstrup 10 Svalbard Linn Kathrin Øverland 14 Greenland Eva Grøndahl 18 Azores Tenna Boye 22 St. Helena Pedro Finamore 25 Falkland Islands Kristina Boros 29 Cape Verde Islands Allan Sørensen 32 Tristan da Cunha Rasmus Højer Jensen 36 Mediterranean Islands Corsica Camille Kruch 39 Cyprus Tine Biedenweg 42 Indian Ocean Islands Socotra Mikkel Sørensen 47 Zanzibar Karina Mikkelsen 50 Maldives Allan Timmermann 54 Krakatau Camilla Hansen 57 Bali and Lombok Grete Fogtmann Jensen 61 Pacific Islands New Guinea Lucía de la Guardia 66 2 Solomon Islands Karin T. Clausen 70 New Caledonia Franziska Petra Popko 74 Samoa Morten Ravn Knudsen 77 Tasmania Jan Nikkelborg 81 Fiji Melissa Wetter 84 New Zealand Marie S. Hoelgaard 87 Pitcairn Katrine Meisner 91 Juan Fernandéz Islands Gudny Asgeirsdottir 95 Hawaiian Islands Petr Klimes 97 Galápagos Islands Dorthe Jensen 102 Caribbean Islands Cuba Hubertus Heinicke 107 Dominica Ana Maria Martin Gonzalez 110 Essay localities 3 The Faroe Islands Kent Olsen Introduction The Faroe Islands is a treeless archipelago situated in the heart of the warm North Atlantic Current on the Wyville Thompson Ridge between 61°20’ and 62°24’ N and between 6°15’ and 7°41’ W.
    [Show full text]
  • Managing Molinia? Proceedings of a 3-Day Conference 14-16 September 2015 in Huddersfield, West Yorkshire, UK
    Managing Molinia? Proceedings of a 3-day conference 14-16 September 2015 in Huddersfield, West Yorkshire, UK. Edited by Roger Meade National Trust Molinia Conference organising committee at Marsden Moor Estate office. L-R: Alan Stopher, Craig Best, Roger Meade, Nick Pollett and Andrew Underdown. With assistance from Rob Henry, Alyssa Young and Frances DeGiorgio (not in picture). Cover image © Alan Stopher View towards Pule Hill north-eastwards from the route of the old turnpike. Redbrook reservoir is in the middle distance. This is one of the original canal reservoirs which is maintained by Canal & River Trust with the water supplying Yorkshire Water’s customers. A sailing club also uses the amenity. Molinia tussocks dominate the foreground. 2 ‘Managing Molinia’ Conference, 14-16 September 2015, Huddersfield, UK; National Trust, ed. R Meade To cut, or not to cut. A very straightforward question, but so much Foreword more succinct than the answer. This is the dilemma often faced by managers of land for nature conservation where the easiest solution is to just follow what others are doing. As a former habitat specialist for a statutory nature conservation body, I am familiar with the pressures to provide clear guidance and one I remember well is the popular belief that any trees on lowland raised bogs should be cut down and prevented from regrowth. While there is a case for adopting this principle in many situations there are those in which it is not necessary, and is even undesirable from other perspectives such as the trees’ contribution to the landscape. It means that the conservation land manager must not only be aware of the bare bones of the received wisdom, but also of the caveats that make it possible for him or her to arrive at a reasoned judgement for their specific situation.
    [Show full text]
  • David Clements Ecology Ltd Carlton House, 5 Herbert Terrace, Penarth, Glamorgan, CF64 2AH Tel/Fax: 029 20 350120 [email protected] DAVID CLEMENTS ECOLOGY LTD
    DDAAVVIIDD CCLLEEMMEENNTTSS EECCOOLLOOGGYY LLTTDD MERTHYR TYDFIL COUNTY BOROUGH SITES OF IMPORTANCE FOR NATURE CONSERVATION SO 00SW/2: RHYDYCAR WEST SURVEY & ASSESSMENT FOR SINC DESIGNATION May 2006 David Clements Ecology Ltd Carlton House, 5 Herbert Terrace, Penarth, Glamorgan, CF64 2AH Tel/Fax: 029 20 350120 [email protected] DAVID CLEMENTS ECOLOGY LTD Site Name: RHYDYCAR WEST Grid Ref(s): SO 045047 Site No.: SO 00SW/2 SO 033050 (W); 038053 (N); 053036 (E); 034031 (S) Status: Candidate Date: July 2002 July 2002: Provisional site; boundary identified from available Proposed Date: desk-top sources only; requires confirmation by survey. Confirmed Date: Dec 2005: Site surveyed and assessed for designation; designation boundary identified. Summary - Reasons for Selection/Interest of Site: Very extensive mosaic of ‘ffridd’ habitats and former mine spoil supporting complex of semi- upland and lowland habitats, partly contained within conifer plantation. Main components are ancient semi-natural woodland fragments, other semi-natural woodlands (mainly upland oak, Quercus sp) together with wet woodlands of alder (Alnus glutinosa), wet heathland, dry heathland, marshy grassland and semi-improved neutral grasslands. Also there are some bracken slopes, scrub, small ponds, streams and sections of dismantled railway. There are areas of semi- improved acid grasslands to the south especially. The habitats intergrade to form a complex mosaic, and may therefore also include some small areas of improved or low diversity semi- improved grassland, but any such areas are a very minor component. Great crested newt occurs in small pools within the SINC, and noctule and pipistrelle bats have both been recorded. Water vole may occur and a small badger sett is present.
    [Show full text]
  • Plant Profile
    Plant Profile Botanical Name: Erica spp. & cvs Common Name: Heath or Heather FAMILY NAME: Ericaceae Species and cultivars of special interest: Erica Sessifolia, Erica hybrida There are approximately 860 species of flowering plants in the family Eericaceae. They come in white, red, pink and green in colour. Origin: South Africa Availability: All year round although main profusion is Autumn, Winter and Spring Foliage Characteristics: It is a strong growing shrub 1-2 mt high with woody branches. It has needle like leaves pointing in an upward direction. Floral Characteristics: These flowers are tube/bell shaped flowers, which are approximately 15-20mm long. They have no fragrance; the colour range is white, red, and pink, green. Special features and characteristics of special interest: Most species can be raised from seed; they also have very small seeds and in some species may persist in the soil for decades. They grow well in raised beds; they dislike animal manure and lime. Maintenance, Cultural requirements and Post Harvest Treatments: Leaves and flowers dry out easily or often drop prematurely so keep well hydrated. Remove bottom leaves, re-cut stems and place in fresh water with flower food solution. Do not place in cool room. Pest and Diseases: They have few diseases and generally no insects affect this plant, however it can be affected by Phytopthora root disease. Use In Floristry: This is a good transitional flower suitable for vases and use in floral foam. Also can be great in a bouquet if well conditioned as it can make a nice edge around bouquets. It is excellent to use in wreaths and funeral sheafs.
    [Show full text]
  • Soil: Plant Relationships of Species-Rich Molinia Caerulea
    Soil: plant relationships of species-rich Molinia i caerulea dominated communities of the Culm ! I I I I I Measures, North Devon, with special reference given to phosphorus cycling by M. Jane Goodwin ,I '' A thesis submitted to the University of Plymouth in panial fulfJ.lment for the degree of , DOCTOR OF PHILOSOPHY Seale-Hayne Faculty of Agriculture, Food:and Land Use In collaboration with Institute of Grassland and Environmental Research September 1995 Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyrig)tt rests with the author and that no.quotation from the thesis and no information derived from it may be published without the author's prior written consent. 'I ii Abstract Soil:plant relationships of species-rich Molinia caerulea dominated communities of the Culm Measures, North Devon, with special reference given to phosphorus cycling. Margaret Jane Goodwin A semi-natural community known locally as Culm grassland in Devon and N. E. Cornwall is under threat from agricultural improvement, abandonment and inappropriate management In the last fifty years 87% of the original area has been lost. Funher loss may be prevented by ~ examination of the factors that influence the plant community and how they may be manipulated by management. Thus the research described in this thesis addressed the soil conditions and the plant communities, with particular reference to phosphorus cycling. In 1992 a preliminary characterisation of soil nutrient and water conditions, and species composition was conducted on a pristine Culm grassland, an improved grassland and a formerly abandoned Culm grassland.
    [Show full text]
  • 15. Purple Moor Grass and Rush Pastures
    © Natural England/Peter Wakely Purple Moor-grass meadow at Chippenham Fen NNR, Cambridgeshire 15. Purple moor grass and rush pastures Climate Change Sensitivity: Medium 122 Climate Change Adaptation Manual Evidence to support nature conservation in a changing climate Introduction Purple moor grass and rush pasture is highly sensitive to changes in agricultural economics. It is largely marginal land and has in the past suffered both from intensification through agricultural improvement or loss due to cultivation and/or abandonment, depending on the economic situation (UK Biodiversity Steering Group 1995). Climate change is likely to increase these pressures, with increased uncertainty and extreme events making it increasingly difficult to manage sites. In addition, purple moor grass and rush pasture is sensitive to the direct impact of climate change. Being dependant on wet or waterlogged soils, it is sensitive to changes in the water table and flooding, with reduced summer rainfall in particular potentially promoting a transition to drier habitats. Habitat Description Purple moor grass and rush pastures occur on infertile, seasonally-waterlogged sites with slowly permeable, humic or peaty gley, as well as peat soils. The pH range for the component types is wide, ranging from 4.7 (acidic) to 7.4 (alkaline). They occur mostly on flat and gently sloping ground, often associated with valley side springs and seepage lines, but also occur on river and lake floodplains. They tend to be dominated by purple moor-grass Molinia caerulea, sedges, and/or jointed rush species, and are usually managed as pasture or more rarely as hay meadows. Neglect results in dominance by tall herbaceous species (potentially leading to development of tall-herb fen) and/ or invasion by woody species.
    [Show full text]
  • Plants for Butterflies
    Plants for Butterflies “A Monarch will respond Brightly colored butterflies can be a welcome addition to your garden, not only when its feet touch a sugar because of the elegance, beauty, and interest they will add, but also because of solution with only one part their usefulness in pollinating flowers . of sugar for 120,400 parts of It’s easy to attract single species by planting any of the trees, shrubs, vines, or water. Its feet are more than perennials from the lists below. Attracting a wide range of species involves di- 2000 times as sensitive as the verse plantings that provide the needs of all life stages of the butterfly. They will human tounge.” (Butterflies need places to lay eggs, food plants for their larvae (caterpillars), places to form & Moths, D. H. Patent) chrysalides and a nectar sources for adults. Trees One way to invite butterflies to your garden is to plant flowering trees. The adults will visit and dine on the nectar, carrying away pollen with them and pol- linating other trees as they go. Trees Nectar Larval Food Zone Plant Culture Acer (Maple) W. Swallowtail z6 S-PSh/M Monarch Butterfly Alnus spp (Alder) Green Comma (E), W. Swallowtail z3-7 S/M-W Betula spp (Birch) Tiger Swallowtail, Crescents z3-7 S/M-W Colocedrus sp (Incense Cedar) Nelsons Hairstreak (W) z5 S/M-D Butterfly Garden Celtis spp (Hackberry) Emperor (sev.), Snout (E) z4-6 S/M Essentials Cornus spp (Dogwood) Spring Azure z3-7 S-PSh/M Butterflies need sun, water, a Crataegus spp (Hawthorn) x Swallowtail (W) z4-6 S/M food source (nectar), and a Juniperus virginiana (E.
    [Show full text]