Time-Dependent Vascular Actions of Cannabidiol in the Rat Aorta

Total Page:16

File Type:pdf, Size:1020Kb

Time-Dependent Vascular Actions of Cannabidiol in the Rat Aorta European Journal of Pharmacology 612 (2009) 61–68 Contents lists available at ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Cardiovascular Pharmacology Time-dependent vascular actions of cannabidiol in the rat aorta Saoirse E. O'Sullivan a,⁎, Yan Sun b, Andrew J. Bennett b, Michael D. Randall b, David A. Kendall b a School of Graduate Entry Medicine and Health, Derby City General Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom b School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom article info abstract Article history: We have shown that the major active agent of Cannabis sativa, Δ9-tetrahydrocannabinol, activates Received 31 October 2008 peroxisome proliferator-activated receptor gamma [PPARγ, O'Sullivan, S.E., Tarling, E.J., Bennett, A.J., Kendall, Received in revised form 18 February 2009 D.A., Randall, M.D., 2005c. Novel time-dependent vascular actions of delta9-tetrahydrocannabinol mediated Accepted 3 March 2009 by peroxisome proliferator-activated receptor gamma. Biochem. Biophys. Res. Commun. 337, 824–831]. The Available online 11 March 2009 aim of the present study was to investigate whether another pharmacologically active phytocannabinoid, cannabidiol, similarly activates PPAR . Functional vascular studies were carried out in rat aortae in vitro by Keywords: γ Cannabinoid myography. PPARγ activation was investigated using reporter gene assays, a PPARγ competition-binding Cannabidiol assay and an adipogenesis assay. Cannabidiol caused time-dependent (over 2 h) vasorelaxation of pre- Aorta constricted aortae, sensitive to PPARγ antagonism (GW9662, 1 µM) and super oxide dismutase inhibition. Vasorelaxation The vascular effects of cannabidiol were not affected by endothelial denudation, nitric oxide synthase Peroxisome proliferator-activated receptor inhibition, pertussis toxin, cannabinoid CB1 or cannabinoid CB2 receptor antagonism, or capsaicin pre- gamma treatment. When aortae were contracted with U46619 in a Ca2+-free buffer, vasorelaxation to cannabidiol Calcium channel was substantially reduced. Furthermore, cannabidiol (1–30 µM) inhibited the contractile response to the re- introduction of Ca2+. In a reporter gene assay, cannabidiol increased the transcriptional activity of PPARγ. Cannabidiol was also found to bind to PPARγ and stimulate the differentiation of 3T3-L1 fibroblasts into adipocytes, a PPARγ-mediated response. These results show that cannabidiol binds to and activates PPARγ, which partially underlies the time-dependent vascular effects of cannabidiol. However, cannabidiol-induced vasorelaxation in the rat isolated aorta appears to be largely due to calcium channel inhibition. © 2009 Published by Elsevier B.V. 1. Introduction and cannabinoid CB2 (McPartland et al., 2007), although it has been shown to antagonise both cannabinoid CB1 and cannabinoid CB2 Cannabidiol is a major component of the cannabis plant, Cannabis receptors in the low nanomolar range (Thomas et al., 2007). sativa, but lacks the psychotropic effects of the better known active Cannabidiol is also suggested to be an antagonist of the GPR55 9 agent, Δ -tetrahydrocannabinol (THC). Cannabidiol is anxiolytic receptor (Ryberg et al., 2007). (Moreira et al., 2006; Zuardi et al., 2006; Resstel et al., 2006) and Peroxisome proliferator-activated receptors (PPARs) belong to a may antagonise the psychotropic effects of THC in the clinically family of nuclear receptors of which there are three isotypes: α, δ and available cannabis-based medicine, Sativex (Russo and Guy, 2006). In γ (Ferré, 2004). PPARs heterodimerise with the retinoid X receptor, addition to its behavioural effects, cannabidiol has been shown to be and bind to DNA sequences called PPAR response elements (PPREs), anti-inflammatory (Costa et al., 2007; Esposito et al., 2007), anti- which lead to the transcription of target genes upon ligand activation. oxidant (García-Arencibia et al., 2007), neuroprotective (El-Remessy PPARs are primarily involved in the regulation of metabolism and et al., 2006), a potent inhibitor of cancer cell growth (Ligresti et al., energy homeostasis. For example, agonists of the PPARγ isoform 2006) and is beneficial in diabetes (El-Remessy et al., 2006; Weiss improve insulin sensitivity and are used in the management of type 2 et al., 2006). However, the molecular targets for cannabidiol are still diabetes (Ferré, 2004; Rangwala and Lazar, 2004). In addition, PPARγ unclear. Cannabidiol is reported to have a low affinity for both of the agonists have been shown to have positive cardiovascular effects, ‘ ’ classical G-protein-coupled cannabinoid receptors, cannabinoid CB1 which include increased availability of nitric oxide, reductions in blood pressure and attenuation of atherosclerosis (Bishop-Bailey, 2000; Hsueh and Bruemmer, 2004). Some of the beneficial effects of PPARγ ligands are brought about by anti-inflammatory actions, fl ⁎ Corresponding author. Tel.: +44 1332724643. including inhibition of pro-in ammatory cytokines, increasing anti- E-mail address: [email protected] (S.E. O'Sullivan). inflammatory cytokines, and inhibition of inducible nitric oxide 0014-2999/$ – see front matter © 2009 Published by Elsevier B.V. doi:10.1016/j.ejphar.2009.03.010 62 S.E. O'Sullivan et al. / European Journal of Pharmacology 612 (2009) 61–68 synthase (iNOS) expression (see Széles et al., 2007 for a recent vasorelaxant effect of a single concentration of cannabidiol or review). vehicle control (0.1% ethanol) on induced tone was assessed as the PPARs have a large ligand binding pocket and are pharmacologi- reduction in tone over time. For each experimental protocol, vehicle cally promiscuous, being activated by a number of natural and control and cannabidiol-treated experiments were performed in synthetic ligands including, as reported recently, cannabinoids (see adjacent segments of the same artery. Net relaxation was calculated O'Sullivan, 2007 for a recent review). Specifically, it has been reported as the vasorelaxant effect of cannabidiol minus the vasorelaxant that ajulemic acid, an analogue of a THC metabolite, binds to and effect of vehicle (in adjacent aortic segments) over time. In some increases the transcriptional activity of PPARγ with anti-inflammatory experiments, the vascular effects of cannabidiol were investigated actions (Liu et al., 2003). Similarly, the endocannabinoids anandamide in un-contracted vessels. and 2-arachidonoylglycerol (2-AG) have anti-inflammatory actions To assess the contribution of PPARγ activation, some experi- sensitive to PPARγ antagonism (Rockwell and Kaminski, 2004; ments were performed in the presence of the PPARγ antagonist Rockwell et al., 2006). Anandamide has also been shown to directly GW9662 (1 µM) added 10 min prior to pre-contraction. To bind to PPARγ (Bouaboula et al., 2005; Gasperi et al., 2007). We investigate the role of endothelium-derived relaxing factors in recently showed that THC increases the transcriptional activity of the time-dependent vasorelaxation to cannabidiol, some vessels PPARγ and leads to vascular responses that are inhibited by a PPARγ were denuded of their endothelium by abrasion with a human hair. antagonist (O'Sullivan et al., 2005c, 2006). As many of the effects of The role of endothelium-derived nitric oxide (NO) was investigated G cannabidiol treatment are consistent with those of PPARγ activation, using the nitric oxide synthase inhibitor, N -nitro-L-arginine and since other cannabinoid compounds have been shown to activate methyl ester (L-NAME, 300 µM, present throughout, O'Sullivan PPARγ, the possibility exists that PPARγ activation might underlie et al., 2005c). To establish a potential role for superoxide dismutase some of the pharmacological effects of cannabidiol. (SOD) activity, some experiments were performed in the presence In vitro, abnormal cannabidiol, a synthetic analogue of cannabidiol, of the SOD inhibitor diethyldithiocarbamate (DETCA, 3 mM), added causes vasorelaxation of rat isolated mesenteric arteries via the 30 min prior to pre-contraction of arteries (O'Sullivan et al., putative ‘endothelial’ cannabinoid receptor, potassium channel acti- 2005c). vation and calcium channel blockade (Offertáler et al., 2003; Ho and To assess any possible contribution of cannabinoid receptor Hiley, 2003). In vivo, abnormal cannabidiol causes hypotension and activation, some experiments were performed in the presence of the mesenteric vasodilatation in wild-type mice and in mice lacking both cannabinoid CB1 receptor antagonist, AM251 (1 µM), or the cannabi- cannabinoid CB1 and cannabinoid CB2 receptors (Járai et al., 1999). noid CB2 receptor antagonist, AM630 (1 µM), both added 10 min before However, to date, the vascular responses to cannabidiol (as opposed to contracting vessels. To assess if cannabidiol acts at a G(i/o)-protein- abnormal cannabidiol) remain uninvestigated. We have previously coupled receptor, some vessels were incubated for 2 h with 200 ng/ml shown that THC causes time-dependent, endothelium-dependent, pertussis toxin (PTX, O'Sullivan et al., 2005b), and vasorelaxation to PPARγ-mediated vasorelaxation of the rat isolated aorta (O'Sullivan cannabidiol or vehicle assessed. The involvement of TRPV1 receptors on et al., 2005c). Therefore, the aim of the present study was to sensory nerves was assessed by incubating vessels for 1 h with the investigate whether similar time-dependent, PPARγ-mediated vasor- TRPV1 agonist capsaicin
Recommended publications
  • Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors
    0022-3565/97/2813-1030$03.00/0 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 281, No. 3 Copyright © 1997 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. JPET 281:1030–1037, 1997 Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors KRISTY D. LAKE, DAVID R. COMPTON, KAROLY VARGA, BILLY R. MARTIN and GEORGE KUNOS Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia Accepted for publication February 19, 1997 ABSTRACT 9 Previous studies indicate that the CB1 cannabinoid receptor an- potency was (-)-11-OH-D -THC dimethylheptyl $ (-)-3-[2- tagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophe- hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]cy- nyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A), in- clohexan-1-ol . (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]- hibits the anandamide- and D9-tetrahydrocannabinol- (THC) 4-[3-hydroxy-propyl]cyclohexan-1-ol . THC . anandamide $ induced hypotension and bradycardia in anesthetized rats with a (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy- potency similar to that observed for SR141716A antagonism of propyl]cyclohexan-1-ol, which correlated well with CB1 receptor THC-induced neurobehavioral effects. To further test the role of affinity or analgesic potency (r 5 0.96-0.99). There was no hypo- CB1 receptors in the cardiovascular effects of cannabinoids, we tension or bradycardia after palmitoylethanolamine or (1)-11-OH- examined two additional criteria for receptor-specific interactions: D9-THC dimethylheptyl.
    [Show full text]
  • Cannabinoids in the Pathophysiology of Skin Inflammation
    molecules Review Cannabinoids in the Pathophysiology of Skin Inflammation Cristian Scheau 1 , Ioana Anca Badarau 1, Livia-Gratiela Mihai 1, Andreea-Elena Scheau 2, Daniel Octavian Costache 3, Carolina Constantin 4,5, Daniela Calina 6 , Constantin Caruntu 1,7,*, Raluca Simona Costache 8,* and Ana Caruntu 9,10 1 Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (C.S.); [email protected] (I.A.B.); [email protected] (L.-G.M.) 2 Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; [email protected] 3 Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 4 Immunology Department, ”Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; [email protected] 5 Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania 6 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; [email protected] 7 Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania 8 Gastroenterology and Internal Medicine Clinic, Carol Davila University Central Emergency Military Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania 9 Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; [email protected] 10 Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania * Correspondence: [email protected] (C.C.); [email protected] (R.S.C.); Tel.: +40-745-086-978 (C.C.) Academic Editor: Eric J. Downer Received: 30 December 2019; Accepted: 2 February 2020; Published: 4 February 2020 Abstract: Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.
    [Show full text]
  • Medicinal Chemistry Endeavors Around the Phytocannabinoids
    CHEMISTRY & BIODIVERSITY – Vol. 4 (2007) 1707 REVIEW Medicinal Chemistry Endeavors around the Phytocannabinoids by Eric Stern and Didier M. Lambert* Drug Design and Discovery Center and Unite´ de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculte´ de Me´decine, Universite´ catholique de Louvain, Avenue E. Mounier 73, U.C.L. 73.40, B-1200 Bruxelles (phone: þ3227647347; fax: þ3227647363; e-mail: [email protected]) Over the past 50 years, a considerable research in medicinal chemistry has been carried out around the natural constituents of Cannabis sativa L. Following the identification of D9-tetrahydrocannabinol (D9-THC) in 1964, critical chemical modifications, e.g., variation of the side chain at C(3) and the opening of the tricyclic scaffold, have led to the characterization of potent and cannabinoid receptor subtype-selective ligands. Those ligands that demonstrate high affinity for the cannabinoid receptors and good biological efficacy are still used as powerful pharmacological tools. This review summarizes past as well as recent developments in the structure–activity relationships of phytocannabinoids. 1. Introduction. – Despite the wide uses of preparations of the hemp Cannabis sativa L. during the History, the modern pharmacology of natural cannabinoids has been hampered by the slow progress in the elucidations of the chemical structures of its major components. Indeed, it is nowadays known that more than 70 compounds derived from a diterpene structure are present in the plant [1], and this fact may explain the difficulty to obtain pure chemical entities in the past. In addition, the medicinal research for more than a half century has been driven by the search for the components responsible for the psychoactive effects of cannabis, this era in the history of the chemical research on cannabinoids have been recently reviewed [2][3].
    [Show full text]
  • The Handbook of Cannabis Therapeutics: from Bench to Bedside
    Handbook of Cannabis Therapeutics From Bench to Bedside 9780789030979 Handbook of Cannabis Therapeutics From Bench to Bedside Size: 212 x 152mm Spine size: 26 mm Color pages: Binding: Paperback THE HAWORTH PRESS® Haworth Series in Integrative Healing Ethan Russo Editor The Last Sorcerer: Echoes of the Rainforest by Ethan Russo Professionalism and Ethics in Complementary and Alternative Medicine by John Crellin and Fernando Ania Cannabis and Cannabinoids: Pharmacology, Toxicology, and Therapeutic Potential by Franjo Grotenhermen and Ethan Russo Modern Psychology and Ancient Wisdom: Psychological Healing Practices from the World’s Religious Traditions edited by Sharon G. Mijares Complementary and Alternative Medicine: Clinic Design by Robert A. Roush Herbal Voices: American Herbalism Through the Words of American Herbalists by Anne K. Dougherty The Healing Power of Chinese Herbs and Medicinal Recipes by Joseph P. Hou and Youyu Jin Alternative Therapies in the Treatment of Brain Injury and Neurobehavioral Disorders: A Practical Guide edited by Gregory J. Murrey Handbook of Cannabis Therapeutics: From Bench to Bedside edited by Ethan B. Russo and Franjo Grotenhermen Handbook of Cannabis Therapeutics From Bench to Bedside Ethan B. Russo, MD Franjo Grotenhermen, MD Editors Routledge Taylor &. Francis Croup NEW YORK AND LONDON First Published by The Haworth Press, Inc., 10 Alice Street, Binghamton, NY 13904-1580. Transferred to Digital Printing 2010 by Routledge 270 Madison Ave, New York NY 10016 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN For more information on this book or to order, visit http://www.haworthpress.com/store/product.asp?sku=5741 or call 1-800-HAWORTH (800-429-6784) in the United States and Canada or (607) 722-5857 outside the United States and Canada or contact [email protected] © 2006 by The Haworth Press, Inc.
    [Show full text]
  • Icrs2015 Programme
    TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE NOVA SCOTIA JUNE 28 - JULY 3, 2015 TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE JUNE 28 – JULY 3, 2015 Symposium Programming by Cortical Systematics LLC Copyright © 2015 International Cannabinoid Research Society Research Triangle Park, NC USA ISBN: 978-0-9892885-2-1 These abstracts may be cited in the scientific literature as follows: Author(s), Abstract Title (2015) 25th Annual Symposium on the Cannabinoids, International Cannabinoid Research Society, Research Triangle Park, NC, USA, Page #. Funding for this conference was made possible in part by grant 5R13DA016280-13 from the National Institute on Drug Abuse. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government. Sponsors ICRS Government Sponsors National Institute on Drug Abuse Non- Profit Organization Sponsors Kang Tsou Memorial Fund 2015 ICRS Board of Directors Executive Director Cecilia Hillard, Ph.D. President Stephen Alexander, Ph.D. President- Elect Michelle Glass, Ph.D. Past President Ethan Russo, M.D. Secretary Steve Kinsey, Ph.D. Treasurer Mary Abood, Ph.D. International Secretary Roger Pertwee, D . Phil. , D . S c. Student Representative Tiffany Lee, Ph.D. Grant PI Jenny Wiley, Ph.D. Managing Director Jason Schechter, Ph.D. 2015 Symposium on the Cannabinoids Conference Coordinators Steve Alexander, Ph.D. Cecilia Hillard, Ph.D. Mary Lynch, M.D. Jason Schechter, Ph.D.
    [Show full text]
  • Appendix-2Final.Pdf 663.7 KB
    North West ‘Through the Gate Substance Misuse Services’ Drug Testing Project Appendix 2 – Analytical methodologies Overview Urine samples were analysed using three methodologies. The first methodology (General Screen) was designed to cover a wide range of analytes (drugs) and was used for all analytes other than the synthetic cannabinoid receptor agonists (SCRAs). The analyte coverage included a broad range of commonly prescribed drugs including over the counter medications, commonly misused drugs and metabolites of many of the compounds too. This approach provided a very powerful drug screening tool to investigate drug use/misuse before and whilst in prison. The second methodology (SCRA Screen) was specifically designed for SCRAs and targets only those compounds. This was a very sensitive methodology with a method capability of sub 100pg/ml for over 600 SCRAs and their metabolites. Both methodologies utilised full scan high resolution accurate mass LCMS technologies that allowed a non-targeted approach to data acquisition and the ability to retrospectively review data. The non-targeted approach to data acquisition effectively means that the analyte coverage of the data acquisition was unlimited. The only limiting factors were related to the chemical nature of the analyte being looked for. The analyte must extract in the sample preparation process; it must chromatograph and it must ionise under the conditions used by the mass spectrometer interface. The final limiting factor was presence in the data processing database. The subsequent study of negative MDT samples across the North West and London and the South East used a GCMS methodology for anabolic steroids in addition to the General and SCRA screens.
    [Show full text]
  • Effects of Abnormal Cannabidiol on Oxytocin-Induced Myometrial Contractility
    REPRODUCTIONRESEARCH Effects of abnormal cannabidiol on oxytocin-induced myometrial contractility Diarmaid D Houlihan, Michael C Dennedy and John J Morrison Department of Obstetrics and Gynecology, Clinical Sciences Institute, University College Hospital, National University of Ireland Galway, Newcastle Road, Galway, Ireland Correspondence should be addressed to J J Morrison; Email: [email protected] Abstract The objective of this study was to investigate the effects of abnormal cannabidiol (abn-cbd) on oxytocin-induced myometrial contractility occurring during pregnancy. Isometric tension recordings were performed in isolated myometrial strips from biopsies obtained at K K elective cesarean section. The effects of cumulative doses of abn-cbd (10 9–10 5 M) on oxytocin-induced myometrial contractions alone, and on those following pre-incubation with SR 144528, AM 251, methylene blue, and iberiotoxin were measured, and dose– K response curves were constructed. The pD2 ( log EC50) values and the maximal inhibitory (MMI) values that were achieved were compared for each tissue type. Abn-cbd exerted a potent relaxant effect on oxytocin-induced myometrial contractions in vitro. Pre-incubation with the guanylate cyclase inhibitor, methylene blue, and the BKCa channel antagonist, iberiotoxin, significantly ! ! attenuated this effect (for pD2, P 0.01; for MMI, P 0.01). Abn-cbd exerts a potent inhibitory effect on human uterine contractility. This effect is partially mediated through modulation of guanylate cyclase and activation of BKCa channel activity. These findings have implications for physiologic regulation of myometrial quiescence. Reproduction (2010) 139 783–788 Introduction regioisomer of cannabidiol, which mediates a relaxant effect in isolated rat mesenteric artery via a mechanism The endocannabinoids comprise a family of eicosanoid that is distinct from CB1 and CB2 receptor activation and related unsaturated fatty acid derivatives, of which (Jarai et al.
    [Show full text]
  • Cannabinoids for the Control of Experimental Multiple Sclerosis Pryce, Gareth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Cannabinoids for the control of experimental multiple sclerosis Pryce, Gareth The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. https://qmro.qmul.ac.uk/jspui/handle/123456789/673 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] 1 Cannabinoids for the control of experimental multiple sclerosis GARETH PRYCE Neuroimmunology Unit, Neuroscience & Trauma Barts and the London School of Medicine and Dentistry Queen Mary University of London UK 2 This thesis is dedicated in memory of my Dad, Glyn Pryce (1927-2010), with love and thanks. 3 ACKNOWLEDGEMENTS I wouldlike to thank DavidBaker andGavin Giovannoni for their supervision and providingme with the opportunity to undertake this thesis. I wouldlike to thank J.Ludovic Croxford, Sam Jackson, Sarah Al-Izki from the lab past and present; Ana Cabranes (RIP) and the Javier Fernadez-Ruiz laboratory in Madrid, Spain; the Vincenzo Di Marzio Laboratory Naples, Italy; the Andy Irving Laboratory, Dundee; the laboratories of Elga De Vries andSandra Amor at the Free University Amsterdam, The Netherlands and the laboratories of Ruth Ross and Roger Pertwee in Aberdeen and Alison Hardcastle University College London for providing me with supportive data and particularly Cristina Visintin and David Selwoodof University College London andCanbex for providingdata from contract Research organizations.
    [Show full text]
  • Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage
    Expression of cannabinoid receptors in human osteoarthritic cartilage: implications for future therapies DUNN, Sara L., WILKINSON, Jeremy Mark, CRAWFORD, Aileen, BUNNING, Rowena A.D. <http://orcid.org/0000-0003-3110-0445> and LE MAITRE, Christine L. <http://orcid.org/0000-0003-4489-7107> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/11794/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version DUNN, Sara L., WILKINSON, Jeremy Mark, CRAWFORD, Aileen, BUNNING, Rowena A.D. and LE MAITRE, Christine L. (2016). Expression of cannabinoid receptors in human osteoarthritic cartilage: implications for future therapies. Cannabis and Cannabinoid Research, 1 (1), 3-15. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Cannabis and Cannabinoid Research Volume 1.1, 2016 Cannabis and DOI: 10.1089/can.2015.0001 Cannabinoid Research ORIGINAL RESEARCH Open Access Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies Sara L. Dunn,1 Jeremy Mark Wilkinson,2 Aileen Crawford,3 Rowena A.D. Bunning,1 and Christine L. Le Maitre1,* Abstract Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce ma- trix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabi- noids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G- protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARa and PPARc).
    [Show full text]
  • Cannabinoid Hope for MND Potent Pot Linked to Psychosis
    Highlights from clinical trials on cannabis science RESEARCH ROUND-UP By Liam Drew SPASTICITY Cannabinoid hope for MND A clinical trial of a cannabi- noid oral spray that is used to treat people with multiple sclerosis (MS) suggests that the treatment could also ease the symptoms of motor neuron disease (MND). The treatment targets spasticity, a condition caused by the permanent contraction of muscles, which impedes a person’s movement. It is a prominent symptom of both MND and MS. In 2010, after a long history of people with MS using cannabis to self-medicate, a cannabis- based treatment to manage spasticity associated with MS was approved in the United Kingdom. Giancarlo Comi at Vita-Salute San Raffaele University in Milan, Italy, and his colleagues now suggest that this same cannabinoid preparation can ease spasticity in people with MND. decreased people’s reported psychosis — a condition in of strains containing less than In a double-blind, rand- pain levels. Future studies which a person’s perception of 10% THC. But using strains omized phase II trial, 30 people might more finely distinguish reality is distorted. that contained more than 10% received a placebo and 29 peo- the treatment’s efficacy in two The researchers surveyed THC made the probability of ple were given the cannabinoid forms of MND: amyotrophic 901 people with psychotic developing psychosis almost spray — a solution containing lateral sclerosis, in which spas- disorders, who had been five times higher than that of roughly equal amounts of tet- ticity varies in its prevalence admitted into psychiatric care non-users.
    [Show full text]
  • A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain
    Clinical and Translational Science Institute Centers 1-1-2018 The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain Giulia Donvito Virginia Commonwealth University Sara R. Nass West Virginia University Jenny L. Wilkerson Virginia Commonwealth University Zachary A. Curry Virginia Commonwealth University Lesley D. Schurman Virginia Commonwealth University See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/ctsi Part of the Medicine and Health Sciences Commons Digital Commons Citation Donvito, Giulia; Nass, Sara R.; Wilkerson, Jenny L.; Curry, Zachary A.; Schurman, Lesley D.; Kinsey, Steven G.; and Lichtman, Aron H., "The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain" (2018). Clinical and Translational Science Institute. 717. https://researchrepository.wvu.edu/ctsi/717 This Article is brought to you for free and open access by the Centers at The Research Repository @ WVU. It has been accepted for inclusion in Clinical and Translational Science Institute by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors Giulia Donvito, Sara R. Nass, Jenny L. Wilkerson, Zachary A. Curry, Lesley D. Schurman, Steven G. Kinsey, and Aron H. Lichtman This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/ctsi/717 Neuropsychopharmacology REVIEWS (2018) 43, 52–79 © 2018 American
    [Show full text]
  • Cannabinoid Receptors and Endocannabinoids
    The AAPS Journal 2006; 8 (2) Article 34 (http://www.aapsj.org). Themed Issue: Lipid Mediator Lipidomics: New Pathways in Mapping Resolution Guest Editors - Charles N. Serhan, Song Hong and Yan Lu Cannabinoid Receptors and Endocannabinoids: Evidence for New Players Submitted: December 29 , 2005 ; Accepted: February 28 , 2006; Published: April 28, 2006 Ken Mackie1 and Nephi Stella2 1 Departments of Anesthesiology and Physiology and Biophysics, University of Washington, Seattle WA 2 Departments of Pharmacology, Psychiatry, and Behavioral Sciences, University of Washington, Seattle, WA A BSTRACT nabinoids, and are getting much closer to overcoming It is now well established that the psychoactive effects of these 2 challenges. Cannabis sativa are primarily mediated through neuronal C sativa contains ~60 phytocannabinoids, a handful of which CB1 receptors, while its therapeutic immune properties are bioactive as defi ned by their ability to specifi cally inter- are primarily mediated through CB2 receptors. Two endo- act with membrane-associated receptors, the cannabinoid cannabinoids, arachidonoylethanolamide and 2-arachi- receptors. The best-known phytocannabinoid is Δ 9 -tetrahy- donoylglycerol, have been identifi ed, their action on CB1 drocannabinol (THC),3 which is thought to mediate most — if and CB2 thoroughly characterized, and their production not all — of the psychotropic and addictive properties of C and inactivation elucidated. However, many signifi cant sativa . 4 Recent evidence suggest that some of the antiinfl am- exceptions to these
    [Show full text]