<<

TurkishJournalofEarthSciences (TurkishJ.EarthSci.),Vol.12, 2003,pp.175-198. Copyright©TÜB‹TAK

GeologyandHydrothermalAlterationoftheAyd›n- Salavatl›GeothermalField,WesternAnatolia,Turkey

‹SMA‹LHAKKIKARAMANDERES‹1&CAH‹THELVACI2

1MadenTetkikveAramaGenelMüdürlü¤ü(MTA),EgeBölgeMüdürlü¤ü, TR-35042Bornova,‹zmir-Turkey 2DokuzEylülÜniversitesi,MühendislikFakültesi,JeolojiMühendisli¤iBölümü, TR-35100Bornova,‹zmir-Turkey(e-mail:[email protected])

Abstract: TheAyd›n-Salavatl›geothermalfieldislocatedinthemiddlepartoftheBüyükMenderesGraben,andis characterizedbynormal-faultstructures.ThestratigraphicsequenceoftheAyd›n-Salavatl›geothermalfield consistsofmetamorphicrocksoftheMenderesMassifandsedimentaryrocksdepositedduringtheriftingperiod oftheMenderesMassifintheMiocene.Geologicaldatasuggestthatthereisaconnectionbetweentectonic developmentandperiodsofhydrothermalalteration. HydrothermalalterationintheAyd›n-Salavatl›geothermalfieldoccurredinfivedistinctperiods,andallare relatedtodifferentstagesoffaultingsystems,fromtheMiddleMioceneuptothepresent.Thefirstperiodof hydrothermalalterationwascharacterizedbymercuryandantimonymineralizationrelatedtoacidicintrusions,and bytheoccurrenceofrutilemineralizationwithinquartzveins.Gabbrosandassociateddykesdevelopedinthe secondperiod.Inthisperiod,gneissesweresubjectedtohydrothermalalteration.Thethirdperiodwas characterizedbygraniteintrusions.Specularite,,calcite,quartz,andaragonitemineralizationandtravertine formedalongthemarginsoftheseintrusions.Thefourthperiodwasmarkedbyalbiteandchloritemineralization thatdevelopedduringN–Sfaulting.Hydrothermalalterationzoneswhichdevelopedinthelastperiodare associatedwithactivefaultsalongwhichhotfluidiscirculating.Thesefaultshavemorethan100mofdownthrow, andformedduringthefinalperiodofgrabenformation.Hydrothermalalterationproductscausedbythe circulationofgeothermalfluidswithinthesefaultsinUpperMiocenesedimentsinclude,, ,,vermiculite,calcite,pyrite,dolomiteandhydrobiotite.Thesearestill precipitating/forminginactivecirculationzones.ThermalwatersoftheAyd›n-Salavatl›geothermalfieldareaNa- HCO3 typewithhighCO2 andBcontentsthatareassociatedwithmetamorphicrocksoftheMenderesMassifand hydrothermalalterationwhichdevelopedviawater-rockinteractions.Geophysicalstudieswereusedtooutline tectonicstructuresandframesoftheSalavatl›geothermalfield.

KeyWords: geothermalfield,hydrothermalalteration,BüyükMenderesGraben,Salavatl›,westernAnatolia, Turkey

Ayd›n-Salavatl›JeotermalSahas›n›nJeolojisiveHidrotermal Alterasyonu,Bat›Anadolu,Türkiye

Özet: Ayd›n-Salavatl›jeotermalsahas›BüyükMenderesvadisiortabölümündeyeral›rvenormalfayl›biryap›ile temsiledilir.Ayd›n-Salavatl›jeotermalsahas›stratigrafikkesitiMenderesMasifimetamorfikkayalar›vebunun üzerineMiyosen’dengünümüzekadardevamedendönemdeçökelmiflsedimanterkayatopluluklar›ndan oluflmaktad›r.JeolojikverilerMenderesMasifi’ndekitektonikgeliflimveevreleriilehidrotermalalterasyonlar›n iliflkilioldu¤unugöstermifltir. Ayd›n-Salavatl›jeotermalsahas›ndakihidrotermalalterasyonbeflfarkl›evreyeayr›lm›flt›r.Buevrelergenleflme tektoni¤ifaylar›ilebelirlenmiflolupOrtaMiyosen’denitibarengünümüzekadardevametmifltir.‹lkevre hidrotermalalterasyoncivaveantimuanmineralleflmesivebunlarlailiflkiliasidikintrüzyonlar›nyerleflmesidir.Bu evrefosiljeotermalsistemlerdegözlenenparajenezleri,rutilmineralizasyonlar›vekuvarsçatlakdolgular› ilekarakterizeedilmektedir.Gabroveonlaraefllikedendayklarikincievreyioluflturur.Buevredegnayslar›n hidrotermalalterasyonau¤rad›¤›belirlenmifltir.Üçüncüevredeisegranitintrüzyonlar›yerleflmifltir.Bu intrüzyonlar›nyankayalar›ndaspekülarit,talk,kalsit,kuvars,vearagonitmineralleriileüstboflal›mbölgelerinde travertenoluflumlar›görülür.Dördüncüevrealbit-kloritmineralizasyonuilekuzey–güneyuzan›ml›fayhatlar›nda belirlenmifltir.Sonevreiseyükseks›cakl›kl›jeotermalak›flkan›ndolaflt›¤›fayzonlar›ndabelirlenmifltir.Bufay zonlar›ndakihareket100metredenfazlad›rvegrabenoluflumunubelirleyensonhareketlerdir.ÜstMiyosen

175 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

tortullar›içindedolaflanjeotermalak›flkanlarbufayzonlar›ndahidrotermalalterasyonasebepolmufllard›r.Aktif hidrotermalalterasyonmineralojisikaolinit,illit,montmorillonit,dikit,vermikülit,kalsit,pirit,dolomitve hidrobiyotitminerallerindenoluflmaktad›r.Buminerallerinvarl›¤›aktifjeotermalak›flkandolafl›m›n›nhalen sürdü¤ünügöstermektedir.Ayd›n-Salavatl›jeotermalsahas›n›nsular›,MenderesMasifikayalar›n›nsu-kaya etkileflimiilegeliflenhidrotermalalterasyonaba¤l›olarakyüksekCO 2 veBiçerikliNa-HCO 3 tipindedir.Jeofizik çal›flmalar›Salavatl›jeotermalsahas›n›ntektonikyap›s›n›vekonumunubelirlemekiçinkullan›lm›flt›r.

AnahtarSözcükler: jeotermalsaha,hidrotermalalterasyon,BüyükMenderesGrabeni,Salavatl›,bat›Anadolu, Türkiye

Introduction islocatedalongfaultsystemsnearthetownsofSalavatl› Extensivetectonicactivity,especiallytheformationof andSultanhisar. east–westgrabens,hasdictatedtheshapeofwestern AcoupleofdeepwellsweredrilledbyGeneral Anatolia(Figure1).Ofthese,BüyükMenderesandGediz DirectorateofMineralResearchandExploration(MTA) grabenshostthemainandthemostimportant (AS-1,1510mbelowgroundlevel;andAS-2,962m, geothermalfieldsofTurkey.Thedistributionof Figure2)withinalowresistivityzone(5–10ohmm) geothermalfieldsinTurkeycloselyfollowsthetectonic outlinedbyresistivity-depthsoundingstudies.Cuttings patterns.Allofthehotspringswithtemperaturesabove fromtheAS-1andAS-2wellsnearSalavatl›werestudied 50–100ºCineasternandwesternAnatoliaareclearly bypetrographicmicroscopyandXRDmethods,andthe relatedtoyoungvolcanicactivityandblockfaulting.Post- natureanddistributionoftheirmineralparageneseswere collisionalvolcanicactivity,lastingfromtheLateMiocene determined.Thedataobtainedfromthedrillcoresof topresent,hasbeenresponsibleforheatingthe thesewellsarethesubjectofthispaper,andareusedto geothermalfields(fiimflek1997;Y›lmaz1997;Demirel& explainamodelforthegeothermalsystemoftheAyd›n- fientürk1996).Thehighthermalactivitiesarereflected Salavatl›field. inwidespreadacidicvolcanicactivitywithmuch hydrothermalalteration,fumaroles,andmorethan600 hotspringswithtemperaturesupto100ºC(Ça¤lar MaterialsandMethods 1961). Relativelydetailedcuttinganalysesalongwithvarious TheAyd›n-Salavatl›geothermalfieldislocatedinthe otherboreholelogswereusedtoassessthegeothermal middlepartoftheBüyükMenderesGraben,andis systemintowhichwellsAS-1andAS-2weredrilled. characterizedbyE–W-trendingnormalfaults(Figure1). Duringdrilling,rockcuttingsweretakenevery2mand wereproperlylabelled.Circulationlossesandratesof Thestratigraphicsequenceofthefieldiscomposedof penetrationwererecordedforeachdrillsunk. metamorphicrocksoftheMenderesMassifandoverlying theMiocenesedimentaryrocksdepositedduringthe Temperaturelogswerecarriedoutduringdrillingto Mioceneexhumationofthemassif.Fielddatasuggest locateaquifersandassesstheconditionofthewells.The thatthereisaconnectionbetweentectonicdevelopment temperature-loggingequipmentcomprisedAmerada andperiodsofhydrothermalalteration.Severaldeep loggingtools.Theselogsprovideimportantinformation wellsweredrilled(AS-1,1510mandAS-2,962m)and ontemperatureconditions,flowpathsandfeed-zonesin revealedlowresistivityzones(Karamanderesi1997). geothermalsystems.Temperaturelogshavealsobeen preparedafterdrillingandproduction. Preliminarystudieswereconductedonaregional scalebyKaramanderesi(1972).Geochemicalanalysisof Thewell-testingmethodwascontrolledbylip- waterfromhotspringsnearSalavatl›villageindicated pressuremeasurementsthatgivetotalmass-flowrate thattheareahashot-water-dominatedgeothermal andtheheatcontent(enthalpy)ofatwo-phase potential,andgeophysicalstudiesoutlinedthestructural geothermalfluidfromadischargepipe. situationofthegeothermalfield.Geophysicalstudies Samplesinthewellordrillboxesarewettenedby usinggravity(Gülay1988)andelectricalresistivity pouringwaterontothem.Wettingthecuttingsis methods(fiahin1985)indicatedthatthegeothermalfield necessarytoenhancethevisibilityofthesamplesor

176 ‹.H.KARAMANDERES‹&C.HELVACI

N ÝZMÝR study area 0 500 km

Edremit graben Bakýrçay graben Simav graben Gördes graben Soma graben

Turgutlu ÝZMÝR Gediz graben M E ND Küçük Menderes graben ER E S Kýzýldere Salavatlý M A S S AYDIN I F DENÝZLÝ

Büyük Menderes 0 50 km graben Geothermal field

fault (unspecified and/or vergence unknown) Gökova graben normal fault

AEGEAN SEA fault (inferred) neotectonic fault-bounded basin

Figure1. MaintectonicfeaturesofwesternAnatoliaandlocationmapoftheAyd›n-Salavatl›geothermalfield. certainfeaturessuchasfinelydisseminatedsulphides weremadeinordertoexpandorconfirmpreliminary (e.g.,pyrite).Thewetsampleswerethenplacedontothe findingsfromthecuttings.However,thismethodintends mountingstageofthemicroscopeforinvestigation. tocomplementratherthanreplacecarefulbinocular Cuttingexaminationwasdoneusingbinocularmicroscope microscopicstudiesandaddsunderstandingwithregard witha5x10magnificationofthefieldofstudy.Initial torock-mineraldepositionandalteration.Selectedthin- informationobtainedincludesstratigraphic/ sectionsampleswereanalysedusingthepetrographic sedimentologicalfeatures,alterationmineralogyand microscope. evidenceofpermeabilities.Inadditiontobinocular X-raydiffractometricanalysesweredoneonthe~4 microscopicstudy,thinsectionsforpetrographicstudy µmfractionsofparticularsamplesfromthecuttingsin

177 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

10 Q Q Bey Daðý N 09 Ovacýk Plateau

Overthrust Bozdað 0 1 2km Q

DEMÝRHAN

Kabaklýdere

MALGAÇEMÝR A Bozköy overthrust Q GÜVENDÝK Kara T. AZAPDERESÝ ESKÝHÝSAR

SALAVATLI AS-1 SULTANHÝSAR ATÇA AS-2 Hamam (mevkii) YAVUZKÖY B. Menderes River A

KÖÞK Geoelectric profil line 2040 86 1680 YENÝPAZAR

alluvium - travertine - augen gneiss contact

QUA. terrace materials Bozköy overthrust fault - marl - garnet- schist thrust or PLIO. sandstone Bozdað overthrust clay - marl - A reverse fault Demirhan A sandstone cross-section

MIOC. metagranite AS-1

PALEOZOIC deep well Q quartz vein chlorite schist thermal spring gabbro marble fumarole PRE-MIOCENE.

Figure2. GeologicalmapoftheAyd›n-Salvatl›geothermalfield.

178 ‹.H.KARAMANDERES‹&C.HELVACI

ordertoconfirmandidentifythetypesofclayminerals westernTurkey,andhasbeenundertheinfluenceofN–S presentinthecuttings.Approximatelytwoteaspoonsof crustalextensionaltectonicssincetheEarlyMiocene(e.g., drillcuttingswereplacedintoatesttube,anddustwas Koçyi¤it etal. 1999;Bozkurt2001a,b;Bozkurt& washedoutwithdistilledwater.Thetubeswerefilled2/3 Oberhänsli2001a,b;Seyito¤lu etal. 2002;Sözbilir fullwithdistilledwaterandpluggedwithrubber 2002).Itisdissectedintonorthern,centralandsouthern stoppers.Thetubeswereplacedinamechanicalshaker submassifsalongtheE–W-trendingseismicallyactive for4–8hours,dependingonthealterationgradeofthe GedizandBüyükMenderesgrabens,respectively;the samples.Thecontentswereallowedtosettlefor1–2 grabensaretheresultofN–Sextensionwhich hoursuntilonlyparticlesfinerthanapproximately4 commencedbytheEarlyPliocene(~5Ma)(e.g.,Koçyi¤it micronswereleftinsuspension.Afewmillilitresofliquid etal. 1999;Bozkurt2000,2001a,2002;Sar›ca2000; waspipettedfromeachtubeandabout10dropsplaced Y›lmazetal. 2000;Gençetal. 2001;Güreretal. 2001; onalabelledglassplate.Aneffortwasmadetoavoid Sözbilir2001,2002;Y›lmaz&Karac›k2001).Itisnow thicksamples.Aduplicatewasmadeofeachsampleand agreedthateachsubmassifrepresentsacorecomplex lefttodryatroomtemperatureovernight.Onesetof formationinthefootwallofpresentlylow-anglenormal sampleswasplacedinadesiccatorcontainingglycol faults,buttheirexhumationshaveoccurredatdifferent times(e.g.,Bozkurt&Park1994,1997a,b;Verge (C2O6O2)solutionandtheotherintoadesiccator 1995;Hetzeletal. 1995a,b,1998;Okay etal. 1996b; containingCaCl22H2O.Thesampleswerestoredatroom temperatureforatleast24hours.Thicksamplesneeded Koçyi¤it etal. 1999;Bozkurt&Sat›r2000;Bozkurt alongertimeinthedesiccator–atleast48hours.Both 2001b;Gessneretal. 2001a,b;Göktenetal. 2001;Ifl›k setsofsampleswererunfrom2to15°ontheXRD.One &Tekeli2001;Sözbilir2001). setofthesamples(normallytheglycolatedone)was TheMenderesMassifistraditionallydescribedasa placedonanplateandheatedinapreheated thicklithologicsuccessionmadeupof:(1)a‘ core’ ovenat550–600°C.Theoventemperaturedidnot consistingmostlyofgraniticaugengneisswith exceed600°C.Theexactlocationontheasbestosof boundinagedlayersofmetagabbros–theyshow individualsampleswasestablishedbeforeheatingbecause granuliteandeclogiterelicsand,(2)a‘ cover’seriesof labellingdisappearsduringtheheatingprocess.The low-grademetasedimentscomprisingmetapeliteswith sampleswerecooledsufficientlybeforefurther subordinatepsammite,amphiboliteandmarble treatment.Thenthesampleswererunfrom2to15°on intercalations(Palaeozoic ‘schistcover ’)andamarble- theXRD. dominatedsequence(Mesozoic-Cenozoic‘ marblecover’) containingemery,metabauxite,andrudistfossils.The ageofthegraniticprotolithfortheaugengneissesis GeologicSettingoftheMenderesMassif assignedasLatePrecambrianandEarlyCambrian(c. TheMenderesMassifisacrustal-scale(coveringmore 521–572Ma,averaging550Ma:U-PbandPb-Pbsingle than40,000km 2),elongate(withitslongaxistrending zirconevaporationmethods)(e.g.,Hetzel&Reischmann NE–SW)metamorphiccorecomplexinwesternTurkey 1996;Loos&Reischmann1999;Gessner etal. 2001a). (Figure1).ItisstructurallyoverlainbytheLycianNappes FossilevidenceindicatesaPermiantoMiddlePalaeocene (e.g.,Graciansky1972;Collins&Robertson1997, ageforthecoverrocks(e.g.,Phillipson1918;Önay 1999;Oberhänslietal. 2001)inthesouthandrocksof 1949;Ça¤layan etal. 1980;Konak etal. 1987).The the‹zmir-AnkaraNeotethyansuture(e.g.,fiengör& readersarereferredtoOkay(2001,2002),Özer etal. Y›lmaz1981;Okay&Siyako1993;Okayetal. 1996a)in (2001)andGüngör&Erdo¤an(2002)forfurther thenorth.Thereareclaimsthatthemassifcanbe reading. correlatedwiththeCycladicMassifintheAegean(Dürret Thecontactrelationshipbetweentheso-called‘ core’ al. 1978;Oberhänslietal. 1998);butothersarguethat and‘cover’rocksisstilldebated.Theviewsfallintothree thesemassifsdonotrepresentmutuallylateral majorcategories:(1)thecontactisamajorunconformity continuations(e.g.,Ringetal. 1999;Okay2001). calledthesupraPan-Africanunconformity(fiengör etal. Themassifformsoneofthemostimportant 1984);(2)itisasouth-facingextensionalshearzonewith geologicalentitiesoftheTurkishAlpineorogenicbeltin preservedlocaligneouscontactsalongwhichthecore rocksareintrusiveintocoverrocks(Bozkurtetal. 1993,

179 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

1995;Bozkurt&Park1994,1997a,b,1999;Hetzel& WesternAnatoliaischaracterizedbyanumberof Reischmann1996;Bozkurt&Sat›r2000;Lips etal. approximatelyeast–west-trending,subparallel,normal 2001).Theseauthorssuggestthattheso-calledcore faultzonesborderingasetofgrabensandintervening rockshavebeenexhumedinthefootwallofthisshear horstblocks.Seismicactivityisintenseandhasbeen zoneduringatop-to-the-SSWdeformation;(3)while recordedbyanetworkofinstrumentsroughlyencircling othersconfirmthetectonicnatureofthiscontactbut theactivefaults.Motionsonthefaultsconfirmthat claimthatitissouth-facingthrustfaultwithatop-to-the- extensionisinanorth–southdirection.WesternAnatolia southdeformation(Ring etal. 1999;Gessner etal. andtheAegeanregionshavelongbeenknownto 2001a). representabroadzoneofextension(Phillipson1918), Theliteraturesuggeststhatthecorerockshavebeen stretchingfromBulgariainthenorthtotheAegeanarcin affectedbygranulitefaciesfollowedbyan thesouth(McKenzie1972). eclogitefaciesevent,thenbyanamphibolitefacies Thereareaboutten~E–W-orientedgrabensin metamorphicoverprint(Candan1995,1996;Candan et westernAnatolia.Thebest-developedgrabensareBüyük al. 1997,2001;Oberhänsli etal. 1997;Candan&Dora Menderes,Gediz,Edremit,GökovaandBergama.They 1998).Thelackofeclogiteandgranuliterelictsinthe arec.100–150-kmlongand5–15-kmwide.Ineach augengneissessuggeststhattheserockswereaffected graben,onemarginischaracterizedbysteeper onlybythelatestamphibolite-faciesmetamorphism(e.g., topography,associatedwithsurfacebreaks.Onthe Candanetal. 2001andreferencestherein). footwallmarginsofthegrabens,planarfaultsarereadily Themostagreed-uponconceptconcerningthe observed(Figure1). MenderesMassifisthatthemassifhasacquireditsmassif N–SextensionaltectonicsintheAegeanregionhave characterduringanAlpineregionalHT/MPBarrovian- beenexplainedby“tectonicescape”(fiengör1979,1980, typetectono-metamorphiceventtermed“mainMenderes 1982,1987;Deweyetal. 1979;fiengöretal. 1985)or metamorphism(MMM)”duringEocene(Rb-Srages “back-arcspreading”(LePichon&Angelier1979,1981; of35±5Ma,Sat›r&Friedrichsen1986and62–43Ma, McKenzie1978;Jackson&McKenzie1988;Melenkamp Bozkurt&Sat›r2000; 40Ar-39Armicaageof43–37Ma, etal. 1988).Thesemodelsandtheirvariations(fiengör Hetzel&Reischmann1996;and 40Ar-39Arlaserprobe 1987;Dewey1988)indicatethetimingofinitiationof micaageof36±2,Lips etal. 2001).Itissuggestedthat extensionaltectonicsasTortonian(LateMiocene)and/or theMMMwasaresultoftheburialofthemassifarea younger.AccordingtoSeyito¤lu&Scott(1991,1992), beneaththesouthwardmovingLyciannappes–rooted thepalynologicalagesfromtheE–W-trendingBüyük fromthe‹zmir-AnkaraNeotethyansuturezone,thus MenderesGrabenshowthatinwesternTurkey,theN–S causingregionalmetamorphismanddeformationofthe extensionaltectonicshadbegunduringlatest massif(fiengör&Y›lmaz1981;fiengör etal. 1984).On Oligocene–EarlyMiocene.ThefactthattheLateMiocene theotherhand,theexistingstructuresformedduringthe andPlio-Quaternarytectonicevolutionofthisregionisof MMMindicateatop-to-the-NNEtectonictransport theextensionalnatureandstillactiveisalso (Bozkurt1995;Hetzel etal. 1998;Bozkurt&Park demonstratedbyseismicstudies.Eyido¤an(1988) 1999;Bozkurt2001b;Bozkurt&Oberhänsli2001a). reportedextensionof13.5mm/yrbasedonseismicity Temperaturesduringthe‘MMM’reached~550°Cwhile overthelast40years.Volcanicactivity,whoseincrease pressureisestimatedas ≤5kbar(Whitney&Bozkurt coincidedwiththeneotectonicphase,wasstudiedin 2002).Subsequentexhumationoccurredalongoriginally detailbyErcanetal. (1985). high-anglebutpresentlylow-anglenormalfaultsduring Geophysicalstudiesanddrillinghaveshownanormal Miocenetime(e.g.,Bozkurt&Park1994,1997a,b; faultstructure,resultinginstepwisegrabenformation, Hetzel etal. 1995a,b,1998;Verge1995;Hetzel& whichisalsocharacteristicoftheGermencik,Salavatl›, Reischmann1996;Koçyi¤it etal. 1999;Bozkurt2000, andK›z›lderegeothermalfieldsintheBüyükMenderes 2001a,b;Gessner etal. 2001a,b;Gökten etal. 2001; Graben(Figure1).Forfurtherinformationthereaderis Ifl›k&Tekeli2001;Lips etal. 2001;Bozkurt& referrredtoKonaketal. (1987)andDoraetal. (1992). Oberhänsli2001a;Sözbilir2001,2002;Seyito¤lu etal. BroadE–W-strikingnormalgrabenfaultscutacross 2002). nearly100-m-thickcataclasites,whichwereformedat

180 ‹.H.KARAMANDERES‹&C.HELVACI

thebaseofdetachmentfaults,andnon-metamorphic 1965)andalsointhecross-sectionbetweentheAS-1and Neogenesedimentsonthecrystallinebasement(Hetzelet AS-2wells(Figures3&4). al. 1995b).Severalintermediatetobasicvolcanic Tertiarysedimentaryrocks,whichhavebeenfilling extrusionsandgeothermalspringsinthecentralpartsof thegrabenthatdevelopedasresultofneotectonic theMenderesMassifaredirectlyrelatedtothegraben activity,havebeendepositedoverthemetamorphic system.Earlyfossilgeothermalsystemsdevelopedalong basement.TheseNeogenesedimentaryrocksinclude tectoniczonesduringthedome-formingperiod.The coarse-andfine-grainedsandstones,siltstones,andwell- developmentandevolutionofthesesystemsarerelated cementedconglomerates,andareseparatedbyathin toneotectonicactivity(Figure2). lignitelayeratthebaseofthesequence.Sediments AlthoughtheMenderesMassifhasbeenthesubjectof thickerthan1000mhavebeendrilledthroughinthe intenseresearchsince1990stherearestillmany BüyükMenderesGrabenattheGermencik-Ömerbeyli problemsconcerningthelithology,age,structure, geothermalfield(Karamanderesietal. 1987).Travertine deformationandmetamorphismoftheMenderesMassif. deposits,precipitatedfromcoldorhotspringsalongthe WethereforesuggestthatreadersrefertoBozkurt& faults,arepresentlocally.Hotspringshaving32°C Oberhänsli(2001a,b)forfurtherreading. temperaturesnearMalgaçemirvillageareevidenceof presentgeothermalactivity.

GeologyoftheAyd›n-Salavatl›Area Basedupontheirmineralparageneses(Table1), metamorphicrocksoftheMenderesMassifareknownto TheAyd›n-Salavatl›geothermalfieldislocatedinthe betheproductsofregionalmetamorphismcharacterized north-centralpartoftheBüyükMenderesGraben,and bymediumtohightemperatureandpressure.Amineral coversanareaabout8kmlongand2kmwide(Figure paragenesisincludingchlorite--- 2).Thegeologicalsequenceofthisareaincludes garnet-staurolite-kyanite-sillimaniteoccurswithin orthogneissandparagneiss,fine-grainedschists,coarse- allochthonousaugengneissesandcoverschists. grainedaugengneiss,micaschist,quartzschist, metaquartziteandmarbleunits.Structuralanalysisshows Observationswithinthemassifshowthatlarge thattheseunitshavebeenreverse-faultedandthatthe fissuresandfracturezonesdevelopedduringneotectonic gneisseshavebeenthrustedovertheschistsandmarbles. activity,andquartzveinsandcalciteandchloriteveins Thesestructurescanbeseenatthesurface(Akartuna occurinswarmsrelatedtodeep-seatedintrusivebodies.

Kara T. (976 m) SE NW 1000 m 750

C AS-1 500 A LEGEND 250 0 s.l QUATERNARY alluvium -250 PLIOCENE clay-marl-sandstone -500 MIOCENE sandstone-siltstone- -750 -1000 marble F3 F1 F2 F4 PALAEOZOIC A mica schist AS-1 well formation boundary normal fault gneiss probable formation boundary disconformity probable fault overthrust 0 500 1000 m

Figure3. Geologicalcross-sectionoftheAyd›n-Salavatl›geothermalfield(seeFigure2forlocation).

181 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

SW NE 50 AS-2 AS-1 m 0 -100

Pliocene Pliocene Miocene Miocene

allochthonous gneiss -500 Bozköy overthrust schist

1st E-W Fault Marble

-1000 962 m 2nd E-W Fault N-S Fault marble marble

schist -1500 schist 200 m 1510 m loss of circulation

Figure4. Cross-sectionthroughtheAyd›n-Salavatl›geothermalfield(seeFigure2forlocation).

Theseintrusivesarenotexposedbecauseofthegreater zonesatthealtitudesoftheregionaldischargezones. depthsoftheirmagmachambers,butafewoutcrops Fracture-relatedmineralizationincludesepidote,pyrite, bearingrutile,titanite,limonite,quartz,calciteand arsenopyrite,garnetandclayminerals.Anexampleof sideritecanbeobservedintheOvac›kplateauatthe suchanoutcropisattheKabakl›derelocality.Towardthe northernendofthestudyarea(Figure2).Theerosion south,asimilarsortofactivityispresentwithinthe surfacesoftheseoutcropshavealtitudesof900m. vicinityofMalgaçemirandAzapderesi.Thegabbro FromtheOvac›kplateautowardthesouthatlower intrusionexposednearMalgaçemirvillagecontinuestobe altitudes,dykesofgabbroanditsderivatives,whichhave aheatsource(Figure2). intrudedalongsmall-scalefracturezonesandcooled Travertinedepositsalongfossildischargeareasareat duringtheQuaternary,arepresent.Silicifiedzoneshave analtitudeof550mduetoregionalneotectonicuplift. developedalongthemarginsofthesedykes.The Quartzveinsandtravertinedepositsareexposedata mineralogicalcompositionofthegabbroicintrusiverocks dischargealtitudeof600minAzapderesivillage.Quartz (ofEarlyMioceneage[orpost-metamorphic])isas veinsfacilitatedthedevelopmentofalterationzonesof follows:plagioclase,clinopyroxene,orthopyroxene, dolomite,calcite,quartz,andclayalongfracturezones olivine,biotite,uralite,zoisite,chlorite,,magnetite withinthehostrock. andgarnet.Locally,thesegabbroicrockshaveschistose Thefaultsystems,clearlytraceablearoundSalavatl›, textures.Whereerosionhasbeenslow,travertine EskihisarandGüvendikvillageswhereregional depositsarepresentalongthemarginsofthesesilicified neotectonicactivitycontinues,areimprintsofpartially

182 ‹.H.KARAMANDERES‹&C.HELVACI

Table1. MineralparagenesisofsurfacesamplesandwellcuttingsintheAyd›n-Salavatl›geothermalfield.

Regionalmetamorphicor Mineral relict,fromigneousand/or Metasomaticorearly Activehydrothermal sedimentarymineralassemblages hydrothermalstage stage oligoclase ______andesine ______albite ______sillimanite ______biotite ______muscovite ______garnet* ______(1st) ______(2nd) tourmaline* ______(1st) ______(2nd) ______apatite ______epidote ______zircon ______pyrite ______siderite ______dolomite ______calcite ______vermiculite ______hydrobiotite ______quartz ______illite ______kaolinite ______dickite ______montmorillonite ______chlorite ______opaquemineral(s) ______

*_Twodifferentstagesofmineralcrystallisation. cooledintrusives.Veinmineralizationofcalcite,quartz, temperaturesweremeasuredwithAmeradaloggingtools gypsum,sulphur,pyriteandclayoccursalongthese as169.77–175.62°C(Tables4&5).Thechemistryof faults.Ithasbeenobservedthattravertineand thewaterswasdeterminedtobeoftheNa-Kbicarbonate travertine-sulphurdepositsarelocatedinNE–SW-and type.Naturally,itisnecessarytodeterminethechemistry N–S-trendingfaultzones,respectively(Figure2).The oftheencrustationthatwilldevelopfromthesesortsof N–S-trendingfaultscanbecorrelatedwithcross-faults waters,which,inthiscase,precipitatecalciteandillite. describedbyfiengör(1987),andareillustratedinFigures Watersamplesweretakenfromthetotaldischargeofthe 2and4. wellsthrownoutintotheatmosphere.Totaldischarge Sulphurefflorescencerelatedtothefracturezonesis wasmeasuredfromthewell,whichhadbeenopenedfor exposedata100-maltitudetotheeastofSalavatl› averticalproductiontest.Totaldischargedataareas village,andsulphurdepositswithtravertineareexposed followsWHP(bar)2.27;Patm:14.6psi.a;11%steam, atthesamealtitudeatGüvendikvillage.Atanaltitudeof 297tofwater;39.8tofsteam.Totalproductionwas 50m,calcite,quartz,clayandsulphurefflorescenceoccur calculatedat336.8t/h. betweenSultanhisarandAtça(Figure2).Sulphur ThemineralizedzonesobservedalongtheN–S efflorescence,clays,gypsumandsmall-scalecarbonate traverse,asmentionedabove,arerelatedtoE–Wfault mineralizationaresurfacegeothermalmanifestations systemswhichbecomeyoungertowardthesouth.This alongthesefaults. typeofstructurecanbeobservedclearlyintheNW–SE Thechemicalcompositionofgeothermalwatersis cross-section(Figure3).TherearetwoN–S-trending showninTable3.Thereservoirtemperature,with strike-slipfaultsthatformtheeastandwestboundaries respecttothechemicalcompositiongiveninTable3,has oftheSalavatl›geothermalfield;thefirstoutcropis beenstatedtobe160–175°Caccordingtothemethodof exposedinYavuzköyvillageandthesecondoutcropis Giggenbach(1986).Also,thevaluesoftwodeepwell betweenGüvendik-MalgaçemirvillagesandSultanhisar.

183 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

Table2. XRDresultsforwellAS-1claysamples.

Sample Welldepth Temperature Air-dried Mg-ethyleneglycol K-550°C K-700°C Probable (m) (T°C) linesdÅ linesdÅ linesdÅ linesdÅ minerals

17.32 lessmontmorillonite 7657 6 52.1 10.15 10.04 10.15 illite 7.18 7.13 kaolinite

17.32 montmorillonite 7658 50 52.1 10.04 10.04 10.04 illite 7.13 7.19 kaolinite

8231 287 64.6 10.04 10.04 10.04 10.04 illite 7.13 7.13 7.13 dickite

17.65 montmorillonite 7927 312 64.6 10.15 10.15 10.15 illite 7.22 7.22 kaolinite

17.65 montmorillonite 7928 328 64.6 10.22 10.15 10.15 illite 7.22 7.22 7.22 kaolinite

7930 502 70.9 10.04 10.08 10.08 illite 7.13 7.15 kaolinite

17.51 montmorillonite 7931 556 77.1 10.04 10.15 10.15 illite 7.13 7.18 kaolinite

7932 566 77.1 10.08 10.15 10.04 illite 7.18 7.18 kaolinite

11.04 hydrobiotite 7933 576 77.1 10.04 10.04 10.04 illite 7.15 7.13 kaolinite

13.18 15.23 chlorite 8232 576 77.1 10.64 10.04 montmorillonite 9.92 9.82 illite

13.38 14.96 vermiculite 8233 583 77.1 10.59 13.18 10.07 chlorite 9.93 illite

7934 682 88.1 10.04 9.99 9.99 illite 7.18 7.13 kaolinite

12.61 16.99 montmorillonite 8234 682 88.1 9.98 9.93 10.04 illite 7.10 7.13 kaolinite

7935 706 88.1 10.04 10.04 10.04 illite

8235 706 88.1 9.92 9.92 9.92 illite 7.07 7.07 chlorite 7938 732 101.3 10.04 10.04 10.04 illite 8239 766 122.6 9.92 9.92 9.92 illite 8240 778 127.6 9.86 9.92 9.98 illite 7.13 7.19 kaolinite 8242 990 131.9 10.04 9.98 9.98 illite 8243 1100 162.75 9.92 9.93 9.93 illite

184 ‹.H.KARAMANDERES‹&C.HELVACI

Table3. Analysesofspringwatersandwellwaters(wellhead)fromtheAyd›n-Salavatl›geothermalfield.

Location Malgaçemir Salavatl› AS-1 AS-2 spring spring well well

Temp.°C 30 40.5 169.77 175.62 pH 7.3 6.1 8.7 7.7 K+ (mg/l)2.4 3.6 85 90 Na+ " 12 45 1500 1100 Ca++ " 76 104 6 14 Mg++ " 35 204 0.0 1.1 Cl¯ "4316 297 233 B+++ (total) <0.1 <0.1 66 42

¯¯ SO4 " 50 298 196 170 ¯ HCO3 " 342 1025 3208 2831 SiO2 " 25 43 135 178 Calculatedreservoirtemperature(°C) 160 175

Table4. WellAS-1temperaturemeasurements(T°C).

17.07.1987 19.07.1987 19.07.1987 19.07.1987 20.07.1987 20.07.1987 20.07.1987 21.07.1987 22.07.1987 28.07.1987 16.09.1996

Depth(m) Number1 Number2 Number3 Number4 Number5 Number6 Number7 Number8 Number9 Number10 Number11

0.00 91.0 52.1 60.9 58.6 53.04 24.83 100.00 84.73 44.03 200.00 100.46 76.62 250.00 70.8 108.6 64.6 83.0 60.1 79.8 143.5 100.6 42.8 300.00 119.28 101.72 400.00 130.22 119.97 500.00 82.0 119.9 70.9 100.0 87.5 92.0 152.0 119.5 136.68 126.11 600.00 91.5 126.3 77.1 146.41 150.86 700.00 96.3 132.9 88.1 109.9 106.4 109.8 156.5 138.2 44.6 157.34 158.75 750.00 97.8 144.2 101.3 132.6 116.0 118.0 157.4 144.2 47.3 165.70 760.00 122.6 122.7 126.1 158.3 148.6 48.8 770.00 127.6 131.1 135.1 159.8 152.6 51.2 780.00 137.1 143.4 145.5 162.1 160.6 52.2 790.00 137.1 142.2 144.3 160.8 160.6 53.8 800.00 99.9 143.5 117.4 134.9 139.4 141.9 159.7 160.2 59.0 163.90 169.46 850.00 100.1 131.7 119.7 125.7 130.4 133.7 158.7 157.5 64.2 169.77 900.00 101.9 128.4 131.7 131.9 132.4 133.1 160.6 156.0 68.9 167.00 167.58 950.00 102.2 126.2 131.0 132.6 133.8 134.0 152.6 152.4 75.4 166.80 980.00 131.9 133.2 133.9 149.9 150.6 82.5 990.00 131.9 133.2 133.5 149.6 149.8 86.2 1000.00 103.2 125.5 130.4 132.1 133.3 133.7 149.2 149.1 90.4 165.16 165.33 1050.00 102.8 124.9 129.9 131.1 132.4 132.8 149.1 147.3 102.7 163.56 1100.00 103.2 125.1 131.5 132.3 132.8 148.9 145.7 118.6 162.75 162.70 1150.00 103.2 125.1 129.9 131.6 132.6 132.9 149.4 145.1 132.8 160.48 1200.00 103.8 125.7 130.5 131.8 132.3 133.2 149.6 145.6 145.3 160.10 159.22 1250.00 105.5 127.3 132.0 133.3 134.4 134.5 148.9 146.0 145.6 157.92 1300.00 106.4 128.2 133.1 134.4 135.8 135.8 148.4 145.5 145.7 157.00 157.03 1350.00 106.4 128.4 132.7 134.6 135.9 135.9 148.6 145.2 145.8 156.46 1400.00 107.9 130.9 135.6 137.0 138.1 138.6 151.2 147.1 146.4 155.50 156.88 1438.65 158.18 1450.00 113.2 136.5 140.9 142.3 143.4 143.3 153.7 150.97 150.9 1458.00 155.73 1494.00 144.1 145.1 145.2 155.7 153.7 152.5 1500.00 129.3 138.2 143.0

185 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

Table5. WellAS-2temperaturemeasurements(T°C).

21.01.1988 22.01.1988 22.01.1988 25.01.1988 27.01.1988 27.01.1988 27.01.1988 27.01.1988 1.02.1988 17.09.1996

Depth(m) Number1 Number2 Number3 Number4 Number5 Number6 Number7 Number8 Number9 Number10

0.00 150.9 24.08 100.00 48.3 55.2 52.5 43.3 43.51 200.00 57.9 68.6 66.7 61.2 67.35 300.00 61.4 84.5 83.2 81.0 90.22 400.00 62.2 97.2 103.1 99.1 112.27 500.00 72.1 110.2 103.1 121.2 117.4 130.70 600.00 86.6 112.9 114.7 134.4 132.2 148.13 700.00 102.8 128.2 120.7 145.7 146.8 162.10 767.00 162.6 169.98 768.00 148.6 154.0 800.00 110.6 129.1 132.7 159.3 44.9 152.2 157.5 165.1 174.26 808.00 121.3 135.2 139.2 166.4 162.9 59.4 152.9 158.5 167.6 825.00 59.8 154.0 159.2 850.00 124.2 137.8 142.6 168.3 163.8 71.0 151.7 159.0 167.8 175.30 875.00 73.9 150.4 157.5 900.00 127.0 141.8 145.7 169.1 165.3 75.9 149.2 156.0 168.3 175.62 910.00 78.4 146.5 154.7 920.00 79.5 145.4 154.0 921.00 146.2 80.8 925.00 149.0 928.00 133.1 170.2 166.1 168.6 930.00 144.8 153.7 934.00 170.7 166.9 168.6 175.56 935.00 81.9 138.2 150.2 938.7 171.1 940.00 168.6 134.0 146.4 940.5 169.7 940.9 942.00 86.3

Evidenceofsurfacemineralizationisalsopresentin XRDanalysesforclaymineralsweredoneonsamples thecuttingsoftheAS-1andAS-2wells.Mineralproducts takenfromseveraldepthsintheAS-1andAS-2wells, ofhydrothermalactivity(Table1),includingquartz, andindicatethepresenceofmontmorillonite,illite, calcite,dolomite,siderite,pyrite,kaolinite,dickite(seen chlorite,vermiculite,hydrobititeanddickite.Figures5 at378mwithinMiocenesandstoneofAS-1borehole,as and6showtwowellsectionswithfivedifferentclay anacidicalteration),montmorillonite,illite,(seenabove zonesdistinguished.Fromtoptobottomtheyareas thelostcirculationzoneastheproductofscalingandcap follows:amixed-layerclayzone,anillite-kaolinitezone,a rockinAS-1),hydrobiotite,vermiculite(seenat583min chlorite-illitezone,anillite-montmorillonitezoneanda AS-1),sericite,chlorite,albite,limonite,andopaque chlorite-epidotezone. minerals,havebeennotedintheAS-2andAS-1wells. Albitizationandchloritizationinthemetamorphic X-raydiffractionanalysesweredoneonselected ≅4 sequencesofAS-1andparticularlyinAS-2wereclearly mmsamplesofcuttingstoidentifyandconfirmthetypes observed.Miocenesedimentsinthesamewellsshow ofclaymineralspresentinthecuttings.Especiallydetailed acidicalterationsuchasdickite.Vermiculite,observedat studywasdoneonwellnumberAS-1.Relevantdataare thebaseofthegneisses,indicatesthepresenceofa giveninTable2. nearbyintrusivebodywhichapparentlyintrudedthefloor

186 ‹.H.KARAMANDERES‹&C.HELVACI

TEMPERATURE ( 0C)

Lithology 50 60 70 80 90 100 110 120 130 140 150 160 170 C Casing 0 Alteration zone 3 7 2 X 20 6 85.50 X 100 X X 40 X X 10 X 8 / X 3 X X

13 200 9 5 1 X 4X 8 X X

269.46 X 300 X X

X

X 400 X X

X

8 X / 5 9 500 X 11X X X X 600 X X

X

X 700 736.80 X

X

X

X

X 800 X

X

X X

900 X

X

X

X X

1000 X X

1100 X X

X 1 07/17/1987 X 1200 2 07/19/1987

3 07/19/1987 X X

4 07/19/1987 X

1300 5 07/20/1987 X

6 07/20/1987 X X 7 X X 07/20/1987 1400 8 07/21/1987 X

9 07/22/1987 X 10 07/26/1987 X 1500 11 X X 09/16/1996

alluvium mixed-layer clay zone conglomerate, sandstone, kaolinite-illite-chlorite zone siltstone clay, marl, sandstone chlorite-illite zone sandstone, conglomerate, illite-montmorillonite zone limestone, lignite augen gneiss chlorite-epidote zone chlorite-quartz-calc- schist normal fault marble albite-epidote-quartz schist

Figure5. WelllogandtemperatureprofileoftheAS-1well(seeFigure2forlocation).

187 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

TEMPERATURE ( 0C) Alteration zone Casing Lithology 40 50 60 70 80 90 100 110 120 130 140 150 160 170 0

20 1 01/21/1988 50 2 01/22/1988 59.36 3 01/22/1988 X 6 2 5 100 1 4 01/25/1988 X 5 01/26/1988 150 X 6 01/27/1988

X 8 / 7 01/27/1988 3

X 13 200 8 01/27/1988 X 9 01/27/1988 250 X 10 X 09/17/1996

X 300 10 299.57 X

350 X

X 400 X

X 450 3 X 500 X 8 / 5 X 9 550 X

600 X

X

650 X

X

700 X

X 750 8 9 X 767.78 7 4 800 X

X

850 X

900 X

950

alluvium mixed-layer clay zone conglomerate, sandstone, kaolinite-illite-chlorite zone siltstone clay, marl, sandstone chlorite-illite zone sandstone, conglomerate, illite-montmorillonite zone limestone, lignite augen gneiss normal fault chlorite-quartz-calc- schist marble

Figure6. WelllogandtemperatureprofileoftheAS-2well(seeFigure2forlocation).

188 ‹.H.KARAMANDERES‹&C.HELVACI

ofthegraben(Boles1977).Feldspar,garnet,muscovite, GeophysicalSurvey biotite,tourmaline,rutile,apatite,,cristobalite Gravitysurveyswereusedtooutlineregionaltectonic andepidoteobservedinthesamezonesareeitherearly structuressuchasthemainfaultsystemsalonghorstand high-temperatureproductsofhydrothermalalterationor grabenboundaries.Positiveanomaliesonthesecond- relictmineralsfromregionalmetamorphism(Table1). orderderivativegravitymapsuggestthatthereare Albite,chlorite,vermiculite,dickite,quartz,calcite, hiddenhorstswithinthegrabeninthevicinityofSalavatl›, kaolinite,dolomite,montmorillonite,andilliteare SultanhisarandKöflk(Gülay1988)(Figure7). productsofhydrothermalalterationandoccurasvein fillingsandinvesicules(Table2).Thesemineralsindicate Resistivitysurveyswerecompletedtodelineatethe atemperaturerangebetween150°Cand300°C(Henley geothermalreservoirsystembymeansofitslow &Ellis1983). resistivityvalues(Griffiths&King1969).Anapparent resistivitymapwasplottedwithahalfelectrodedistance AnNE–SWcross-sectionthroughtheAS-1andAS-2 of700m,whichreflectstheresistivityfeaturesata wells(Figure4)suggeststhattheNE–SWfaultsystems depthof700m(Figure8).Itshouldbenotedthatthere passingthroughmarblearetheproductionzonefor aretwodistinctresistivityanomalytrendsextendingfrom geothermalfluidsintheregion.Well-finishingtestingwas NEtoSWandfromNWtoSE.Theserepresentthe completedfortheAS-1well.Eleventemperature normal-faultedboundariesofthehorstandgraben measurementsweretakenduringthewelltesting(Table structuresbetweenSalavatl›andKöflk.Theresistivity 4).Thesetemperaturemeasurementsindicatethatthe mapframesaroughlytriangularareacharacterizedby reservoirofthisfieldisahorizontal-flowtypelocated verylowresistivitycontours(5–10ohm).Suchareas, withinthefaultzonesbetween750–780mand withresistivityvaluesmuchlowerthanthebackground 990–1000m.Temperaturemeasurementsaregivenin resistivity,aregenerallyclassifiedashigh-potential, Figure5.Anegativethermalgradientwasmeasuredat geothermalenergytargetareasintheBüyükMenderes 1000mdepthintheAS-1well.Stefansson& Graben(fiahin1985). Steingrimsson(1981)showedthatthereisanegative gradientbelowthehorizontal-flowzoneinthe GeoelectricandBouguergravityanomalycross- horizontal-flowsystem. sectionsalongtraverselinesD-1680andD-2040 (Figures9&10)suggestastructuralrelationship TheAS-2wellwasterminatedatadepthof962m betweenthemetamorphicbasementandtheNeogene wherecompletelossofcirculationwasattained.Well- cover.Thelowestresistivityinthisareaislocatedonthe finishingtestingwascompletedfortheAS-2well.Ten northernflankofthegrabenabovethestep-faulted temperaturemeasurementsweretakenduringthewell basement.Theselowerresistivitiesapparentlyresult testing(Table5).Thesetemperaturemeasurements fromthecirculationofsuper-heatedgeothermalfluid indicatethatthereservoirofthiscross-faultzoneis alongtheheavilyfracturedactivefaultzonesinthe locatedbetween750and950m.Thetemperature basement.Deepexploratorydrillingtointersectthese measurementsaregiveninFigure6.Totaldischargedata supposedactivefaultzonesatdeeperlevelsissuggested areasfollows:WHP(bar.g)2;Pc(psig)11;total forthefutureassessmentoftheAyd›n-Salavatl› productioniscalculatedat313.2t/h.WHP(bar.g)is geothermalfield.Itisobviousthatmoredeepdrillingis 14.5.ThemaximumtemperaturesmeasuredintheAS-1 necessaryinordertoexplainthedetailedcharacteristics andAS-2wellswere169.77ºCand175.62ºC, ofthisfield. respectively.Thesemaximumtemperatureswere recordedbetween770and990minbothwells.Below thislevel,thetemperatureinAS-1decreasedto155ºC. DiscussionandConclusion Thesetemperaturedataindicatethatthefaultsystems ThethermalsystemsofwesternTurkeyexhibitawide controlthegeothermalactivityinthearea,andthatthe rangeofchemicalcompositionsthatreflectthecomplex maximumattainablereservoirtemperaturecanbefound natureanddifferentsourcesofthermalwaters.Vengosh tothesouthwherethenormal-faultsystemsareboth etal. (2002)distinguishfourmajorgroupsthatreflect youngeranddeeper(seeFigure3). differentoriginsandmechanismsofwater-rock interactions.

189 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

N 0+0

0+0

BAÞÇAYIR 0+0

N10 P4

0+0 0+0

GÜVENDÝK 0+0

P6 SULTANHÝSAR ATÇA SALAVATLI P5 P3 0+0 N7 N6 AS-1

N5 AS-2 0+0

KÖÞK 0+0 P1

N15 YENÝPAZAR

0+0 03km

Figure7. Second-ordergravitymapoftheAyd›n-Salavatl›geothermalfield(afterGülay1988).

190 ‹.H.KARAMANDERES‹&C.HELVACI

97 N 20 100 50 15 96 100 10 50 01km 150 95 41 G SALAVATLI 150 94 30 100 100 SULTANHÝSAR 93

AS-1 92 5 30 AS-2

91 50

5 Profile Line 90 KÖÞK 7 10 50 15 well location 2040 89 20 hot springs geoelectric sounding points 88 5 isoresistivity contours (ohm.m) Line D 1680 91 92 93 94 95 96 97 98 99 100 101 102 103

Figure8. ApparentresistivitymapoftheAyd›n-Salavatl›geothermalfield(afterfiahin1985).

Vengoshetal. (2002)showedthatthechemicaldata, 87Sr/86Srratiofurtherconstrainsthenatureofthesource combinedwithisotopicdataforboronandstrontiumof rocks(i.e.igneousandmetamorphicversuscarbonate thermalwatersfromwesternTurkey,revealfourtypes rocks).Systematicchangesinsodium,, ofwater,whichoriginatedfrommarineandnon-marine calcium,andwithtemperatureshowthat sources.ThemarinesourcehasaNa-Clcompositionand concentrationsofthesedissolvedconstituentsarelargely Na/Clratio<1whereasthenon-marinewatertypicallyhas dependentonthetemperatureanddepthofcirculation. Na/Cl>1.TheBr/Clratioisusedtodistinguishbetween Water-rockinteractionresultsinhighconcentrationsof directpenetrationofseawaterorrecycledmarinesaltsin dissolvedconstituentssuchasNa,K,andB.Thedata theformofevaporitedissolution.Thenon-marinewater suggestthatboronisderivedfromwater-rockinteraction showsthreetypesofchemicalcompositions,reflecting ratherthendeepmantlefluxofB(OH) 3 gas.Thehigh differentsourcerocksanddepthofcirculation.Na-HCO 3 boronconcentrationinthethermalwateristypicalof andNa-SO 4 compositionsreflectdeepcirculationand manynon-marinegeothermalfields,worldwide,andthus interactionswithmetamorphicrockswhileCa-Mg-SO 4- canbeusedasasensitivetracertomonitoradvectionand

HCO3 compositionisassociatedwithshallowcirculationin mixingofunderlyinggeothermalfluidswithshallow carbonaterocksandmixingwithcoldgroundwater.The groundwater(Vengoshetal. 2002).

191 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

APPARENT RESISTIVITY CROSS-SECTION G-5 K-20 K-40 K-60 K-80 G-360 G-320 G-280 G-240 G-200 G-160 G-140 G-100 G-80 G-80 G-20 0 m G-40 250 300 0 100 200 10 20 50 100 500 15 10 1000 7

1500 10 2000 75

2500 15 3000 50 20 50 30 20 30 ohm. m m

INTERPRETED GEOELECTRIC CROSS-SECTION 250 W 0 (150 - 750) ohm. m ohm. m (75 - 250) ohm. m (10 - 50) 500 (4 - 10) ohm. m (25 - 75) ohm. m 1000

1500 (0 - 25) ohm. m

2000 : m gal BOUGUER GRAVITY CROSS-SECTION G.360 G.280 G.140 0 K.80 0

10

20

30 01km 20 isoresistivity contours 40 basement

Figure9. N–Scross-sectionsofresistivity,geoelectricandBouguergravityalongtraverseline-1680,townofSalavatl›(afterfiahin198 5).

ThermalwatersfromwesternTurkeyhavetypically Twomodelsshouldthereforebeconsideredforthe highboroncontentswhichpresentenvironmentaland originofboroninthethermalwater:(1)dissolvedCl, operationalproblems.Theassociationofhighboronand HCO3,andBarederivedfromdeepmantlefluxofHCl, highCO 2 levelsledTarcan(1995)tosuggestthatthe CO2 andB(OH) 3 gases;or(2),water-rockinteractions boronwasderivedfromadeepmantlesource.Also, leachborontotheliquidphase(Vengosh etal. 2002). Demirelandfientürk(1996)suggestedthathighB,NH 4, Karamanderesi&Helvac›(1994)andKaramanderesi andCO 2 concentrationsinthermalwaterfromthe (1997)measuredREEandotherelementsextracted K›z›lderegeothermalfieldreflectascentofmagmatic fromwellcuttingsandcoresamplesfromdifferent emanationfromdepthalthoughthereisnoevidenceof geothermalfieldsandsurfacerocksamplesinthe 3 4 recentvolcanicactivityinthearea.Basedon He/ He MenderesMassif.Theirdatashowedthat: ratios,Güleç(1988)arguedthattheinvolvementof mantle-derivedheliuminK›z›lderegeothermalfielddoes 1.DifferentrockunitsfromtheSalavatl›geothermal notexceed30%. fieldhavehighconcentrationsofboron(rangeof 800to1600ppm)relativetothose(independent

192 ‹.H.KARAMANDERES‹&C.HELVACI

APPARENT RESISTIVITY CROSS-SECTION

m G-260 G-240 G-200 G-160 G-120 G-80 G-60 G-40 0 K-40 K-80 K-120 K-160 K-200 K-240 K-260 250 100 0 100 500 75

1000 50 1500 15 20 20 30 2000 2500

75

150

100 50

3000 75 30 50 m 250 INTERPRETED GEOELECTRIC CROSS-SECTION 0 500 (75 - 250) ohm. m 1000 1500 (25 - 75) ohm. m

2000 (10 - 25) ohm. m ohm. m m gal (80 - 600) BOUGUER GRAVITY CROSS-SECTION 0 G.260 G.120 0 K.120 K.260

10 20 30 01km 20 isoresistivity contours basement

Figure10. N–Scross-sectionsofresistivity,geoelectricandBouguergravityalongtraverselineD-2040,eastofSultanhisar(afterfiahin 1985).

onlithology)oftheÖmerbeylifield(arangeof theÖmerbeylifield(~50ppmBatdepthof1400 50–230ppm).Thedifferenceintheboroncontents m)relativetothealbite-amphiboliteschistzone oftherocksisalsoreflectedintherelativelyhigher (~200ppm,~1400m). B/Clratiointheassociatedthermalwatersfrom thesetwosystems(0.7relativeto0.1),whereas theabsoluteboronconcentrationsaresimilar. Ifindeedalloftheboronwasderivedfromdeep mantlefluxasarguedbyTarcan(1995)onewouldexpect 2.Boronisunevenlydistributedamongdifferentrock tohaveuniformboroncompositionwithsimilarB/Cl types.Boronisparticularlyenrichedin(decreasing ratiosinallofthethermalsystems.Moreover,onewould order)quartzveins,tourmalinegneiss,theillite- notexpecttohaveanyrelationshipsbetweenBcontents chlorite-feldsparzone,andthequartz-chlorite inlocalrocksandthermalwaters.Andyet,theSalavatl› schistzone.Boronisrelativelydepletedinmarble geothermalfieldissignificantlyenrichedinboronrelative andgabbro. totheÖmerbeylifield(Vengosh etal. 2002). 3.Theverticaldistributionofboron(andlithium)with Consequently,itseemsthatboronismainlyderivedfrom depthisnotuniformandisheavilydependenton localwater-rockinteractionsandthesourcerocks lithology.Boronisdepletedinthemarblezoneof stronglycontroltheboronlevelsofthewater(e.g.,

193 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

quartzveinortourmalinegneissversusmarble). andgeophysicalstudiesindicatethatgeothermalactivity Nevertheless,theoverallboronbudgetofageothermal intheareaiscloselyrelatedtoactivefaultsystems.The systemcanalsobecontrolledbytheoriginalboron faultsystemsandsurroundingrelatedfracturesbound concentrationsintherockororiginalparentmagma thegeothermalreservoir. fluids,aswellasbythedegreeofmaturationinwhich Anewdrillingsiteissuggestedforfutureproduction water-rockinteractionscancontributeborontothe drilling,inthesouthernpartoftheareawheretectonic thermalsystem. activityisyoungeranddeeper,andfromwhichhigher Inthisstudy,anattempthasbeenmadetoclarifythe reservoirtemperaturesmaylikelybeobtained. relativetimingoftheneotectonicandpalaeotectonic episodes.Gabbroicandacidicdykesdevelopedandwere emplacedduringtheneotectonicperiod.Theapproximate Acknowledgements locationsoftheheatsourceandalterationzoneshave FieldworkwassupportedbytheGeneralDirectorateof beenoutlinedwithinthestudyarea. MineralResearchandExploration(MTA)(Ankara)and Thefollowingalterationmineralsareattributedto theMTA‹zmirBranchOffice.Wethankthemanagement geothermalactivityinthearea:quartz,albite,chlorite, andtechnicalstaffofMTAfortheirassistance.Wewould calcite,aragonite,dolomite,kaolinite,illite, liketothankStevenK.MittwedeandHasanSözbilirfor montmorillonite,specularhaematite,gypsum,dickite, criticallyreadingthemanuscript,and‹brahimArpal›yi¤it vermiculite,pyrite,sideriteandhydrobiotite. forhisassistancewithwritinganddrafting.We appreciateandthanktheanonymousreviewersfortheir Themineralparagenesisofchlorite,calcite,illite, thoroughreviewofanearlierversionofthemanuscript. kaolinite,dickite,montmorillonite,pyrite,and Thisstudywasalsosupportedbyaresearchprojectgrant hydrobiotiteintheareaindicatesareservoirtemperature (ProjectNumberAIF–0922.93.05.04)fromDokuzEylül ofapproximately200ºC,whichisconsiderablyhigher University,GraduateSchoolofNaturalandApplied thanthetemperaturespredictedbygeothermometersfor Sciences. AS-1(169.77ºC)andAS-2(175.62ºC)wells.Geological

References

AKARTUNA,M.1965.Ayd›n-Nazillihatt›kuzeyindekiversanlar›njeolojisi BOZKURT, E.2002.DiscussionontheextensionalfoldingintheAlaflehir hakk›nda[AboutthegeologyofAyd›n-Nazilliregion]. General (Gediz)Graben,westernTurkey. JournaloftheGeological DirectorateofMineralResearchandExploration(MTA)Bulletin Society,London 159,105–109. 65,1–10[inTurkishwithEnglishabstract]. BOZKURT,E.&O BERHÄNSL›, R.2001a.MenderesMassif(western BOLES,J.R.1977.Zeoliteinlow-grademetamorphicgrades.Mineralogy Turkey):structural,metamorphicandmagmaticevolution–a andgeologyofnaturalzeolites. In:M UMPTON,F.A.(ed), synthesis.InternationalJournalofEarthSciences 89,679–708. MineralogicalSocietyofAmericaShortCourseNotes4,103–135. BOZKURT,E.&O BERHÄNSL›, R.(eds)2001b.MenderesMassif(western BOZKURT,E.1995.DeformationduringmainMenderesmetamorphism Turkey):structural,metamorphicandmagmaticevolution. (MMM)anditstectonicsignificance:evidencefromsouthern InternationalJournalofEarthSciencesSpecialIssue 89, MenderesMassif,westernTurkey.TerraAbstracts 7,p.176. 679–882. BOZKURT, E.2000.TimingofextensionontheBüyükMenderesGraben, BOZKURT,E.&PARK,R.G.1994.SouthernMenderesMassif:anincipient westernTurkeyanditstectonicimplications. In: BOZKURT,E., metamorphiccorecomplexinwesternAnatolia,Turkey. Journal WINCHESTER J.A.&P IPER,J.D.A.(eds),TectonicsandMagmatism inTurkeyandtheSurroundingArea. GeologicalSociety,London, ofGeologicalSociety,London 151,213–216. SpecialPublications173,385–403. BOZKURT,E.&P ARK,R.G.1997a.Evolutionofamid-Tertiary

BOZKURT,E.2001a.NeotectonicsofTurkey–asynthesis. Geodinamica extensionalshearzoneinthesouthernMenderesMassif,Western Acta 14,3–30. Turkey.SocieteGeologiquedeFranceBulletin 168,3–14.

BOZKURT,E.2001b.LateAlpineevolutionofthecentralMenderes BOZKURT,E.&PARK, R.G.1997b.Microstructuresofdeformedgrainsin Massif,westernAnatolia,Turkey. InternationalJournalofEarth theaugengneissesofthesouthernMenderesMassifandtheir Sciences 89,728–744. tectonicsignificance. GeologischeRundschau 86,103–119.

194 ‹.H.KARAMANDERES‹&C.HELVACI

BOZKURT,E.&PARK, R.G.1999.ThestructureofthePalaeozoicschists COLL›NS,A.S.&R OBERTSON,A.H.F.1999.EvolutionoftheLycian inthesouthernMenderesMassif,westernTurkey:anew allochthon,westernTurkey,asanorth-facingLatePalaeozoicrift approachtotheoriginofthemainMenderesmetamorphismand andpassivecontinentalmargin.GeologicalJournal34,107–138.

itsrelationtotheLycianNappes. GeodinamicaActa 12,25–42. DEM‹REL,Z.&fi ENTÜRK, N.1996.Geologyandhydrogeologyofdeep

BOZKURT,E.&S AT›R,M.2000.NewRb-Srgeochronologyfromthe thermalaquifersinTurkey.In:AL-BEIRUTI,S.N.&BINO,M.J.(eds), southernMenderesMassif(southwesternTurkey)anditstectonic IntegrationofInformationBetweenOilDrillingandHydrogeology significance.GeologicalJournal35,285–296. ofDeepAquifers. TheInter-IslamicNetworkofWaterResources DevelopmentandManagement,RoyalScientificSocietyPrinting BOZKURT,E.,PARK,R.G.&W›NCHESTER, J.A.1993.Evidenceagainstthe Press,Amman,Jordan,387–403. core/coverinterpretationofthesouthernsectoroftheMenderes DEWEY, J.F.1988Extensionalcollapseoforogens: Tectonics 7, Massif,westTurkey.TerraNova 5,445–451. 1123–1139. BOZKURT,E.,W› NCHESTER,J.A.&P ARK, R.G.1995.Geochemistryand DEWEY,J.F.&fi ENGÖR, A.M.C.1979Aegeanandsurroundingregions: tectonicsignificanceofaugengneissesfromthesouthern complexmultiplateandcontiniumtectonicsinaconvergentzone. MenderesMassif(WestTurkey). GeologicalMagazine 132, GeologicalSocietyofAmericaBulletin 90,84–92. 287–301. DORA,O.Ö.,K UN,N.&C ANDAN, O.1992.Metamorphichistoryand ÇA⁄LAR,K.Ö.1961.Türkiyemadensular›vekapl›calar›[Mineralwaters geotectonicevolutionoftheMenderesMassif. In:SAVASÇ›N,M.Y. andthermalspringsofTurkey]. GeneralDirectorateofMineral &E RONAT, A.H.(eds), IESCA–1990Proceedings,International ResearchandExploration(MTA)Bulletin 107,l–4,Ankara[in EarthScienceCongressonAegeanRegions ,‹zmir,102–115. TurkishwithEnglishabstract]. DÜRR,S.,A LTHERR,R.,K ELLER,J.,O KRUSCH,M.&S E›DEL, E.1978.The ÇA⁄LAYAN,M.A.,Ö ZTÜRK,E.M.,Ö ZTÜRK,Z.,S AV,H.&A KAT,U.1980. medianAegeancrystallinebelt:stratigraphy,structure, MenderesMasifigüneyineaitbulgularveyap›salyorum[Evidence metamorphismandmagmatism. In:C LOSS,H.,R OEDER,D.R.& fromthesouthernMenderesMassifandstructural SCHMIDT,K. (eds) Alps,Apennines,Hellenides ,455–477. interpretation]. JeolojiMühendisli¤i 10,9–19[inTurkishwith Schweizerbart,Stuttgart. Englishabstract]. ERCAN,T.,SAT›R,M.,KREUZER,H.,TÜRKECAN,A.,GÜNAY,E.,ÇEV‹KBAfl,A., CANDAN, O.1995.MenderesMasifindekal›nt›granulitfasiyesi ATEfl,M.&C AN, B.1985.Bat›AnadoluSenozoyikvolkanitlerine metamorfizmas›[Relictgranulitefaciesmetamorphisminthe aityenikimyasal,izotopik,veradyometrikverilerinyorumu MenderesMassif].TurkishJournalofEarthSciences 4,35–55[in [Interpretationofnewgeochemical,isotopicandradiometricdata TurkishwithEnglishabstract]. fromCenozoicvolcanicsofwestTurkey]. GeologicalSocietyof TurkeyBulletin 28,121–136[inTurkishwithEnglishabstract]. CANDAN, O.1996.ÇineAsmasifindeki(MenderesMasifi)gabrolar›n EY‹DO⁄AN,H.1988.RatesofcrustaldeformationinwesternTurkeyas metamorfizmas›vedi¤erasmasiflerlekarfl›laflt›r›lmas› deducedfrommajorearthquakes.Tectonophysics 148,83–92. [MetamorphismofgabbrosintheÇinesubmassif(Menderes Massif)andcomparisonwithothersubmassifs]. TurkishJournal GENÇ,fi.C.,ALTUNKAYNAK,fi.,KARAC›K,Z.YAZMAN,M.&Y›LMAZ, Y.2001. ofEarthSciences5,123–139[inTurkishwithEnglishabstract]. TheÇubukda¤graben,southof‹zmir:itstectonicsignificancein theNeogenegeologicalevolutionofthewesternAnatolia. CANDAN,O.&DORA,O.Ö.1998.Granulite,eclogiteandbluschistrelicsin GeodinamicaActa14,45–56. theMenderesMassif:anapproachtoPan-AfricanandTertiary GESSNER,K.,P› AZOLO,S.,G ÜNGÖR,T.,R› NG,U.,K RÖNER,A.&P ASSCH›ER, metamorphicevolution.GeologicalSocietyofTurkeyBulletin 41, C.W.2001a.Tectonicsignificanceofdeformationpatternsin 1–35[inTurkishwithEnglishabstract]. granitoidrocksoftheMenderesnappes,Anatolidebelt,southwest CANDAN,O.,D ORA,O.Ö.,O BERHÄNSL›,R.,OELSNER,F.C.&D ÜRR,S.1997. Turkey.InternationalJournalofEarthSciences 89,766–780. BlueschistrelicsintheMesozoicseriesoftheMenderesMassifand GESSNER,K.,R› NG,U.,C HR›STOPHER,J.,H ETZEL,R.,P ASSCH›ER,C.W.& correlationwithSamosisland.SchweizerischeMineralogischeund GÜNGÖR,T.2001b.Anactivebivergentrolling-hingedetachment PetrographischeMitteilungen 77,95–99. system:CentralMenderesmetamorphiccorecomplexinwestern CANDAN,O.,DORA O.Ö.,OBERHÄNSL›,R.,ÇET‹NKAPLAN,M.,PARTZSCH,J.H., Turkey.Geology 29,611–614.

WARKUS,F.C.&D ÜRR,S.2001.Pan-Africanhigh-pressure G›GGENBACH, W.F.1986.Graphicaltechniquesfortheevaluationof metamorphisminthePrecambrianbasementoftheMenderes water/rockequlibrationconditionsbyuseofNa,K,MgandCa- Massif,westernAnatolia,Turkey. InternationalJournalofEarth contentsofdischargewaters.Proceedingsofthe8 th Geothecnical Sciences 89,793–811. Workshop,Auckland,NewZealand,37–44.

COLL›NS,A.S.&R OBERTSON, A.H.F.1997.ProcessesofLateCretaceous GÖKTEN,E.,H AVZAO⁄ULU,fi.&fi AN, Ö.2001.Tertiaryevolutionofthe toLateMioceneepisodicthrust-sheettranslationintheLycian centralMenderesMassifbasedonstructuralinvestigationsof Taurides,SWTurkey. JournaloftheGeologicalSociety,London metamorphicsandsedimentarycoverrocksbetweenSalihliand 155,759–772. Kiraz(westernTurkey). InternationalJournalofEarthSciences 89,745–756.

195 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

GRAC›ANSKY, P.C.1972. ReserchesgèologiquesdansleTaurusLycien KARAMANDERES‹,‹.H.&H ELVAC›, C.1994,Geologyandhydrothermal occidental. Thèse,UniversitydeParis-Sud,Orsay. alterationoftheAyd›n-Salavatl›geothermalfield,Western Anatolia,Turkey. IAVCEI,1994Ankara,Abstract,Theme-9 GR›FF›THS,D.H.&K› NG, R.F.1969. AppliedGeophysics .Pergamon ExperimentalPetrology. Press,GreatBritain. KARAMANDERES‹,‹.H.,G ÜNER,A.&Ç ‹ÇEKL‹, K.1987. Ayd›n-Germencik- GÜNGÖR,T.&E RDO⁄AN,B.2002.Tectonicsignificanceofvolcanic ÖmerbeyliJeotermalSahas›ÖB-8DerinAramaKuyusuBitirme rocksinaMesozoicsequenceoftheMenderesMassif,West Raporu[FinalReportontheÖB-8Deep-WellofAyd›n-Germencik- Turkey.InternationalJournalofEarthSciences 91,386–397. ÖmerbeyliGeothermalField]. GeneralDirectorateofMineral GÜLAY, O.1988. Ayd›n-NazilliYöresiJeofizikGraviteEtüdleri ResearchandExplorationInstituteofTurkey(MTA)ReportNo. [GeophysicalInvestigation(GravityMeasurements)ofAyd›n- 8688 [inTurkish,unpublished]. NazilliRegion]. GeneralDirectorateofMineralResearchand KOÇY‹⁄‹T,A.,Y USUFO⁄LU,H.&B OZKURT, E.1999.Evidencefromthe Exploration(MTA)ReportNo.8322 [inTurkish,unpublished]. Gedizgrabenforepisodictwo-stageextensioninWesternTurkey. GÜLEÇ, N.1988.Thedistributionofhelium-3inWesternTurkey. JournaloftheGeologicalSociety,London 156,605–616. GeneralDirectorateofMineralResearchandExploration(MTA) KONAK,N.,A KDEN‹Z,N.&Ö ZTÜRK, E.M.1987.Geologyofthesouthof Bulletin 108,35–42. MenderesMassif.CorrelationofVariscanandpre-VariscanEvents GÜRER,F.Ö.,B OZCU,M.,Y› LMAZ,K.&Y› LMAZ,Y.2001.Neogenebasin oftheAlpineMediterraneanMountainbelt(GuideBookforthe developmentaroundSöke-Kufladas›(westernAnatolia)andits FieldExcursionAlongWesternAnatolia,Turkey)IGCPProjectNo. bearingontectonicdevelopmentoftheAegeanregion. 5,42–53.

GeodinamicaActa14,57–70. LEP›CHON,X.&A NGEL›ER,J.1979.TheHellenicarcandtrenchsystem: HENLEY,R.W.&E LL›S, A.J.1983.Geothermalsystems,ancientand akeytotheneotectonicevolutionoftheeasternMediterrenean modern:ageochemicalreview.EarthScienceReviews 19,1–50. area.Tectonophysics 60,1–42.

HETZEL,R.&R E›SCHMANN,T.1996.IntrusionageofPan-Africanaugen LEP›CHON,X.&A NGEL›ER, J.1981.TheAegeansea. Philosophical gneissesinthesouthernMenderesMassifandtheageofcooling TransactionofRoyalSociety,London,SerieA 300,357–372. afterAlpineductileextensionaldeformation. GeologicalMagazine L›PS,A.L.W.,C ASSARD,D.,S ÖZB‹L‹R,H.&Y› LMAZ,H.2001.Multistage 133,565–572. exhumationoftheMenderesMassif,westernAnatolia(Turkey).

HETZEL,R.,P ASSCH›ER,C.W.,R› NG,U.&D ORA, O.O.1995a.Bivergent InternationalJournalofEarthSciences 89,781–792. extensioninorogenicbelts:TheMenderesMassif(southwestern LOOS,S.&R EISCHMANN,T.1999.Theevolutionofthesouthern Turkey).Geology 23,455–458. MenderesMassifinSWTurkeyasrevealedbyzircondatings. JournaloftheGeologicalSociety,London 156,1021–1030. HETZEL,R.,R› NG,U.,A KAL,C.&T ROESCH, M.1995b.MioceneNNE- directedextensionalunroofingintheMenderesMassif, MCKENZ›E,D.P.1972.ActivetectonicsoftheMediterraneanRegion. southwesternTurkey.JournalofGeologicalSociety,London 152, GeophysicalJournalofRoyalAstronomicalSociety 30,109p. 639–654. MCKENZ›E, D.P.1978.ActivetectonicsoftheAlpine-Himalayanbelt;The HETZEL,R.,ROMER,R.L.,CANDAN,O.&PASSCH›ER, C.W.1998.Geologyof AegeanSeaandsurroundingregions. GeophysicalJournalof theBozda¤area,centralMenderesMassif,SWTurkey:Pan- RoyalAstronomicalSociety 55,217–254. AfricanbasementandAlpinedeformation.GeologischeRundschau MEULENKAMP,J.E.,W ORTEL,M.J.R.,V AN WAMEL,W.A.,S PAKMAN,W.& 87,394–406. HOODGERDUYN STRAT›NG,E.1988.OntheHellenicsubductionzone Ifl›K,V.&T EKEL‹,O.2001.Lateorogeniccrustalextensioninthe andthegeodynamicevolutionofCretesincethelatemiddle northernMenderesMassif(westernTurkey):evidencefor Miocene.Tectonophysics 146,203–215.

metamorphiccorecomplexformation. InternationalJournalof OBERHÄNSL›,R.,C ANDAN,O.,D ORA,O.O.&D ÜRR, S.1997.Eclogites EarthSciences 89,757–765. withintheMenderesMassif,westernTurkey. Lithos 41, JACKSON,J.&M CKENZ›E, D.1988.Therelationshipbetweenplate 135–150.

motionsandseismicmomenttensors,andtherateofactive OBERHÄNSL›,R.,M ON›E,P.,C ANDAN,O.,W ARKUS,F.C.,P ARTZSCH,J.H.& deformationintheMediterraneanandMiddleEast. Geophysical DORA, O.Ö.1998.Theageofblueschistmetamorphisminthe Journal 93,45–73. MesozoiccoverseriesoftheMenderesMassif. Schweizerische

KARAMANDERES‹, ‹.H.1972.Ayd›n-NazilliÇubukda¤Aras›Bölgenin MineralogischeundPetrographischeMitteilungen 78,309–316. JeolojisiveJeotermalEnerjiPotansiyeli[GeologyoftheAyd›n- OBERHÄNSL›,R.,P ARTZSCH,J.,C ANDAN,O.&Ç ET‹NKAPLAN,M.2001.First Nazilli-Çubukda¤AreaandGeothermalEnergyPotential].General occurrenceofFe-Mg-caroholitedocumentinghigh-pressure DirectorateofMineralResearchandExploration(MTA)Report metamorphisminmetasedimentsoftheLycianNappes,SW No.5224 [inTurkish,unpublished]. Turkey.InternationalJournalofEarthSciences 89,867–873.

KARAMANDERES‹, ‹.H.1997. GeologyofandHydrothermalAlteration OKAY, A.‹.2001.Stratigraphicandmetamorphicinversionsinthe ProcessesoftheSalavatl›-Ayd›nGeothermalField. PhDThesis, centralMenderesMassif:anewstructuralmodel. International DokuzEylülÜniversityGraduateSchoolofNaturalandApplied JournalofEarthSciences 89,709–727. Sciences,‹zmir,Turkey[unpublished].

196 ‹.H.KARAMANDERES‹&C.HELVACI

OKAY,A.‹.2002.Reply:Stratigraphicandmetamorphicinversionsinthe fiENGÖR,A.M.C.1987.Cross-faultsanddifferentialstretchingof centralMenderesMassif:anewstructuralmodel. International hangingwallsinregionsoflow-anglenormalfaulting:examples JournalofEarthSciences 91,173–178. fromwesternTurkey. In:COWARD,M.P.,D EWEY,J.F.&H ANCOCK, P.L.(eds),ContinentalExtensionalTectonics. GeologicalSociety, OKAY,A.‹.&S ‹YAKO,M.1993.Thenewpositionofthe‹zmir-Ankara London,SpecialPublications 28,575–589. Neo-Tethyansuturebetween‹zmirandBal›kesir. In:T URGUT,S. (ed) TectonicsandHydrocarbonPotentialofAnatoliaand fiENGÖR,A.M.C.&Y›LMAZ,Y.1981.TethyanevolutionofTurkey:aplate SurroundingRegions. ProceedingsofOzanSungurluSymposium, tectonicapproach.Tectonophysics 75,181–241. 333–355. fiENGÖR,A.M.C.,GÖRÜR,N.&fi ARO⁄LU,F.1985.Strike-slipfaultingand OKAY,A.‹.,SAT›R,M.,MALUSK›,H.,S‹YAKO,M.,MONIE,P.,METZGER,R.& relatedbasinformationinzonesoftectonicescape:Turkeyasa AKYÜZ,S.1996a.Palaeo-andNeo-Tethyaneventsinnorthwest casestudy. In:B IDDLE,K.&C HRISTIE-BLICK, N.(eds), Strike-slip Turkey:geologicalandgeochronologicalconstraints.In:YIN,A.& Deformation,BasinFormationandSedimentation. Societyof HARRISON,M.(eds),TectonicsofAsia.CambridgeUniversityPress, EconomicPaleontologistsandMineralogists,SpecialPublication Cambridge,420–441. 37,227–264.

OKAY,A.‹.,T EKEL‹,O.,A KKÖK,R.&B OZKURT, E.1996a.Pre-Neogene fiENGÖR, A.M.C.,SAT›R,M.&AKKÖK, R.1984.Timingoftectonicevents geologyandtectonicsoftheAegeanregion. TÜB‹TAK intheMenderesMassif,westernTurkey:implicationsfortectonic Universities-MTANationalMarineGeologicalandGeophysical evolutionandevidenceforPan-AfricanbasementinTurkey. Programme,Workshop-1,p.1–4. Tectonics 3,693–707.

ÖNAY,T.S.1949.ÜberdieSmirgelgesteineSW-Anatoliens. SEY‹TO⁄LU,G.&S COTT, B.C.1991.LateCenozoiccrustalextensionand SchweizerischeMineralogischeundPetrographischeMitteilungen basinformationinwestTurkey. GeologicalMagazine 128, 29,359–484. 155–166.

ÖZER,S.,SÖZB‹L‹R,H.,ÖZKAR,‹.,TOKER,V.&SAR›, B.2001.Stratigraphy SEY‹TO⁄LU,G.&S COTT, B.C.1992.TheageoftheBüyükMenderes ofUpperCretaceous-Palaeogenesequencesinthesouthernand graben(westTurkey)anditstectonicimplications. Geological easternMenderesMassif(westernTurkey). InternationalJournal Magazine129,239–242. ofEarthSciences 89,852–866. SEY‹TO⁄LU,G.,TEKEL‹,O.,ÇEMEN,‹.,fiEN,fi.&Ifl›K,V.2002.Theroleof PH›LL›PSON,A.1918.Kleinasien. In:STE›NMANN,G.&W› LCKENS, O.(eds), theflexuralrotation/rollinghingemodelinthetectonicevolution HandbuchderRegionalenGeologie 5,1–183. oftheAlaflehirgraben,westernTurkey.GeologicalMagazine 139, 15–26. R›NG,U.,G ESSNER,K.,G ÜNGÖR,T.&P ASSCH›ER, C.W.1999.The MenderesMassifofwesternTurkeyandtheCycladicMassifinthe fi‹MflEK,fi.1997.GeochemicalpotentialinNorthwesternTurkey.In: Aegean–dotheyreallycorrelate? JournalofGeologicalSociety, SCHINDLER,C.&F ISTER,M.P.(eds),ActiveTectonicsof London156,3–6. NorthwesternAnatolia - TheMarmaraPoly-Project,Vdf HochschulverlagAGanderETH Zürih,111-123. fiAH‹N, H.1985. Ayd›n-Sultanhisar-Salavatl›Sahas›JeotermalEnerji Aramalar›:RezistiviteEtüdü[ExplorationforGeothermalEnergy SÖZB‹L‹R, H.2001.Geometryofmacroscopicstructureswiththeir inAyd›n-Sultanhisar-Salavatl›Field:ResistivityStudy]. General relationstotheextensionaltectonics:fieldevidencefromthe DirectorateofMineralResearchandExploration(MTA)Report Gedizdetachment,westernTurkey. TurkishJournalofEarth No.7921 [inTurkish,unpublished]. Sciences10,51–67.

SAR›CA, N.2000.ThePlio-PleistoceneageofBüyükMenderesandGediz SÖZB‹L‹R,H.2002.GeometryandoriginoffoldingintheNeogene grabensandtheirtectonicsignificanceonN-Sextensional sedimentsoftheGedizgraben,westernAnatolia,Turkey. tectonicsinWestAnatolia:mammalianevidencefromthe GeodinamicaActa 15,277–288.

continentaldeposits.GeologicalJournal 35,1–24. STEFANSSON,V.&S TE›NGR›MSSON,B.1981. GeothermalLoggingI:An nd SAT›R,M.&F R›EDR›CHSEN, H.1986.Theoriginandevolutionofthe IntroductiontoTechniquesandInterpretation (2 Edition). MenderesMassif,W-Turkey:arubidium/strontiumandoxygen Reykjavik,NationalEnergyAuthorityReportOS-80017/JHD-09.

isotopestudy.GeologischeRundschau 75,703–714. TARCAN,G.1995. HydrogeologicalStudyoftheTurgutluHotSprings. fiENGÖR, A.M.C.1979.TheNorthAnatoliantransformfault:itsage, PhDThesis,DokuzEylülÜniversityGraduateSchoolofNatural offsetandtectonicsignificance.JournaloftheGeologicalSociety, andAppliedSciences,‹zmir,Turkey[unpublished].

London 136,269–282. VENGOSH,A.,H ELVAC›,C.&K ARAMANDERES‹, ‹.H.2002.Geochemical fiENGÖR,A.M.C.1980. Türkiye’ninNeotektoni¤ininEsaslar› constraintsfortheoriginofthermalwatersfromwesternTurkey. (FundamentalsoftheNeotectonicsofTurkey]. Publicationof AppliedGeochemistry 17,163–183. GeologicalSocietyofTurkey[inTurkishwithEnglishAbstract]. VERGE, N.J.1995.Oligo-Mioceneextensionalexhumationofthe fiENGÖR,A.M.C.1982.Ege’ninneotektonikevriminiyönetenetkenler MenderesMassif,westernAnatolia. TerraAbstracts 7,p.117. [FactorscontrollingtheneotectonicevolutionofAegean]. In: WH›TNEY,D.L.&B OZKURT, E.2002.Metamorphichistoryofthe EROL,O.&O YGÜR, V.(eds), Bat›AnadolununGençTektoni¤ive southernMenderesMassif,westernTurkey.GeologicalSocietyof Volkanizmas›Paneli. GeologicalCongressofTurkey[inTurkish AmericaBulletin 114,829–838. withEnglishabstract].

197 AYDIN-SALAVATLIGEOTHERMALFIELD,WESTERNANATOLIA

Y›LMAZ,Y.1997.GeologyofwesternAnatolia. In:S CHINDLER,C.& Y›LMAZ,Y.,G ENÇ,S.C.,G ÜRER,O.F.,B OZCU,M.,Y› LMAZ,K.,K ARAC›K,Z., FISTER, M.P.(eds),ActiveTectonicsofNorthwesternAnatolia-The ALTUNKAYNAK,fi.&E LMAS, A.2000.Whendidthewestern MarmaraPoly-Project. VdfHochschulverlagAGanderETHZürih, Anatoliangrabensbegintodevelop? In:BOZKURT,E.,W INCHESTER 31–53. J.A.&P› PER, J.D.A.(eds), TectonicsandMagmatisminTurkey

Y›LMAZ,Y.&KARAC›K,Z.2001.GeologyofthenorthernsideoftheGulf andtheSurroundingArea. GeologicalSociety,London,Special ofEdremitanditstectonicsignificanceforthedevelopmentofthe Publications173,353–384. Aegeangrabens.GeodinamicaActa 14,31–40.

Received11March2002;revisedtypescriptaccepted02April2003

198