Guidance for Industry: M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials

Total Page:16

File Type:pdf, Size:1020Kb

Guidance for Industry: M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) January 2010 ICH Revision 1 Guidance for Industry M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals Additional copies are available from: Office of Communications Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave. Bldg. 51, Room 2201 Silver Spring, MD 20993-0002 (Tel) 301-796-3400 http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm and/or Office of Communication, Outreach and Development, HFM-40 Center for Biologics Evaluation and Research Food and Drug Administration 1401 Rockville Pike, Rockville, MD 20852-1448 (Tel) 800-835-4709 or 301-827-1800 http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Drug Evaluation and Research (CBER) January 2010 ICH Revision 1 Contains Nonbinding Recommendations TABLE OF CONTENTS List of Abbreviations I. INTRODUCTION (1)....................................................................................................... 1 A. Objectives of the Guidance (1.1)...................................................................................................1 B. Background (1.2)............................................................................................................................2 C. Scope of the Guidance (1.3)...........................................................................................................2 D. General Principles (1.4).................................................................................................................3 E. High Dose Selection for General Toxicity Studies (1.5)..............................................................3 II. PHARMACOLOGY STUDIES (2)................................................................................. 6 III. TOXICOKINETIC AND PHARMACOKINETIC STUDIES (3) ............................... 6 IV. ACUTE TOXICITY STUDIES (4) ................................................................................. 6 V. REPEATED-DOSE TOXICITY STUDIES (5) ............................................................. 7 A. Clinical Development Trials (5.1).................................................................................................7 B. Marketing Authorization (5.2)......................................................................................................9 VI. ESTIMATION OF THE FIRST DOSE IN HUMANS (6)............................................ 9 VII. EXPLORATORY CLINICAL TRIALS (7)................................................................. 10 A. Microdose Trials (7.1)..................................................................................................................10 B. Single-Dose Trials at Subtherapeutic Doses or Into the Anticipated Therapeutic Range (7.2) 11 C. Multiple Dose Trials (7.3)............................................................................................................11 VIII. LOCAL TOLERANCE STUDIES (8) .......................................................................... 16 IX. GENOTOXICITY STUDIES (9)................................................................................... 16 X. CARCINOGENICITY STUDIES (10) ......................................................................... 16 IX. REPRODUCTION TOXICITY STUDIES (11)........................................................... 17 A. Men (11.1).....................................................................................................................................17 B. Women Not of Childbearing Potential (11.2) ............................................................................17 C. Women of Childbearing Potential (11.3) ...................................................................................17 D. Pregnant Women (11.4)...............................................................................................................18 XII. CLINICAL TRIALS IN PEDIATRIC POPULATIONS (12) .................................... 19 XIII. IMMUNOTOXICITY (13)............................................................................................. 20 XIV. PHOTOSAFETY TESTING (14).................................................................................. 20 XV. NONCLINICAL ABUSE LIABILITY (15).................................................................. 20 XVI. OTHER TOXICITY STUDIES (16) ............................................................................. 21 i Contains Nonbinding Recommendations XVII. COMBINATION DRUG TOXICITY TESTING (17) ............................................. 21 XVIII. CONTINUING EFFORTS TO IMPROVE HARMONIZATION (18)................ 23 XIX. ENDNOTES (19)............................................................................................................. 24 XX. REFERENCES (20)........................................................................................................ 25 ii Contains Nonbinding Recommendations LIST OF ABBREVIATIONS AUC Area Under the Curve Cmax Maximum Plasma Concentration EU European Union GLP Good Laboratory Practices HCG Human Chorionic Gonadotropin HIV Human Immunodeficiency Virus ICH International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use i.v. Intravenous MFD Maximum Feasible Dose MTD Maximum Tolerated Dose NOAEL No Observed Adverse Effect Level PET Positron Emission Tomography PD Pharmacodynamics PK Pharmacokinetics SAR Structure-Activity Relationship siRNA Small Interfering RNA WOCBP Women of Childbearing Potential i Contains Nonbinding Recommendations Guidance for Industry1 M3(R2) Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals This guidance represents the Food and Drug Administration's (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the appropriate number listed on the title page of this guidance. I. INTRODUCTION (1)2 A. Objectives of the Guidance (1.1) The purpose of this document is to recommend international standards for, and promote harmonization of, the nonclinical safety studies recommended to support human clinical trials of a given scope and duration as well as marketing authorization for pharmaceuticals. Harmonization of the guidance for nonclinical safety studies will help to define the current recommendations and reduce the likelihood that substantial differences will exist among regions. This is a revision of the ICH guidance “M3 Nonclinical Safety Studies for the Conduct of Human Clinical Trials for Pharmaceuticals” that published in 1997. The revisions further harmonize recommendations in a number of areas and include a new section on exploratory clinical studies. This revised guidance discusses other nonclinical studies that should be conducted on a case-by-case basis as appropriate, including phototoxicity studies, immunotoxicity studies, juvenile animal toxicity studies, and abuse potential studies. This guidance should facilitate the timely conduct of clinical trials, reduce the use of animals in accordance with the 3R (reduce/refine/replace) principles, and reduce the use of other drug 1 This guidance was developed within the Expert Working Group (Multidisciplenary) of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and has been subject to consultation by the regulatory parties, in accordance with the ICH process. This document has been endorsed by the ICH Steering Committee at Step 4 of the ICH process, June 2009. At Step 4 of the process, the final draft is recommended for adoption to the regulatory bodies of the European Union, Japan, and the United States. 2 Arabic numbers reflect the organizational breakdown in the document endorsed by the ICH Steering Committee at Step 4 of the ICH process, [date]. 1 Contains Nonbinding Recommendations development resources. Although not discussed in this guidance, consideration should be given to use of new in vitro alternative methods for safety evaluation. These methods, if validated and accepted by all ICH regulatory authorities, can be used to replace current standard methods. This guidance promotes safe, ethical development and availability of new pharmaceuticals. B. Background (1.2) The recommendations of this revised guidance further harmonize the nonclinical safety studies to support the various stages of clinical development among the regions of the European Union (EU), Japan, and the United States. The present guidance represents the consensus that exists regarding the type and duration of nonclinical safety studies
Recommended publications
  • FDA Guidance on Establishing Pregnancy Exposure Registries
    Guidance for Industry Establishing Pregnancy Exposure Registries U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) August 2002 Clinical/Medical Guidance for Industry Establishing Pregnancy Exposure Registries Additional copies are available from: Office of Training and Communications Division of Communications Management Drug Information Branch, HFD-210 5600 Fishers Lane Rockville, MD 20857 (Tel) 301-827-4573 http://www.fda.gov/cder/guidance/index.htm or Office of Communication, Training, and Manufacturers Assistance (HFM-40) Center for Biologics Evaluation and Research (CBER) 1401 Rockville Pike, Rockville, MD 20852-1448 http://www.fda.gov/cber/guidelines.htm (Fax) 888-CBERFAX or 301-827-3844 (Voice Information) 800-835-4709 or 301-827-1800 U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) August 2002 Clinical/Medical TABLE OF CONTENTS I. INTRODUCTION................................................................................................................. 1 II. BACKGROUND ...................................................................................................................1 III. WHAT IS A PREGNANCY EXPOSURE REGISTRY? .................................................. 2 IV. WHAT MEDICAL PRODUCTS MAKE GOOD REGISTRY CANDIDATES?........... 3 V. WHEN SHOULD SUCH A REGISTRY BE ESTABLISHED?......................................
    [Show full text]
  • Safety of Immunization During Pregnancy a Review of the Evidence
    Safety of Immunization during Pregnancy A review of the evidence Global Advisory Committee on Vaccine Safety © World Health Organization 2014 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied.
    [Show full text]
  • HISTORY of LEAD POISONING in the WORLD Dr. Herbert L. Needleman Introduction the Center for Disease Control Classified the Cause
    HISTORY OF LEAD POISONING IN THE WORLD Dr. Herbert L. Needleman Introduction The Center for Disease Control classified the causes of disease and death as follows: 50 % due to unhealthy life styles 25 % due to environment 25% due to innate biology and 25% due to inadequate health care. Lead poisoning is an environmental disease, but it is also a disease of life style. Lead is one of the best-studied toxic substances, and as a result we know more about the adverse health effects of lead than virtually any other chemical. The health problems caused by lead have been well documented over a wide range of exposures on every continent. The advancements in technology have made it possible to research lead exposure down to very low levels approaching the limits of detection. We clearly know how it gets into the body and the harm it causes once it is ingested, and most importantly, how to prevent it! Using advanced technology, we can trace the evolution of lead into our environment and discover the health damage resulting from its exposure. Early History Lead is a normal constituent of the earth’s crust, with trace amounts found naturally in soil, plants, and water. If left undisturbed, lead is practically immobile. However, once mined and transformed into man-made products, which are dispersed throughout the environment, lead becomes highly toxic. Solely as a result of man’s actions, lead has become the most widely scattered toxic metal in the world. Unfortunately for people, lead has a long environmental persistence and never looses its toxic potential, if ingested.
    [Show full text]
  • A Comparison of the Tolerability of the Direct Renin Inhibitor Aliskiren and Lisinopril in Patients with Severe Hypertension
    Journal of Human Hypertension (2007) 21, 780–787 & 2007 Nature Publishing Group All rights reserved 0950-9240/07 $30.00 www.nature.com/jhh ORIGINAL ARTICLE A comparison of the tolerability of the direct renin inhibitor aliskiren and lisinopril in patients with severe hypertension RH Strasser1, JG Puig2, C Farsang3, M Croket4,JLi5 and H van Ingen4 1Technical University Dresden, Heart Center, University Hospital, Dresden, Germany; 2Department of Internal Medicine, La Paz Hospital, Madrid, Spain; 31st Department of Internal Medicine, Semmelweis University, Budapest, Hungary; 4Novartis Pharma AG, Basel, Switzerland and 5Novartis Institutes for Biomedical Research, Cambridge, MA, USA Patients with severe hypertension (4180/110 mm Hg) LIS 3.4%). The most frequently reported AEs in both require large blood pressure (BP) reductions to reach groups were headache, nasopharyngitis and dizziness. recommended treatment goals (o140/90 mm Hg) and At end point, ALI showed similar mean reductions from usually require combination therapy to do so. This baseline to LIS in msDBP (ALI À18.5 mm Hg vs LIS 8-week, multicenter, randomized, double-blind, parallel- À20.1 mm Hg; mean treatment difference 1.7 mm Hg group study compared the tolerability and antihyperten- (95% confidence interval (CI) À1.0, 4.4)) and mean sitting sive efficacy of the novel direct renin inhibitor aliskiren systolic blood pressure (ALI À20.0 mm Hg vs LIS with the angiotensin converting enzyme inhibitor À22.3 mm Hg; mean treatment difference 2.8 mm Hg lisinopril in patients with severe hypertension (mean (95% CI À1.7, 7.4)). Responder rates (msDBPo90 mm Hg sitting diastolic blood pressure (msDBP)X105 mm Hg and/or reduction from baselineX10 mm Hg) were 81.5% and o120 mm Hg).
    [Show full text]
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • Exploring the Concept of Safety and Tolerability
    SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Session 1 Exploring the Concepts of Safety and Tolerability: Incorporating the Patient Voice SECOND ANNUAL WORKSHOP ON CLINICAL OUTCOME ASSESSMENTS IN CANCER CLINICAL TRIALS April 25, 2017 Bethesda, MD Co-sponsored by Disclaimer • The views and opinions expressed in the following slides are those of the individual presenters and should not be attributed to their respective organizations/companies, the U.S. Food and Drug Administration or the Critical Path Institute. • These slides are the intellectual property of the individual presenters and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. All trademarks are the property of their respective owners. 3 Session Participants Chair • Bindu Kanapuru, MD – Medical Officer, Division of Hematology Products, OHOP, FDA Presenters • James (Randy) Hillard, MD – Professor of Psychiatry, Michigan State University • Crystal Denlinger, MD, FACP – Associate Professor, Department of Hematology/Oncology; Chief, Gastrointestinal Medical Oncology; Director, Survivorship Program; Deputy Director, Phase 1 Program, Fox Chase Cancer Center • Katherine Soltys, MD – Acting Director, Bureau of Medical Sciences, Therapeutic Products Directorate, Health Products and Food Branch, Health Canada • Karen E. Arscott, DO, MSc – Associate Professor of Medicine-Patient Advocate and Survivor, Geisinger Commonwealth
    [Show full text]
  • Conventional Gasoline
    Conventional Gasoline M a t e r i a l S a f e t y D a t a S h e e t 1. PRODUCT AND COMPANY IDENTIFICATION Product Name: Conventional Gasoline MSDS Code: 251720 Synonyms: Gasoline, Unleaded, Conventional (All Grades); Gasoline, Low Sulfur Unleaded (All Grades) Intended Use: Fuel Responsible Party: ConocoPhillips 600 N. Dairy Ashford Houston, Texas 77079-1175 Customer Service: 800-640-1956 Technical Information: 800-255-9556 MSDS Information: Phone: 800-762-0942 Email: [email protected] Internet: http://w3.conocophillips.com/NetMSDS/ Emergency Telephone Numbers: Chemtrec: 800-424-9300 (24 Hours) California Poison Control System: 800-356-3219 2. HAZARDS IDENTIFICATION Emergency Overview NFPA DANGER! Extremely Flammable Liquid and Vapor Skin Irritant Aspiration Hazard Appearance: Clear to amber Physical Form: Liquid Odor: Gasoline Potential Health Effects Eye: Contact may cause mild eye irritation including stinging, watering, and redness. Skin: Skin irritant. Contact may cause redness, itching, a burning sensation, and skin damage. Prolonged or repeated contact can defat the skin, causing drying and cracking of the skin, and possibly dermatitis (inflammation). Not acutely toxic by skin absorption, but prolonged or repeated skin contact may be harmful (see Section 11). Inhalation (Breathing): Low to moderate degree of toxicity by inhalation. Ingestion (Swallowing): Low degree of toxicity by ingestion. ASPIRATION HAZARD - This material can enter lungs during swallowing or vomiting and cause lung inflammation and damage. Signs and Symptoms: Effects of overexposure may include nausea, vomiting, flushing, blurred vision, tremors, respiratory failure, signs of nervous system depression (e.g., headache, drowsiness, dizziness, loss of coordination, disorientation and fatigue), unconsciousness, convulsions, death.
    [Show full text]
  • Glaucoma Medical Therapy Ocular Tolerability, Adherence, and Patient Outcomes
    CME Monograph November 30, 2017 September 23, 2016 Expiration: Original Release: November 1, 2016 Last Review: GLAUCOMA MEDICAL THERAPY OCULAR TOLERABILITY, ADHERENCE, AND PATIENT OUTCOMES ACTIVITY DESCRIPTION commercial interests in the form of Consultant/Advisory Therapy to lower intraocular pressure effectively reduces the Board: Alcon; Bausch & Lomb Incorporated; and Inotek risk of glaucoma progression. The rate of nonadherence with Pharmaceuticals Corporation; Contracted Research: Alcon; PROGRAM CHAIR therapy, however, remains high. Therapeutic nonadherence and F. Hoffmann-La Roche Ltd. is a complex and multifactorial issue that is influenced by Richard K. Parrish II, MD James C. Tsai, MD, MBA, had a financial agreement factors attributable to the physician, patient, and medication. or affiliation during the past year with the following Edward W. D. Norton Chair in Ophthalmology All medications have side effects, and tolerability issues can commercial interests in the form of Consultant/ Professor contribute to nonadherence if patients perceive that the Advisory Board: Aerie Pharmaceuticals, Inc; and Inotek disadvantages of therapy outweigh the benefits of controlling Director, Glaucoma Service Pharmaceuticals Corporation. a disease that is often asymptomatic. Therefore, the selection Bascom Palmer Eye Institute of initial and adjunctive therapy should consider the NEW YORK EYE AND EAR INFIRMARY OF MOUNT SINAI University of Miami Miller School of Medicine potential for tolerability issues that may adversely affect PEER REVIEW DISCLOSURE Miami, Florida adherence. Novel therapies in late-stage clinical development Joseph F. Panarelli, MD, had a financial agreement or affiliation will offer innovative mechanisms of action and unique risk/ during the past year with the following commercial interest FACULTY benefit profiles.
    [Show full text]
  • Efficacy, Tolerability and Serum Phenytoin Levels After Intravenous Fosphenytoin Loading Dose in Children with Status Epilepticus
    R E S E A R C H P A P E R Efficacy, Tolerability and Serum Phenytoin Levels after Intravenous Fosphenytoin Loading Dose in Children with Status Epilepticus KAVITA SRIVASTAVA, SHIRISH BHARTIYA, VRUSHABH GAVLI, RAHUL PATIL AND SUREKHA RAJADHYAKSHA From Pediatric Neurology Unit, Department of Pediatrics, Bharati Vidyapeeth Deemed University Medical College, Pune, India. Correspondence to: Dr Kavita Srivastava, Professor in Pediatrics, 3rd floor, Bharati Hospital, Katraj, Pune 411 043, India. [email protected] Received: July 05, 2018; Initial review: December 03, 2018; Accepted: December 04, 2019. Objective: To evaluate the efficacy and tolerability of intravenous children showed any local or systemic adverse effects. Serum fosphenytoin in children with status epilepticus, and resulting total phenytoin levels were in the therapeutic range (10-20 µg/mL) serum total phenytoin levels. in 12 (23.5%), sub-therapeutic in 16 (31.3%) and supra- Methods: In this prospective study, 51 children aged less than 18 therapeutic in 25 (49%) children. There was weak correlation of years received intravenous loading dose of fosphenytoin (18-20 the phenytoin levels with dose of fosphenytoin received, seizure mg/kg). Serum total phenytoin levels were estimated at 90 -100 control, or adverse effects. minutes. Outcomes studied were (i) seizure control and local and/ Conclusion: Intravenous fosphenytoin loading dose of 20 mg/kg or systemic adverse effects in next 24 hours and (ii) phenytoin is effective in controlling seizures in 88% of children with status levels and its correlation with dose received, seizure control and epilepticus, with a good safety profile. Seizure control and adverse adverse effects. effects appear to be independent of serum total phenytoin levels Results: The actual dose of fosphenytoin received varied from achieved.
    [Show full text]
  • A1.5 Morphine A6 ATC Code: N02AA01 Oral Liquid: 2 Mg (As Hydrochloride Or Sulfate)/Ml
    A1 A2 A3 A4 A5 A1.5 Morphine A6 ATC code: N02AA01 Oral liquid: 2 mg (as hydrochloride or sulfate)/ml. Tablet: 10 mg (as sulfate). Tablet (prolonged release): 10 mg, 30 mg, 60 mg, 100 mg, 200 mg (as sulfate). Granules: (prolonged release, to mix with water): 20 mg, 30 mg, 60 mg, 100 mg, 200 mg (morphine sulfate). Injection: 10 mg (as hydrochloride or sulfate) in 1 ml ampoule. A7 Indications: moderate to severe persisting pain. 73 < Contraindications: hypersensitivity to opioid agonists or to any component of the formulation; acute respiratory depression; acute asthma; paralytic ileus; concomitant use of, or use within 14 days after ending monoamine oxidase inhibitors; raised intracranial pressure and/or head injury, if ventilation not controlled; coma; use within 24 hours before or after surgery. Precautions: impaired respiratory function; avoid rapid injection which may precipitate chest wall rigidity and difficulty with ventilation; bradycardia; asthma; hypotension; shock; obstructive or inflammatory bowel disorders; biliary tract disease; convulsive disorders; hypothyroidism; adrenocortical insufficiency; avoid abrupt withdrawal after prolonged treatment; diabetes mellitus; impaired consciousness; acute pancreatitis; myasthenia gravis; hepatic impairment; renal impairment; toxic psychosis. Skilled tasks: warn the patient or carer about the risk of undertaking tasks requiring attention or coordination, for example, riding a bike. Dosage: Starting dose for opioid-naive patients: Oral (immediate-release formulation): • infant 1–12 months – 80–200 mcg/kg every 4 hours; • child 1–2 years – 200–400 mcg/kg every 4 hours; • child 2–12 years – 200–500 mcg/kg every 4 hours; maximum oral starting dose is 5 mg. Oral (prolonged-release formulation): • child 1–12 years – initially 200–800 mcg/kg every 12 hours.
    [Show full text]
  • Acute Poisoning: Understanding 90% of Cases in a Nutshell S L Greene, P I Dargan, a L Jones
    204 REVIEW Postgrad Med J: first published as 10.1136/pgmj.2004.027813 on 5 April 2005. Downloaded from Acute poisoning: understanding 90% of cases in a nutshell S L Greene, P I Dargan, A L Jones ............................................................................................................................... Postgrad Med J 2005;81:204–216. doi: 10.1136/pgmj.2004.024794 The acutely poisoned patient remains a common problem Paracetamol remains the most common drug taken in overdose in the UK (50% of intentional facing doctors working in acute medicine in the United self poisoning presentations).19 Non-steroidal Kingdom and worldwide. This review examines the initial anti-inflammatory drugs (NSAIDs), benzodiaze- management of the acutely poisoned patient. Aspects of pines/zopiclone, aspirin, compound analgesics, drugs of misuse including opioids, tricyclic general management are reviewed including immediate antidepressants (TCAs), and selective serotonin interventions, investigations, gastrointestinal reuptake inhibitors (SSRIs) comprise most of the decontamination techniques, use of antidotes, methods to remaining 50% (box 1). Reductions in the price of drugs of misuse have led to increased cocaine, increase poison elimination, and psychological MDMA (ecstasy), and c-hydroxybutyrate (GHB) assessment. More common and serious poisonings caused toxicity related ED attendances.10 Clinicians by paracetamol, salicylates, opioids, tricyclic should also be aware that severe toxicity can result from exposure to non-licensed pharmaco-
    [Show full text]
  • Toxicity Forecaster (Toxcasttm)
    science in ACTION www.epa.gov/research INNOVATIVE RESEARCH FOR A SUSTAINABLE FUTURE Toxicity Forecaster (ToxCastTM) ADVANCING THE NEXT GENERATION OF CHEMICAL SAFETY EVALUATION Tens of thousands of chemicals are currently in commerce, and hundreds more are introduced every year. Because current chemical testing is expensive and time consuming, only a small fraction of chemicals have been fully evaluated for potential human health effects. Through its computational toxicology research (CompTox), the U.S. Environmental Protection Agency (EPA) is working to figure out how to change the current approach used to evaluate the safety of chemicals. CompTox research integrates advances in biology, biotechnology, chemistry, and computer science to identify important biological processes that may be disrupted by the chemicals and tracing those biological the potential to limit the number of of sources; including industrial and disruptions to a related dose and required laboratory animal-based consumer products, food additives, human exposure. The combined toxicity tests while quickly and and potentially “green” chemicals information helps prioritize efficiently screening large numbers that could be safer alternatives to chemicals based on potential human of chemicals. existing chemicals. These 2,000 health risks. Using CompTox, chemicals were evaluated in over thousands of chemicals can be The first phase of ToxCast, 700 high-throughput assays that evaluated for potential risk at a small appropriately called “Proof of cover a range of high-level cell cost in a very short amount of time. Concept”, was completed in responses and approximately 2009 and it evaluated over 300 300 signaling pathways. ToxCast A major part of EPA’s CompTox well studied chemicals (primarily research is the Toxicity Forecaster research is ongoing to determine pesticides) in over 500 high- which assays under what conditions (ToxCast™).
    [Show full text]