Protected Variation: the Importance of Being Closed Craig Larman

Total Page:16

File Type:pdf, Size:1020Kb

Protected Variation: the Importance of Being Closed Craig Larman design Editor: Martin Fowler, Thought Works ■ [email protected] Protected Variation: The Importance of Being Closed Craig Larman he Pattern Almanac 2000 (Addison- OCP and PV formalize and generalize a Wesley, 2000) lists around 500 soft- common and fundamental design principle ware-related patterns—and given this described in many guises. OCP and PV are reading list, the curious developer has two expressions of the same principle— Tno time to program! Of course, there protection against change to the existing are underlying, simplifying themes and code and design at variation and evolution principles to this pattern plethora that de- points—with minor differences in emphasis. velopers have long considered and dis- I am nominating the term protected varia- cussed. One example is Larry Constantine’s tion for general use, as it is short and clear. coupling and cohesion guidelines In OCP, the term module includes all dis- (see “Structured Design,” IBM crete software elements, including methods, Systems J., vol. 13, no. 2, 1974). classes, subsystems, applications, and so forth. Yet, these principles must contin- Also, the phrase “closed with respect to X” ually resurface to help each new means that clients are not affected if X generation of developers and ar- changes. For example, “The class is closed chitects cut through the apparent with respect to instance field definitions.” PV disparity in myriad design ideas uses the term interface in the broad sense of an and help them see the underlying access view—not exactly a Java or COM in- and unifying forces. terface, for example. One such principle, which Bertrand Meyer describes in Ob- Information hiding is PV, ject-Oriented Software Construction (IEEE not data encapsulation Press, 1988), is the Open–Closed Principle: “On the Criteria To Be Used in Decom- Modules should be both open (for extension posing Systems Into Modules” is a classic and adaptation) and closed (to avoid modifi- that is often cited but seldom read. In it, Par- cation that affect clients). OCP is essentially nas introduces information hiding. Many equivalent to the Protected Variation pattern: people have misinterpreted the term as mean- Identify points of predicted variation and cre- ing data encapsulation, and some books er- ate a stable interface around them. Alistair roneously define the concepts as synonyms. Cockburn did not know of OCP when he Parnas intended it to mean hide informa- first wrote about PV (see “Prioritizing Forces tion about the design from other modules, in Software Design,” Patterns Languages of at the points of difficult or likely change. To Program Design, vol. 2, Addison-Wesley, quote his discussion of information hiding 1996). Furthermore, OCP is what David Par- as a guiding design principle: nas really meant by information hiding (see “On the Criteria to Be Used in Decomposing We propose instead that one begins with a Systems into Modules” Comm. ACM, vol. list of difficult design decisions or design 12, no. 2, Dec. 1972). decisions which are likely to change. Each 0740-7459/01/$10.00 © 2001 IEEE May/June 2001 IEEE SOFTWARE 89 DESIGN module is then designed to hide tional mapping, property files, reading guage services protect the system from such a decision from the others. in window layouts, and much more. the impact of logic or external code The system is protected from the im- variations. We could also consider this That is, Parnas’s information hiding is pact of data, metadata, or declarative a special case of data-driven designs. the same principle expressed in PV or variations by externalizing the variant, OCP—it is not simply data encapsula- reading the behavior-influencing data Pick your battles tion, which is but one of many tech- in, and reasoning with it. As an example of PV’s application, niques to hide design information. a client explained that the logistical However, the term has been so Service lookup support application used by an airline widely reinterpreted as a synonym for Service lookup includes techniques was a maintenance headache. There data encapsulation that it is no longer such as using naming services (for ex- was frequent modification of the possible to use it in its original sense ample, JNDI) or traders to obtain a business logic to support the logistics. without misunderstanding it. This arti- service (such as Jini). This approach How do you protect the system from cle should be called, “The Importance uses the stable interface of the lookup variations at this point? From the of Information Hiding,” in honor of service to protect clients from varia- mechanisms to support PV (data en- Parnas’s description of the PV princi- tions in the location of services. It is a capsulation, interfaces, indirection, ple. Dijkstra earlier alludes to the prin- special case of data-driven designs. …), a rule-based design was chosen: ciple in the “THE” project, but Parnas A rules engine was added to the sys- gave it focus and shape (Dijkstra, “The Interpreter-driven designs tem, and an external rule editor let Structure of the ‘THE’ Multiprogram- Interpreter-driven designs include the subject matter experts update the ming System,” Comm. ACM, 1968). rule interpreters that execute rules read rules without requiring changes to the from an external source, script or lan- source code of the system. Mechanisms motivated by PV guage interpreters that read and run Low coupling and protection PV is a root principle motivating programs, virtual machines, neural net- against variations is not motivated in most of the mechanisms and patterns work engines that execute nets, con- all areas. You must pick your battles in programming and design that pro- straint logic engines that read and rea- in design, be they at the macro-archi- vide flexibility and protection from son with constraint sets, and so forth. tectural level or the humble instance variations. Here are some examples. This approach lets you change or para- field. A good designer can identify the meterize a system’s behavior through likely points of instability or variation Familiar PV mechanisms external logic expressions. The system and apply PV to those points but not PV motivates data encapsulation, is protected from the impact of logic others. Otherwise, effort is wasted interfaces, polymorphism, indirec- variations by externalizing the logic, and complexity may arise (and with tion, and standards. Components reading it in (for example, rules or a it, the chance for defects). such as brokers and virtual machines neural net), and using an interpreter. For example, I recall being surprised are complex examples of indirection. by the occasional use of static public fi- Reflective or metalevel designs nal fields in the Java technology li- Uniform access An example of a reflective or meta- braries (after spending many years with Languages such as Ada, Eiffel, and level design includes using the java. the Smalltalk libraries). Some might be C# support a syntactic construct to beans.Introspector to obtain a Bean- poorly conceived, but some, such as express both a method and field ac- Info object, asking for the getter the Color static fields red, black, white, cess in the same way. For example, Method object for bean property X and so forth, are extremely stable; the aCircle.radius might invoke a ra- (that is, the method getX), and calling likelihood of instability is so low that dius():float method or directly refer Method.invoke. Reflective algorithms making them private and adding ac- to a public field, depending on the that use introspection and metalan- cessing methods is just object purism. definition of the class. You can As a counterexample, I know of change public fields to access meth- a pager-message-handling system in ods without changing the client code. You must which the architect added a fancy scripting language and interpreter to Data-driven designs pick your battles support some flexibility. However, dur- Data-driven designs cover a broad in design, be they at the ing rework in an incremental release, family of techniques, including reading the complex (and inefficient) scripting codes, values, class file paths, class macro-architectural was removed—it wasn’t needed. names, and so forth, from an external level or the humble source in order to change the behavior instance field. Judicious PV and the of or “parameterize” a system in some Diamond Sutra way at runtime. Other variants include Constantine’s guideline to design style sheets, metadata for object-rela- with low coupling is a truly core prin- 90 IEEE SOFTWARE May/June 2001 DESIGN ciple of design, and it can be argued and brittle designs. If the need for PV is a fundamental design principle that PV derives from it. We can priori- flexibility and PV is immediately ap- that applies to everything from the tize our goals and strategies as follows: plicable, then applying PV is justified. largest architectural concerns to the However, if you’re using PV for smallest coding decision. Furthermore, 1. We wish to save time and money, speculative future proofing or reuse, it underlies the motivation and advice reduce the introduction of new then deciding which strategy to use is of most other patterns and principles. defects, and reduce the pain and not as clear-cut. Novice developers As Parnas explained 30 years ago— suffering inflicted on overworked tend toward brittle designs, and inter- and as has resurfaced in the writings of developers. mediates tend toward overly fancy Meyer and Cockburn—each genera- 2. To achieve this, we design to min- and flexible generalized ones (in ways tion of software developers needs help imize the impact of change. that never get used). Experts choose seeing mountains as mountains again 3. To minimize change impact, we de- with insight—perhaps choosing a sim- —especially after four years of com- sign with the goal of low coupling.
Recommended publications
  • Writing and Reviewing Use-Case Descriptions
    Bittner/Spence_06.fm Page 145 Tuesday, July 30, 2002 12:04 PM PART II WRITING AND REVIEWING USE-CASE DESCRIPTIONS Part I, Getting Started with Use-Case Modeling, introduced the basic con- cepts of use-case modeling, including defining the basic concepts and understanding how to use these concepts to define the vision, find actors and use cases, and to define the basic concepts the system will use. If we go no further, we have an overview of what the system will do, an under- standing of the stakeholders of the system, and an understanding of the ways the system provides value to those stakeholders. What we do not have, if we stop at this point, is an understanding of exactly what the system does. In short, we lack the details needed to actually develop and test the system. Some people, having only come this far, wonder what use-case model- ing is all about and question its value. If one only comes this far with use- case modeling, we are forced to agree; the real value of use-case modeling comes from the descriptions of the interactions of the actors and the system, and from the descriptions of what the system does in response to the actions of the actors. Surprisingly, and disappointingly, many teams stop after developing little more than simple outlines for their use cases and consider themselves done. These same teams encounter problems because their use cases are vague and lack detail, so they blame the use-case approach for having let them down. The failing in these cases is not with the approach, but with its application.
    [Show full text]
  • Agile Software Development: the Cooperative Game Free
    FREE AGILE SOFTWARE DEVELOPMENT: THE COOPERATIVE GAME PDF Alistair Cockburn | 504 pages | 19 Oct 2006 | Pearson Education (US) | 9780321482754 | English | New Jersey, United States Cockburn, Agile Software Development: The Cooperative Game, 2nd Edition | Pearson View larger. Preview this title online. Request a copy. Additional order info. Buy this product. The author has a deep background and gives us a tour de force of the emerging agile methods. The agile model of software development has taken the world by storm. Cockburn also explains how the cooperative game is played in business and on engineering projects, not just software development. Next, he systematically illuminates the agile model, shows how it has evolved, and answers the Agile Software Development: The Cooperative Game developers and project managers ask most often, including. Cockburn takes on crucial misconceptions that cause agile projects to fail. Cockburn turns to the practical Agile Software Development: The Cooperative Game of constructing agile methodologies for your own teams. This edition contains important new contributions on these and other topics:. This product is part of the following series. Click on a series title to see the full list of products in the series. Chapter 1. Chapter 5. Chapter 6. Appendix A. Pearson offers special pricing when you package your text with other student resources. If you're interested in creating a cost-saving package for your students, contact your Pearson rep. Alistair Cockburn is an internationally renowned expert on all aspects of software development, from object-oriented modeling and architecture, to methodology design, to project management and organizational alignment. Sincehe has led projects and taught in places from Oslo to Cape Town, from Vancouver to Beijing.
    [Show full text]
  • GRASP Patterns
    GRASP Patterns David Duncan November 16, 2012 Introduction • GRASP (General Responsibility Assignment Software Patterns) is an acronym created by Craig Larman to encompass nine object‐oriented design principles related to creating responsibilities for classes • These principles can also be viewed as design patterns and offer benefits similar to the classic “Gang of Four” patterns • GRASP is an attempt to document what expert designers probably know intuitively • All nine GRASP patterns will be presented and briefly discussed What is GRASP? • GRASP = General Responsibility Assignment Software Patterns (or Principles) • A collection of general objected‐oriented design patterns related to assigning defining objects • Originally described as a collection by Craig Larman in Applying UML and Patterns: An Introduction to Object‐Oriented Analysis and Design, 1st edition, in 1997. Context (1 of 2) • The third edition of Applying UML and Patterns is the most current edition, published in 2005, and is by far the source most drawn upon for this material • Larman assumes the development of some type of analysis artifacts prior to the use of GRASP – Of particular note, a domain model is used • A domain model describes the subject domain without describing the software implementation • It may look similar to a UML class diagram, but there is a major difference between domain objects and software objects Context (2 of 2) • Otherwise, assumptions are broad: primarily, the practitioner is using some type of sensible and iterative process – Larman chooses
    [Show full text]
  • Model-Driven Development of Complex Software: a Research Roadmap Robert France, Bernhard Rumpe
    Model-driven Development of Complex Software: A Research Roadmap Robert France, Bernhard Rumpe Robert France is a Professor in the Department of Computer Science at Colorado State University. His research focuses on the problems associated with the development of complex software systems. He is involved in research on rigorous software modeling, on providing rigorous support for using design patterns, and on separating concerns using aspect-oriented modeling techniques. He was involved in the Revision Task Forces for UML 1.3 and UML 1.4. He is currently a Co-Editor-In-Chief for the Springer international journal on Software and System Modeling, a Software Area Editor for IEEE Computer and an Associate Editor for the Journal on Software Testing, Verification and Reliability. Bernhard Rumpe is chair of the Institute for Software Systems Engineering at the Braunschweig University of Technology, Germany. His main interests are software development methods and techniques that benefit form both rigorous and practical approaches. This includes the impact of new technologies such as model-engineering based on UML-like notations and domain specific languages and evolutionary, test-based methods, software architecture as well as the methodical and technical implications of their use in industry. He has furthermore contributed to the communities of formal methods and UML. He is author and editor of eight books and Co-Editor-in-Chief of the Springer International Journal on Software and Systems Modeling (www.sosym.org). Future of Software Engineering(FOSE'07)
    [Show full text]
  • Agile and Iterative Development : a Managers Guide Pdf, Epub, Ebook
    AGILE AND ITERATIVE DEVELOPMENT : A MANAGERS GUIDE PDF, EPUB, EBOOK Craig Larman | 368 pages | 11 Aug 2003 | Pearson Education (US) | 9780131111554 | English | Boston, United States Agile and Iterative Development : A Managers Guide PDF Book Rum Haunt. The Agile Manifesto and Principles. Download pdf. Investors poured billions into unproven concepts. Problems with the Waterfall. Agile is the ability to create and respond to change. Distinct preferred subjects that distribute on our catalog are trending books, solution key, test test question and answer, manual example, exercise guideline, test sample, customer handbook, owner's guideline, assistance instructions, restoration guide, and so forth. It is a way of dealing with, and ultimately succeeding in, an uncertain and turbulent environment. Evolutionary and Adaptive Development. We will identify the effective date of the revision in the posting. Each sprint has a fixed length, typically weeks, and the team has a predefined list of work items to work through in each sprint. Learn more. Timeboxed Iterative Development. The added benefit of having the definitions and practices of the individual methods in one book is also great. The Facts of Change on Software Projects. Agile Software Development Series. A lot of people peg the start of Agile software development, and to some extent Agile in general, to a meeting that occurred in when the term Agile software development was coined. They then determine how to pursue that strategy and its related goals and objectives by prioritizing different initiatives, many of which they identify by using quantitative and qualitative research tactics. Orders delivered to U. New Paperback Quantity available: 1.
    [Show full text]
  • Iterative, Evolutionary, and Agile
    UML and Patterns.book Page 17 Thursday, September 16, 2004 9:48 PM Chapter 2 2 ITERATIVE, EVOLUTIONARY, AND AGILE You should use iterative development only on projects that you want to succeed. —Martin Fowler Objectives G Provide motivation for the content and order of the book. G Define an iterative and agile process. G Define fundamental concepts in the Unified Process. Introduction Iterative development lies at the heart of how OOA/D is best practiced and is presented in this book. Agile practices such as Agile Modeling are key to apply- ing the UML in an effective way. This chapter introduces these subjects, and the Unified Process as a relatively popular sample iterative method. What’s Next? Having introduced OOA/D, this chapter explores iterative development. The next introduces the case studies that are evolved throughout the book, across three iterations. Iterative, OOA/D Case Evolutionary Inception Introduction & Agile Studies 17 UML and Patterns.book Page 18 Thursday, September 16, 2004 9:48 PM 2 – ITERATIVE, EVOLUTIONARY, AND AGILE Iterative and evolutionary development—contrasted with a sequential or “waterfall” lifecycle—involves early programming and testing of a partial sys- tem, in repeating cycles. It also normally assumes development starts before all the requirements are defined in detail; feedback is used to clarify and improve the evolving specifications. We rely on short quick development steps, feedback, and adaptation to clarify the requirements and design. To contrast, waterfall values promoted big up- front speculative requirements and design steps before programming. Consis- tently, success/failure studies show that the waterfall is strongly associated with the highest failure rates for software projects and was historically promoted due to belief or hearsay rather than statistically significant evidence.
    [Show full text]
  • Object-Oriented Analysis and Design (OOA/D)
    Chapter 1 OBJECT-ORIENTED ANALYSIS AND DESIGN The shift of focus (to patterns) will have a profound and enduring effect on the way we write programs. —Ward Cunningham and Ralph Johnson Objectives • Compare and contrast analysis and design. • Define object-oriented analysis and design (OOA/D). • Illustrate a brief example. 1.1 Applying UML and Patterns in OOA/D What does it mean to have a good object design? This book is a tool to help devel- opers and students learn core skills in object-oriented analysis and design (OOA/D). These skills are essential for the creation of well-designed, robust, and maintainable software using object technologies and languages such as Java, C++, Smalltalk, and C#. The proverb "owning a hammer doesn't make one an architect" is especially true with respect to object technology. Knowing an object-oriented language (such as Java) is a necessary but insufficient first step to create object systems. Knowing how to "think in objects" is also critical. This is an This is an introduction to OOA/D while applying the Unified Modeling Lan- introduction guage (UML), patterns, and the Unified Process. It is not meant as an advanced text; it emphasizes mastery of the fundamentals, such as how to assign respon- sibilities to objects, frequently used UML notation, and common design pat- 1 - OBJECT-ORIENTED ANALYSIS AND DESIGN terns. At the same time, primarily in later chapters, the material progresses to a few intermediate-level topics, such as framework design. Applying UML The book is not just about the UML. The UML is a standard diagramming nota- tion.
    [Show full text]
  • Business Modelling: UML Vs. IDEF
    Griffith University School of Computing and Information Technology Domain: Advanced Object Oriented Concepts Business Modelling: UML vs. IDEF available electronically at: http://www.cit.gu.edu.au/~noran © Ovidiu S. Noran Table of Contents. 1 Introduction....................................................................................................1 1.1 The objectives of this paper..............................................................................1 1.2 Motivation.........................................................................................................1 1.3 Some Important Terms.....................................................................................2 1.3.1 Models. .............................................................................................................. 2 1.3.2 Business Process Models.................................................................................. 2 1.3.3 Information Systems Support. ........................................................................... 3 1.3.3.1 The Business Model as a Base for Information Systems.......................... 3 1.3.3.2 'Legacy' Systems....................................................................................... 4 1.3.4 Business Improvement vs. Innovation............................................................... 4 1.4 Business Concepts...........................................................................................4 1.4.1 Business Architecture. ......................................................................................
    [Show full text]
  • Complexity & Verification: the History of Programming As Problem Solving
    COMPLEXITY & VERIFICATION: THE HISTORY OF PROGRAMMING AS PROBLEM SOLVING A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Joline Zepcevski IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Arthur L. Norberg February 2012 © Copyright by Joline Zepcevski 2012 All Rights Reserved Acknowledgments It takes the work of so many people to help a student finish a dissertation. I wish to thank Professor Arthur L. Norberg for postponing his retirement to be my advisor and my friend over the course of this project. Thank you to my committee, Professor Jennifer Alexander, Professor Susan Jones, Dr. Jeffery Yost, and Professor Michel Janssen, all of whom individually guided this dissertation at different times and in specific ways. Thank you also to Professor Thomas Misa for his guidance and assistance over many years. I had a great faculty and a great cohort of graduate students without whom this dissertation would never have been completed. I particularly want to thank Sara Cammeresi, whose unending support and friendship were invaluable to the completion of this project. I wish to thank my family, Jovan Zepcevski, Geraldine French, Nicole Zepcevski, and Brian Poff, who supported me and loved me throughout it all. I also want to thank my friends: Tara Jenson, Holly and Aaron Adkins, Liz Brophey, Jennifer Nunnelee, Jen Parkos, Vonny and Justin Kleinman, Zsuzsi Bork, AJ Letournou, Jamie Stallman, Pete Daniels, and Megan Longo who kept me sane. I need to thank Lisa Needham for all her assistance. Without your help, I wouldn’t sound nearly as smart.
    [Show full text]
  • For Managing Large U.S. Gov't Cloud Computing Projects
    Lean & Agile Enterprise Frameworks For Managing Large U.S. Gov’t Cloud Computing Projects Dr. David F. Rico, PMP, CSEP, ACP, CSM, SAFe Twitter: @dr_david_f_rico Website: http://www.davidfrico.com LinkedIn: http://www.linkedin.com/in/davidfrico Facebook: http://www.facebook.com/david.f.rico.9 Agile Capabilities: http://davidfrico.com/rico-capability-agile.pdf Agile Resources: http://www.davidfrico.com/daves-agile-resources.htm Agile Cheat Sheet: http://davidfrico.com/key-agile-theories-ideas-and-principles.pdf Author Background Gov’t contractor with 32+ years of IT experience B.S. Comp. Sci., M.S. Soft. Eng., & D.M. Info. Sys. Large gov’t projects in U.S., Far/Mid-East, & Europe Career systems & software engineering methodologist Lean-Agile, Six Sigma, CMMI, ISO 9001, DoD 5000 NASA, USAF, Navy, Army, DISA, & DARPA projects Published seven books & numerous journal articles Intn’l keynote speaker, 100+ talks to 11,000 people Adjunct at GWU, UMBC, UMUC, Argosy, & NDMU Specializes in metrics, models, & cost engineering Cloud Computing, SOA, Web Services, FOSS, etc. 2 Today’s Whirlwind Environment Global Reduced Competition IT Budgets Work Life Obsolete Imbalance Technology & Skills Demanding 81 Month Customers Cycle Times Overruns Inefficiency Vague Attrition High O&M Overburdening Requirements Escalation Lower DoQ Legacy Systems Runaways Vulnerable Cancellation N-M Breach Organization Redundant Downsizing Data Centers Technology Poor Change System Lack of IT Security Complexity Interoperability Pine, B. J. (1993). Mass customization: The new frontier in business competition. Boston, MA: Harvard Business School Press. Pontius, R. W. (2012). Acquisition of IT: Improving efficiency and effectiveness in IT acquisition in the DoD.
    [Show full text]
  • Download Presentation Slides
    Lean & Agile Enterprise Frameworks For Managing Large U.S. Gov’t Cloud Computing Projects Dr. David F. Rico, PMP, CSEP, ACP, CSM, SAFe Twitter: @dr_david_f_rico Website: http://www.davidfrico.com LinkedIn: http://www.linkedin.com/in/davidfrico Agile Capabilities: http://davidfrico.com/rico-capability-agile.pdf Agile Resources: http://www.davidfrico.com/daves-agile-resources.htm Agile Cheat Sheet: http://davidfrico.com/key-agile-theories-ideas-and-principles.pdf Author BACKGROUND Gov’t contractor with 32+ years of IT experience B.S. Comp. Sci., M.S. Soft. Eng., & D.M. Info. Sys. Large gov’t projects in U.S., Far/Mid-East, & Europe Career systems & software engineering methodologist Lean-Agile, Six Sigma, CMMI, ISO 9001, DoD 5000 NASA, USAF, Navy, Army, DISA, & DARPA projects Published seven books & numerous journal articles Intn’l keynote speaker, 125+ talks to 12,000 people Specializes in metrics, models, & cost engineering Cloud Computing, SOA, Web Services, FOSS, etc. Adjunct at five Washington, DC-area universities 2 Lean & Agile FRAMEWORK? Frame-work (frām'wûrk') A support structure, skeletal enclosure, or scaffolding platform; Hypothetical model A multi-tiered framework for using lean & agile methods at the enterprise, portfolio, program, & project levels An approach embracing values and principles of lean thinking, product development flow, & agile methods Adaptable framework for collaboration, prioritizing work, iterative development, & responding to change Tools for agile scaling, rigorous and disciplined planning & architecture, and a sharp focus on product quality Maximizes BUSINESS VALUE of organizations, programs, & projects with lean-agile values, principles, & practices Leffingwell, D. (2011). Agile software requirements: Lean requirements practices for teams, programs, and the enterprise.
    [Show full text]
  • Assumptions Underlying Agile Software Development Processes
    Assumptions Underlying Agile Software Development Processes Abstract Agile processes focus on facilitating early and fast production of working code, and are based on software development process models that support iterative, incremental development of software. Although agile methods have existed for a number of years now, answers to questions concerning the suitability of agile processes to particular software development environments are still often based on anecdotal accounts of experiences. An appreciation of the (often unstated) assumptions underlying agile processes can lead to a better understanding of the applicability of agile processes to particular situations. Agile processes are less likely to be applicable in situations in which core assumptions do not hold. This paper examines the principles and advocated practices of agile processes to identify underlying assumptions. The paper also identifies limitations that may arise from these assumptions and outlines how the limitations can be addresses by incorporating other software development techniques and practices into agile development environments. 1. Introduction As more organizations seek to gain competitive advantage through timely deployment of services and products that meet and exceed customer needs and expectations, developers are under increasing pressure to develop new or enhanced implementations quickly [15]. Agile software development processes were developed primarily to support timely and economical development of high-quality software that meets customer needs at the time of delivery. It is claimed by agile process advocates that this can be accomplished by using development processes that continuously adapt and adjust to (1) collective experience and skills of the developers, including experience and skills gained thus far in the development project, (2) changes in software requirements and (3) changes in the development and targeted operating environments.
    [Show full text]