Monocyte-Derived Dendritic Cells Maturation Program in Human

Total Page:16

File Type:pdf, Size:1020Kb

Monocyte-Derived Dendritic Cells Maturation Program in Human CC-Chemokine Ligand 16 Induces a Novel Maturation Program in Human Immature Monocyte-Derived Dendritic Cells This information is current as Paola Cappello, Tiziana Fraone, Laura Barberis, Carlotta of October 1, 2021. Costa, Emilio Hirsch, Angela R. Elia, Cristiana Caorsi, Tiziana Musso, Francesco Novelli and Mirella Giovarelli J Immunol 2006; 177:6143-6151; ; doi: 10.4049/jimmunol.177.9.6143 http://www.jimmunol.org/content/177/9/6143 Downloaded from References This article cites 45 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/177/9/6143.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CC-Chemokine Ligand 16 Induces a Novel Maturation Program in Human Immature Monocyte-Derived Dendritic Cells1 Paola Cappello,*† Tiziana Fraone,* Laura Barberis,‡ Carlotta Costa,‡ Emilio Hirsch,‡ Angela R. Elia,*¶ Cristiana Caorsi,*¶ Tiziana Musso,§ Francesco Novelli,*¶ and Mirella Giovarelli2*¶ Dendritic cells (DCs) are indispensable for initiation of primary T cell responses and a host’s defense against infection. Many proinflammatory stimuli induce DCs to mature (mDCs), but little is known about the ability of chemokines to modulate their maturation. In the present study, we report that CCL16 is a potent maturation factor for monocyte-derived DCs (MoDCs) through differential use of its four receptors and an indirect regulator of Th cell differentiation. MoDCs induced to mature by CCL16 are Downloaded from characterized by increased expression of CD80 and CD86, MHC class II molecules, and ex novo expression of CD83 and CCR7. They produce many chemokines to attract monocytes and T cells and are also strong stimulators in activating allogeneic T cells to skew toward Th1 differentiation. Interestingly, they are still able to take up Ag and express chemokine receptors usually bound by inflammatory ligands and can be induced to migrate to different sites where they capture Ags. Our findings indicate that induction of MoDC maturation is an important property of CCL16 and suggest that chemokines may not only organize the migration of MoDCs, but also directly regulate their ability to prime T cell responses. The Journal of Immunology, 2006, 177: http://www.jimmunol.org/ 6143–6151. endritic cells (DCs)3 are the most important link be- Furthermore, DCs are affected by endogenous mediators released tween the innate and the acquired immune response and by infected, damaged, or inflamed tissues, such as proinflamma- D are involved in the initiation of both types of immunity tory cytokines, prostaglandin, or catabolites from dying cells (5, (1). Immature DC (iDC) precursors exit from the bone marrow, 6). Chemokine receptors have also been shown to be directly in- circulate via the bloodstream to reach their target tissues, and take volved in induction of DC maturation. Specifically, activation up residence at sites of potential pathogen entry in a physiological through CCR5 by Toxoplasma gondii-derived cyclophilin leads to by guest on October 1, 2021 stage that is specialized for Ag capture (1). Tissue injury and in- production of high levels of IL-12 in DCs (7, 8). Little is known, flammation cause dramatic changes throughout the microenviron- on the other hand, about chemokines and DC maturation. We fo- ment, including the release of inflammatory mediators such as cy- cused our attention on CCL16/liver-expressed chemokine’s effects tokines and chemokines that shape protective immune responses because we had demonstrated its potent antitumor activity associ- and culminate in pathogen elimination. Many stimuli are involved ated with recruitment of leukocytes (9). CCL16 is chemotactic for in DC maturation (2). DCs receive information directly from monocytes, lymphocytes, eosinophils, and DCs (for a review, see pathogens via “pattern-recognition receptors” such as the TLRs (3) Zlotnik et al. (10)). It binds CCR1, CCR2, CCR5, and CCR8 (11, and from cytokines released by T cells during their differentiation 12) and has been used to treat established murine tumors. CCL16 toward Th1 or Th2 in peripheral tissues or lymph nodes (LNs) (4). expressed by adenoviruses (13, 14) or as recombinant fusion pro- tein (15) induces accumulation of T cells and DCs at the tumor site *Center for Experimental Research and Medical Studies, San Giovanni Battista Hos- pital, Turin, Italy; †Department of Clinical and Biological Sciences, University of and in draining LNs. Turin, Orbassano, Italy; ‡Department of Genetics, Biology, and Biochemistry, §De- Our previous data have shown that CCL16 costimulates mac- ¶ partment of Public Health and Microbiology, and Department of Medicine and Ex- rophage cytotoxic and Ag-presenting functions in the mouse (16). perimental Oncology, University of Turin, Turin, Italy CCL16 released by lamina propria-infiltrating macrophages elicits Received for publication November 22, 2005. Accepted for publication August 14, 2006. massive recruitment of immune reactive cells in ulcerative colitis The costs of publication of this article were defrayed in part by the payment of page (17). These results led us to study the effects of CCL16 on human charges. This article must therefore be hereby marked advertisement in accordance DCs derived from monocytes (MoDCs) in the presence of GM- with 18 U.S.C. Section 1734 solely to indicate this fact. CSF and IL-4. We report here that human CCL16 is a potent mat- 1 This work was supported by the Italian Association for Cancer Research, the Italian Ministry for Education, the Universities and Research, Fondi incentivazione della uration factor for MoDCs through differential use of its four re- Ricerca di Base and Progetti di Ricerca di Interesse Nazionale, and Compagnia San ceptors and an indirect regulator of Th cell differentiation. We Paolo, Special Project Oncology. analyzed the expression of costimulatory molecules and chemo- 2 Address correspondence and reprint requests to Professor Mirella Giovarelli, De- kine receptors and confirmed their functional efficiency. We also partment of Experimental Medicine and Oncology, Corso Raffaello 30, 10125 Torino, Italy. E-mail address: [email protected] evaluated the ability of MoDCs induced to mature by CCL16 3 Abbreviations used in this paper: DC, dendritic cell; CCL16/mDC, MoDC induced (CCL16/mDCs) to induce alloactivation of T cells and take up Ag. to mature in the presence of CCL16; iDC, immature DC; LN, lymph node; mDC, DC Our findings suggest that chemokines may not only organize the induced to mature in the presence of TNF-␣ plus IL-1␤; MFI, mean fluorescence intensity; MoDC, monocyte-derived DC; PLC, phospholipase C; PTX, pertussis migration of DCs but also directly regulate their ability to prime T toxin. cell responses. Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 6144 MoDC MATURED BY CCL16 CAN STILL TAKE UP Ag Materials and Methods Mixed lymphocyte reaction CCL16 source T cells were purified on a nylon wool column (Robbins Scientific) and ϫ 5 The human recombinant CCL16 used in these experiments (PeproTech) is placed in 96-well plates at 1 10 cells/well with allogeneic iDCs and differentially mature DCs, after 24 h of stimulation with CCL16 or TNF-␣ a 11.2-kDa protein of 97-aa residues produced in Escherichia coli from a and IL-1␤, in increasing concentrations (150–10, 000). After 4 days, 1 ␮Ci DNA sequence encoding the mature human CCL16 protein sequence 3 (Q26-Q120). Its endotoxin level is Ͻ0.1 ng/␮g(1EU/␮g) as determined of tritiated [ H]TdR (Amersham Biosciences) was added to each well and incubation was prolonged for an additional 18 h. Cells were directly col- by the Limulus Amebocyte Lysate assay. lected with a CellHarvester (Packard Instrument) in UNIfilter plates (Pack- ard Instrument) and [3H]TdR uptake was quantitated (TopCount micro- Generation and maturation of MoDCs plates scintillation counter; Packard Instrument). All tests were performed Human PBMCs were isolated from venous blood of voluntary healthy in triplicate. donors by Ficoll-Paque density gradient centrifugation (Pharmacia Bio- Supernatants from T cells cultured with iDCs, CCL16/mDCs, or mDCs at ratio 20:1 T:DC were harvested after 48 h and analyzed by ELISA for tech). Monocytes were enriched with an isolation kit (Miltenyi Biotec). ␥ The resulting preparations were consistently Ͼ90% CD14ϩ as determined IFN- and IL-4 production (both R&D Systems) in accordance with the by FACSCalibur (BD Biosciences). To prepare iDCs, the enriched mono- manufacturer’s protocol. ϫ 6 cytes were incubated in 6-well culture plates (5 10 cells/3 ml/well) in Cytokine detection AIM V medium (Invitrogen Life Technologies) supplemented with 100 ng/ml GM-CSF and 50 ng/ml IL-4 (both PeproTech) for 6 days. On days Production of cytokines and chemokines in the supernatants was evaluated 2 and 4, two-thirds of the culture medium were replaced by fresh medium with a commercial RayBio Human Cytokine Array V (Tebu-bio) in accor- containing GM-CSF and IL-4. iDCs were resuspended as 1 ϫ 106 cells/ml dance with the manufacturer’s protocol. The membranes were exposed to in AIM V supplemented or not with CCL3, CCL4, CCL14, and CCL16 (all x-ray films and signals were detected with a film developer (Kodak Hy- from PeproTech) at 1000 and 100 ng/ml, as indicated, or human TNF-␣ (50 perfilm; Amersham Biosciences).
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
    RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis.
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Bioinformatics Identification of CCL8/21 As Potential Prognostic
    Bioscience Reports (2020) 40 BSR20202042 https://doi.org/10.1042/BSR20202042 Research Article Bioinformatics identification of CCL8/21 as potential prognostic biomarkers in breast cancer microenvironment 1,* 2,* 3 4 5 1 Bowen Chen , Shuyuan Zhang ,QiuyuLi, Shiting Wu ,HanHe and Jinbo Huang Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/11/BSR20202042/897847/bsr-2020-2042.pdf by guest on 28 September 2021 1Department of Breast Disease, Maoming People’s Hospital, Maoming 525000, China; 2Department of Clinical Laboratory, Maoming People’s Hospital, Maoming 525000, China; 3Department of Emergency, Maoming People’s Hospital, Maoming 525000, China; 4Department of Oncology, Maoming People’s Hospital, Maoming 525000, China; 5Department of Medical Imaging, Maoming People’s Hospital, Maoming 525000, China Correspondence: Shuyuan Zhang ([email protected]) Background: Breast cancer (BC) is the most common malignancy among females world- wide. The tumor microenvironment usually prevents effective lymphocyte activation and infiltration, and suppresses infiltrating effector cells, leading to a failure of the host toreject the tumor. CC chemokines play a significant role in inflammation and infection. Methods: In our study, we analyzed the expression and survival data of CC chemokines in patients with BC using several bioinformatics analyses tools. Results: The mRNA expression of CCL2/3/4/5/7/8/11/17/19/20/22 was remark- ably increased while CCL14/21/23/28 was significantly down-regulated in BC tis- sues compared with normal tissues. Methylation could down-regulate expression of CCL2/5/15/17/19/20/22/23/24/25/26/27 in BC. Low expression of CCL3/4/23 was found to be associated with drug resistance in BC.
    [Show full text]
  • Gene Expression Analysis of Angioimmunoblastic Lymphoma Indicates Derivation from T Follicular Helper Cells and Vascular Endothelial Growth Factor Deregulation
    Research Article Gene Expression Analysis of Angioimmunoblastic Lymphoma Indicates Derivation from T Follicular Helper Cells and Vascular Endothelial Growth Factor Deregulation Pier Paolo Piccaluga,1,2 Claudio Agostinelli,1 Andrea Califano,3 Antonino Carbone,4 Luca Fantoni,6 Sergio Ferrari,5 Anna Gazzola,1 Annunziata Gloghini,6 Simona Righi,1 Maura Rossi,1 Enrico Tagliafico,5 Pier Luigi Zinzani,1 Simonetta Zupo,7 Michele Baccarani,1 and Stefano A. Pileri1 1Institute of Hematology and Medical Oncology ‘‘L. and A. Sera`gnoli,’’ S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; 2Institute for Cancer Genetics and 3Center for Computational Biology and Biochemistry, Columbia University, New York, New York; 4Department of Pathology, Istituto Nazionale Tumori, Milan, Italy; 5Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy; 6Division of Experimental Oncology, Centro di Riferimento Oncologico, Aviano, Italy; and 7S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy Abstract Introduction Angioimmunoblastic lymphoma (AILT) is the second most Peripheral T-cell lymphomas (PTCL) represent 10% to 15% of common subtype of peripheral T-cell lymphoma (PTCL) and all lymphoid neoplasms (1). They are a heterogeneous group of is characterized by dismal prognosis. Thus far, only a fewstu- tumors that in the Revised European-American Lymphoma dies have dealt with its molecular pathogenesis. We performed (REAL)/WHO classification are subdivided into
    [Show full text]
  • Part One Fundamentals of Chemokines and Chemokine Receptors
    Part One Fundamentals of Chemokines and Chemokine Receptors Chemokine Receptors as Drug Targets. Edited by Martine J. Smit, Sergio A. Lira, and Rob Leurs Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32118-6 j3 1 Structural Aspects of Chemokines and their Interactions with Receptors and Glycosaminoglycans Amanda E. I. Proudfoot, India Severin, Damon Hamel, and Tracy M. Handel 1.1 Introduction Chemokines are a large subfamily of cytokines (50 in humans) that can be distinguished from other cytokines due to several features. They share a common biological activity, which is the control of the directional migration of leukocytes, hence their name, chemoattractant cytokines. They are all small proteins (approx. 8 kDa) that are highly basic, with two exceptions (MIP-1a, MIP-1b). Also, they have a highly conserved monomeric fold, constrained by 1–3 disulfides which are formed from a conserved pattern of cysteine residues (the majority of chemokines have four cysteines). The pattern of cysteine residues is used as the basis of their division into subclasses and for their nomenclature. The first class, referred to as CXC or a-chemokines, have a single residue between the first N-terminal Cys residues, whereas in the CC class, or b-chemokines, these two Cys residues are adjacent. While most chemokines have two disulfides, the CC subclass also has three members that contain three. Subsequent to the CC and CXC families, two fi additional subclasses were identi ed, the CX3C subclass [1, 2], which has three amino acids separating the N-terminal Cys pair, and the C subclass, which has a single disulfide.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • STAT6-Dependent Fashion CCL23 Expression Is Induced by IL-4 in A
    CCL23 Expression Is Induced by IL-4 in a STAT6-Dependent Fashion Hermann Novak, Anke Müller, Nathalie Harrer, Claudia Günther, Jose M. Carballido and Maximilian Woisetschläger This information is current as of September 28, 2021. J Immunol 2007; 178:4335-4341; ; doi: 10.4049/jimmunol.178.7.4335 http://www.jimmunol.org/content/178/7/4335 Downloaded from References This article cites 47 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/178/7/4335.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL23 Expression Is Induced by IL-4 in a STAT6-Dependent Fashion Hermann Novak, Anke Mu¨ller, Nathalie Harrer, Claudia Gu¨nther, Jose M. Carballido, and Maximilian Woisetschla¨ger1 The chemokine CCL23 is primarily expressed in cells of the myeloid lineage but little information about its regulation is available.
    [Show full text]
  • A Novel Role for Constitutively Expressed Epithelial-Derived Chemokines As Antibacterial Peptides in the Intestinal Mucosa
    ARTICLES nature publishing group A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa K K o t a r s k y 1 , K M S i t n i k 1 , H S t e n s t a d 1 , H K o t a r s k y 2 , A S c h m i d t c h e n 3 , M K o s l o w s k i 4 , J We h k a m p 4 a n d W W A g a c e 1 Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mICc12 , with IFN , IL-4 or TNF . Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
    [Show full text]
  • Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them?
    cancers Review Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them? Justine Cinier 1,†, Margaux Hubert 1,†, Laurie Besson 1, Anthony Di Roio 1 ,Céline Rodriguez 1, Vincent Lombardi 2, Christophe Caux 1,‡ and Christine Ménétrier-Caux 1,*,‡ 1 University of Lyon, Claude Bernard Lyon 1 University, INSERM U-1052, CNRS 5286 Centre Léon Bérard, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; [email protected] (J.C.); [email protected] (M.H.); [email protected] (L.B.); [email protected] (A.D.R.); [email protected] (C.R.); [email protected] (C.C.) 2 Institut de Recherche Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France; [email protected] * Correspondence: [email protected] † Co-first authorship. ‡ Co-last authorship. Simple Summary: The immune response against cancer is generated by effector T cells, among them cytotoxic CD8+ T cells that destroy cancer cells and helper CD4+ T cells that mediate and support the immune response. This antitumor function of T cells is tightly regulated by a particular subset of CD4+ T cells, named regulatory T cells (Tregs), through different mechanisms. Even if the complete inhibition of Tregs would be extremely harmful due to their tolerogenic role in impeding autoimmune diseases in the periphery, the targeted blockade of their accumulation at tumor sites or their targeted Citation: Cinier, J.; Hubert, M.; depletion represent a major therapeutic challenge. This review focuses on the mechanisms favoring Besson, L.; Di Roio, A.; Rodriguez, C.; Treg recruitment, expansion and stabilization in the tumor microenvironment and the therapeutic Lombardi, V.; Caux, C.; strategies developed to block these mechanisms.
    [Show full text]
  • An Introduction to Chemokines and Their Roles in Transfusion Medicine
    Vox Sanguinis (2009) 96, 183–198 © 2008 The Author(s) REVIEW Journal compilation © 2008 Blackwell Publishing Ltd. DOI: 10.1111/j.1423-0410.2008.01127.x AnBlackwell Publishing Ltd introduction to chemokines and their roles in transfusion medicine R. D. Davenport Blood Bank and Transfusion Service, University of Michigan Health System, Ann Arbor, MI, USA Chemokines are a set of structurally related peptides that were first characterized as chemoattractants and have subsequently been shown to have many functions in homeostasis and pathophysiology. Diversity and redundancy of chemokine function is imparted by both selectivity and overlap in the specificity of chemokine receptors for their ligands. Chemokines have roles impacting transfusion medicine in haemat- opoiesis, haematologic malignancies, transfusion reactions, graft-versus-host disease, and viral infections. In haematopoietic cell transplantation, chemokines are active in mobilization and homing of progenitor cells, as well as mediating T-cell recruitment in graft-versus-host disease. Platelets are rich source of chemokines that recruit and activate leucocytes during thrombosis. Important transfusion-transmissible viruses such as cytomegalovirus and human immunodeficiency virus exploit chemokine receptors to evade host immunity. Chemokines may also have roles in the pathophysiology of Received: 4 June 2007, revised 29 September 2008, haemolytic and non-haemolytic transfusion reactions. accepted 16 October 2008, Key words: Chemokines, chemokine receptors, haematopoietic stem cell transplantation, published online 8 December 2008 graft-vs-host disease, transfusion reactions. General characteristics of chemokines This classification is not completely definite, as under some conditions homeostatic chemokines are inducible. Chemokines are small, secreted proteins in the range of 8– Most chemokines were originally named for their first 10 kDa that have numerous functions in normal physiology identified biological activity, such as monocyte chemoattractant and pathology.
    [Show full text]