Desiccation Prels 19/3/02 1:42 Pm Page I

Total Page:16

File Type:pdf, Size:1020Kb

Desiccation Prels 19/3/02 1:42 Pm Page I Desiccation prels 19/3/02 1:42 pm Page i Desiccation and Survival in Plants Drying Without Dying Desiccation prels 19/3/02 1:42 pm Page ii Desiccation prels 19/3/02 1:42 pm Page iii Desiccation and Survival in Plants Drying Without Dying Edited by M. Black King’s College University of London UK and H.W. Pritchard Royal Botanic Gardens, Kew Wakehurst Place UK CABI Publishing Desiccation prels 4/4/02 2:16 pm Page iv CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi-publishing.org © CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Desiccation and survival in plants : drying without dying / edited by M. Black and H.W. Pritchard. p. cm. Includes bibliographical references (p. ). ISBN 0-85199-534-9 (alk. paper) 1. Plants--Drying. 2. Plant-water relationships. 3. Plants--Adaptation. I. Black, Michael. II. Pritchard, H. W. QK870 .D57 2002 581.4--dc21 2001043835 ISBN 0 85199 534 9 Typeset in Melior by Columns Design Ltd, Reading Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn Desiccation prels 19/3/02 1:42 pm Page v Contents Contributors vii Preface ix PART I. INTRODUCTION 1 1 Drying Without Dying 3 Peter Alpert and Melvin J. Oliver PART II. METHODOLOGY 45 2 Methods for the Study of Water Relations Under Desiccation Stress 47 Wendell Q. Sun 3 Experimental Aspects of Drying and Recovery 93 Norman W. Pammenter, Patricia Berjak, James Wesley-Smith and Clare Vander Willigen 4 Biochemical and Biophysical Methods for Quantifying Desiccation Phenomena in Seeds and Vegetative Tissues 111 Olivier Leprince and Elena A. Golovina PART III. BIOLOGY OF DEHYDRATION 147 5 Desiccation Sensitivity in Orthodox and Recalcitrant Seeds in Relation to Development 149 Allison R. Kermode and Bill E. Finch-Savage 6 Pollen and Spores: Desiccation Tolerance in Pollen and the Spores of Lower Plants and Fungi 185 Folkert A. Hoekstra 7 Vegetative Tissues: Bryophytes, Vascular Resurrection Plants and Vegetative Propagules 207 Michael C.F. Proctor and Valerie C. Pence 8 Systematic and Evolutionary Aspects of Desiccation Tolerance in Seeds 239 John B. Dickie and Hugh W. Pritchard v Desiccation prels 19/3/02 1:42 pm Page vi vi Contents PART IV. MECHANISMS OF DAMAGE AND TOLERANCE 261 9 Desiccation Stress and Damage 263 Christina Walters, Jill M. Farrant, Norman W. Pammenter and Patricia Berjak 10 Biochemistry and Biophysics of Tolerance Systems 293 Julia Buitink, Folkert A. Hoekstra and Olivier Leprince 11 Molecular Genetics of Desiccation and Tolerant Systems 319 Jonathan R. Phillips, Melvin J. Oliver and Dorothea Bartels 12 Rehydration of Dried Systems: Membranes and the Nuclear Genome 343 Daphne J. Osborne, Ivan Boubriak and Olivier Leprince PART V. RETROSPECT AND PROSPECT 365 13 Damage and Tolerance in Retrospect and Prospect 367 Michael Black, Ralph L. Obendorf and Hugh W. Pritchard Glossary 373 Taxonomic Index 383 Subject Index 401 Desiccation prels 19/3/02 1:42 pm Page vii Contributors Peter Alpert, Biology Department, University of Massachusetts, Amherst, Massachusetts 01003-5810, USA. [email protected] Dorothea Bartels, Institute of Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany. [email protected] Patricia Berjak, School of Life and Environmental Sciences, University of Natal, Durban 4041, South Africa. [email protected] Michael Black, Division of Life Sciences, King’s College, Franklin Wilkins Building, 150 Stamford Street, London SE1 6NN, UK. [email protected] Ivan Boubriak, The Oxford Research Unit, Open University, Foxcombe Hall, Boars Hill OX1 5HR, UK. [email protected] Julia Buitink, UMR Physiologie Moléculaire des Semences, Institut National d’Horticulture, 16 Bd Lavoisier, F49045 Angers, France. [email protected] John B. Dickie, Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK. [email protected] Jill M. Farrant, Department of Molecular and Cellular Biology, University of Cape Town, 7700, South Africa. [email protected] Bill E. Finch-Savage, Horticulture Research International, Wellesbourne, Warwick CV35 9EF, UK. bill.fi[email protected] Elena A. Golovina, Laboratory of Plant Physiology, Department of Plant Sciences, University of Wageningen, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands and Timiryazev Institute of Plant Physiology, Botanicheskaya 35, Moscow 127276, Russia. [email protected] Folkert A. Hoekstra, Laboratory of Plant Physiology, Department of Plant Sciences, University of Wageningen, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands. Folkert. [email protected] Allison R. Kermode, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. [email protected] Olivier Leprince, UMR Physiologie Moléculaire des Semences, Institut National d’Horticulture, 16 Bd Lavoisier, F49045 Angers, France. [email protected] Ralph L. Obendorf, Seed Biology, Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, USA. [email protected] Melvin J. Oliver, USDA-ARS Plant Stress and Germplasm Development Unit, 3810 4th Street, Lubbock, Texas 79415, USA. [email protected] vii Desiccation prels 19/3/02 1:42 pm Page viii viii Contributors Daphne J. Osborne, The Oxford Research Unit, Open University, Foxcombe Hall, Boars Hill OX1 5HR, UK. [email protected] Norman W. Pammenter, School of Life and Environmental Sciences, University of Natal, Durban 4041, South Africa. [email protected] Valerie C. Pence, CREW, Cincinnati Zoo and Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA. [email protected] Jonathan R. Phillips, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné- Weg 10, D-550829 Köln, Germany. [email protected] Hugh W. Pritchard, Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK. [email protected] Michael C.F. Proctor, School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK. [email protected] Wendell Q. Sun, Department of Biological Sciences, National University of Singapore, Kent Ridge Crescent, Singapore 119260. [email protected] Clare Vander Willigen, Department of Botany, University of Capetown, Private Bag, Rondebosch 7701, South Africa. [email protected] Christina Walters, USDA-ARS National Seed Storage Laboratory, 1111 South Mason Street, Fort Collins, CO 80521, USA. [email protected] James Wesley-Smith, School of Life and Environmental Sciences, University of Natal, Durban 4041, South Africa. [email protected] Desiccation prels 19/3/02 1:42 pm Page ix Preface Plant survival of desiccation as sporophytic and gametophytic tissues was last reviewed in detail in two books published in 1980. The first, by J. Levitt, on Responses of Plants to Environmental Stresses, Volume II, Water, Radiation, Salt and Other Stresses is a classic. The topic of plant water stress consumes about 200 pages and is set mainly at the introductory level but is still of sufficient detail to stimulate post-graduate researchers. Interestingly, there is no mention in Levitt’s book of desiccation sensitivity in seeds. However, this latter topic was specifically covered in another book by H.F. Chin and E.H. Roberts (Recalcitrant Seeds). At that time recalcitrant seed behaviour was something of a novelty and the book deals mainly with descriptions of germination, a listing of species with such seeds and an indication of how best to store the material in the short term. Aspects of plant desiccation have been considered in other publications dealing with the biology and biophysics of dehydration and in contributions to general works on seeds but a comprehensive treatment of desiccation and plant survival is not yet available. Since 1980 there has been a revolution in plant science as new methods of cell and molecular biology and biophysics have been applied to environmental stress, particularly in relation to desiccation tolerance. The basic level of under- standing of how plant cells cope with extreme water stress has increased tremendously and considerable effort has been made in the last 10 years to develop diagnostic markers for desiccation tolerance. At the physiological level, studies have often focused on seed material and on the responses of resurrection plants. At a more mechanistic level, model membrane systems have been used extensively, and exploration of the molecular genetics of desiccation tolerance has begun on developmental mutants, especially of seeds of crop species. These progressive but fundamental changes in approach to investigating the basis of survival of plant tissues under desiccation since the 1980s have meant that our perceptions of this subject have altered significantly. It seems particular appropriate now to take stock of these recent developments, to assess critically the importance of the experimental systems available for investigation and to ix Desiccation prels 19/3/02 1:42 pm Page x x Preface consider possible foci for future research work. This book sets out to address these issues. The Introduction surveys the topic of desiccation, and the remain- der of the book is divided into four parts, dealing with: (i) the technical back- ground to desiccation tolerance studies; (ii) the frequency and levels of dehydration stress tolerance in biological systems; (iii) mechanisms of damage and tolerance; and (iv) a brief retrospect and prospect.
Recommended publications
  • PDF, Also Known As Version of Record License (If Available): CC by Link to Published Version (If Available): 10.1111/Nph.14553
    Coudert, Y., Bell, N., Edelin, C., & Harrison, C. J. (2017). Multiple innovations underpinned branching form diversification in mosses. New Phytologist, 215(2), 840-850. https://doi.org/10.1111/nph.14553 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/nph.14553 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/nph.14553/full. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Multiple innovations underpinned branching form diversification in mosses Yoan Coudert1,2,3, Neil E. Bell4, Claude Edelin5 and C. Jill Harrison1,3 1School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 2Institute of Systematics, Evolution and Biodiversity, CNRS, Natural History Museum Paris, UPMC Sorbonne University, EPHE, 57 rue Cuvier, 75005 Paris, France; 3Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK; 4Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK; 5UMR 3330, UMIFRE 21, French Institute of Pondicherry, CNRS, 11 Saint Louis Street, Pondicherry 605001, India Summary Author for correspondence: Broad-scale evolutionary comparisons have shown that branching forms arose by con- C.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Bryophytes Sl
    à Enzo et à Lino 1 Bryophytes sl. Mousses, hépatiques et anthocérotes Mosses, liverworts and hornworts Glossaire illustré Illustrated glossary septembre 2016 Leica Chavoutier 2 …il faut aussi, condition requise abso- lument pour quiconque veut entrer ou plutôt se glisser dans l’univers des mousses, se pencher vers le sol pour y diriger ses yeux, se baisser… » Véronique Brindeau 3 Introduction Planches Glossaire : français/english Glossary : english/français Bibliographie Index des photographies 4 « …elles sont d’avant le temps des hommes, bien avant celui des arbres et des fleurs… » Véronique Brindeau Introduction Ce glossaire traite des mousses, hépatiques et anthocérotes, trois phylums proches par certaines parties de leurs structures et surtout par leur cycle de vie qui sont actuellement regroupés pour former les Bryophytes sl. Ce glossaire se veut une aide à la reconnaissance des termes courants utili- sés en bryologie mais aussi un complément donné à tous les utilisateurs des flores et autres publications rédigées en anglais qui ne maîtrisent pas par- faitement la langue et qui sont vite confrontés à des interprétations dou- teuses en consultant l’habituel dictionnaire bilingue. Il se veut pratique d’utilisation et pour ce fait est largement illustré. Ce glossaire ne peut être que partiel : il était impossible d’inclure dans les définitions tous les cas de figures. L’utilisation la plus courante a été privi- légiée. Chaque terme est associé à un thème d’utilisation et c’est dans ce contexte que la définition est donnée. Les thèmes retenus concernent : la morphologie, l’anatomie, les supports, le port ou habitus, la chorologie, la nomenclature, la taxonomie, la systématique, les stratégies de vie, les abré- viations, les écosystèmes (critères géologiques, pédologiques, hydrolo- giques, édaphiques, climatiques …) Pour des descriptions plus détaillées le lecteur pourra se reporter aux ou- vrages cités dans la « Bibliographie ».
    [Show full text]
  • The Moss Flora of the Isthmic Desert, Sinai; Egypt
    Contributions to the moss flora of the Isthmic Desert, Sinai; Egypt Mahmoud S. M. Refai and Wagieh El Saadawi Botany Department, Faculty of Science, Ain Shams University, Cairo-Egypt. E- mail: [email protected] Refai M.S.M. & El-Saadawi W. 2000. Contributions to the moss flora of the Isthmic Desert, Sinai; Egypt. Taeckholmia 20(2): 139-146. Sixteen moss species are reported as new records from Gebel Dalfa and Ain Qadies of the Isthmic Desert in Northern Sinai, among these seven species are new records to the Isthmic Desert while Trichostomum brachydontium, is a new record to the flora of Egypt. This brings the total number of fully identified mosses known from Isthmic Desert to 32 taxa. Notes on habitats, fruiting, sex organs and gemmae are given. Key words: Bryoflora, Egypt, Isthmic Desert, moss flora, northern Sinai. Introduction The survey of the bryoflora of the Isthmic Desert in Northern Sinai has, so far, been limited to four localities: 1- Arif El-Naga, 2- Gebel Halal, 3- Gebel Libni and 4- Gebel El- Godyrat (Table 1, Fig. 1). From these localities, Bilewsky (1974), Shabbara (1999) and Abou-Salama & El-Saadawi (2000) reported 33 mosses of which the following 25 species (Table 1) were fully identified. Table (1): Fully identified moss species from Isthmic Desert. Locality number Taxon 1 2 3 4 Fissidentaceae 1. Fissidens arnoldii + Pottiaceae 2. Tortella humilis + 3. Trichostomum crispulum + + 4. Didymodon aaronis + 5. D. rigidulus var. rigidulus + + 6. D. vinealis + + 7. Gymnostomum viridulum + + Received 10 June 2000. Revision accepted 27 November 2000. -139- M. S. M.
    [Show full text]
  • Contributions to the Solution of Phylogenetic Problem in Fabales
    Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns.
    [Show full text]
  • Bibliography of Publications 1974 – 2019
    W. SZAFER INSTITUTE OF BOTANY POLISH ACADEMY OF SCIENCES Ryszard Ochyra BIBLIOGRAPHY OF PUBLICATIONS 1974 – 2019 KRAKÓW 2019 Ochyraea tatrensis Váňa Part I. Monographs, Books and Scientific Papers Part I. Monographs, Books and Scientific Papers 5 1974 001. Ochyra, R. (1974): Notatki florystyczne z południowo‑wschodniej części Kotliny Sandomierskiej [Floristic notes from southeastern part of Kotlina Sandomierska]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 360 Prace Botaniczne 2: 161–173 [in Polish with English summary]. 002. Karczmarz, K., J. Mickiewicz & R. Ochyra (1974): Musci Europaei Orientalis Exsiccati. Fasciculus III, Nr 101–150. 12 pp. Privately published, Lublini. 1975 003. Karczmarz, K., J. Mickiewicz & R. Ochyra (1975): Musci Europaei Orientalis Exsiccati. Fasciculus IV, Nr 151–200. 13 pp. Privately published, Lublini. 004. Karczmarz, K., K. Jędrzejko & R. Ochyra (1975): Musci Europaei Orientalis Exs‑ iccati. Fasciculus V, Nr 201–250. 13 pp. Privately published, Lublini. 005. Karczmarz, K., H. Mamczarz & R. Ochyra (1975): Hepaticae Europae Orientalis Exsiccatae. Fasciculus III, Nr 61–90. 8 pp. Privately published, Lublini. 1976 006. Ochyra, R. (1976): Materiały do brioflory południowej Polski [Materials to the bry‑ oflora of southern Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 432 Prace Botaniczne 4: 107–125 [in Polish with English summary]. 007. Ochyra, R. (1976): Taxonomic position and geographical distribution of Isoptery‑ giopsis muelleriana (Schimp.) Iwats. Fragmenta Floristica et Geobotanica 22: 129–135 + 1 map as insertion [with Polish summary]. 008. Karczmarz, K., A. Łuczycka & R. Ochyra (1976): Materiały do flory ramienic środkowej i południowej Polski. 2 [A contribution to the flora of Charophyta of central and southern Poland. 2]. Acta Hydrobiologica 18: 193–200 [in Polish with English summary].
    [Show full text]
  • (Bryopsida: Splachnaceae). Lily Roberta Lewis University of Connecticut, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 5-7-2015 Resolving Amphitropical Phylogeographic Histories in the Common Dung Moss Tetraplodon (Bryopsida: Splachnaceae). Lily Roberta Lewis University of Connecticut, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Lewis, Lily Roberta, "Resolving Amphitropical Phylogeographic Histories in the Common Dung Moss Tetraplodon (Bryopsida: Splachnaceae)." (2015). Doctoral Dissertations. 747. https://opencommons.uconn.edu/dissertations/747 Resolving Amphitropical Phylogeographic Histories in the Common Dung Moss Tetraplodon (Bryopsida: Splachnaceae). Lily Roberta Lewis, PhD University of Connecticut, 2015 Many plants have geographic disjunctions, with one of the more rare, yet extreme being the amphitropical, or bipolar disjunction. Bryophytes (namely mosses and liverworts) exhibit this pattern more frequently relative to other groups of plants and typically at or below the level of species. The processes that have shaped the amphitropical disjunction have been infrequently investigated, with notably a near absence of studies focusing on mosses. This dissertation explores the amphitropical disjunction in the dung moss Tetraplodon, with a special emphasis on the origin of the southernmost South American endemic T. fuegianus. Chapter 1 delimits three major lineages within Tetraplodon with distinct yet overlapping geographic ranges, including an amphitropical lineage containing the southernmost South American endemic T. fuegianus. Based on molecular divergence date estimation and phylogenetic topology, the American amphitropical disjunction is traced to a single direct long-distance dispersal event across the tropics. Chapter 2 provides the first evidence supporting the role of migratory shore birds in dispersing bryophytes, as well as other plant, fungal, and algal diaspores across the tropics.
    [Show full text]
  • A Case Study of the Moss Dicranum Scoparium Hedw. (Dicranaceae, Bryophyta)
    33 (2): 137-140 (2009) Original Scientifi c Paper Axenically culturing the bryophytes: a case study of the moss Dicranum scoparium Hedw. (Dicranaceae, Bryophyta) Milorad Vujičić, Aneta Sabovljević and Marko Sabovljević✳ Institute of Botany and Garden Jevremovac, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia ABSTRACT: Th e aim of this study was to establish axenic culture of the moss Dicranum scoparium a counterpart of rare and widly endangered D. viride. Th e media contents, as well as light and temperature were varied to fi nd the optimal conditions for spore germination, protonema growing, bud formation and gametophyte development. Th e best contitions for micropropagation or axenically bryo-farming is to grow D. scoparium on the MS medium enriched with sucrose (1.5%), at 18-20°C independent of light length condition. Key words: moss, Dicranum scoparium, in vitro, axenical culture Received 30 September 2009 Revision accepted 30 November 2009 UDK 582.32.085.2 INTRODUCTION One of the species in high risk of extinction is Dicranum viride (Sull. & Lesq. in Sull.) Lindb. (species of Bryophytes, although the second largest group of terrestrial community interest listed in the Habitat Directive 92/43 plants, received much less attention in conservation EEC under annex II, Bern Convention Species, appendix and protection in comparison to vascular plants and 1). It is ranged in northern hemisphere but rare all over. In higher animals. However, bryophytes are documented to Europe, this species is threatened all over (ECCB 1995). In decrease in nature aff ected by habitat devastation directly Serbia, D. viride is estimated by available data as vulner- or indirectly.
    [Show full text]
  • Water Relations: Conducting Structures
    Glime, J. M. 2017. Water Relations: Conducting Structures. Chapt. 7-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological 7-1-1 Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 7 March 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-1 WATER RELATIONS: CONDUCTING STRUCTURES TABLE OF CONTENTS Movement to Land .............................................................................................................................................. 7-1-2 Bryophytes as Sponges ....................................................................................................................................... 7-1-2 Conducting Structure .......................................................................................................................................... 7-1-4 Leptomes and Hydromes............................................................................................................................. 7-1-8 Hydroids............................................................................................................................................. 7-1-12 Leptoids.............................................................................................................................................. 7-1-14 Rhizome..................................................................................................................................................... 7-1-15 Leaves.......................................................................................................................................................
    [Show full text]
  • On the Branch Primordia Structure in the Basal Pleurocarpous Mosses (Bryophyta) Особенности Строения Зачатков Веточек В Базальных Группах Бокоплодных Мхов Ulyana N
    Arctoa (2012) 21: 221-236 ON THE BRANCH PRIMORDIA STRUCTURE IN THE BASAL PLEUROCARPOUS MOSSES (BRYOPHYTA) ОСОБЕННОСТИ СТРОЕНИЯ ЗАЧАТКОВ ВЕТОЧЕК В БАЗАЛЬНЫХ ГРУППАХ БОКОПЛОДНЫХ МХОВ ULYANA N. SPIRINA1,2, MASAKI SHIMAMURA3 & MICHAEL S. IGNATOV2 УЛЬЯНА Н. СПИРИНА1,2, МАСАКИ ШИМАМУРА3 И МИХАИЛ С. ИГНАТОВ2 Abstract The development of leaves on branch primordia is studied in Ptychomniales, Hookeriales, and basal families of the Hypnales, including the Trachylomataceae, Plagiotheciaceae, Acrocladiaceae, etc. Many of them are characterized by “lacking pseudoparaphyllia”. However, the definition of this character remains vague. In order to avoid misleading terminology, we suggest distinguishing, with certain refinements, the Bryum-type and Climacium-type of branch primordia. Their main difference concerns the origin of the most proximal branch leaves: in the Climacium-type, they are derived from cells that are the first merophytes produced by the branch apical cell, while in the Bryum-type, the first merophytes do not produce leaves and the first branch leaves appear on branch primordia from cells that are later descendants of the branch apical cell. The Bryum-type is often associated with a leaf deep splitting to its base into separate segments, and appearing as independent structures (and some- times referred to “pseudoparaphyllia”) although originating from a single merophyte as a compound leaf. Bryum-type branch primordia are characteristic of basal groups of pleurocarpous mosses, while Climacium-type is represented in most of advanced families. Резюме Рассматривается развитие листьев в в базальных группах бокоплодных мхов (Ptychomniales, Hookeriales и базальных семействах порядка Hypnales), которые часто описываются как не имеющие псевдопарафиллий. Вместе с тем последний термин понимается разными авторами очень неоднозначно, и более информативным, по-видимому, следует считать подразделение зачатков веточек на Bryum- и Climacium-типы, с некоторыми уточнениями.
    [Show full text]
  • Spring- 2009-1-435-Iran.Mdi
    Int. J. Environ. Res., 3(2):239-246, Spring 2009 ISSN: 1735-6865 Interrelations Between Plants and Environmental Variables Tavili, A.* and Jafari, M. Department of Rehabilitation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, P. O. Box: 31585-4314, Karaj, Iran Received 22 July 2008; Revised 20 Dec 2008; Accepted 3 Jan 2009 ABSTRACT: Distribution and abundance of plants has been correlated with a variety of complex environmental gradients. Environmental factors affect plants growth and need to be understood by ecosystem managers. This study was carried out to examine the relationships between site factors and different vascular and non-vascular plants in north of Iran. For this purpose, vegetation and soil sampling was performed along 8 transects each with a length of 300 m in key areas of the rangeland. Also, topographic properties including elevation, slope and aspect were recorded in sampling points, too. Using TWINSPAN, classification of the vegetation was performed. After grouping of the species, Multivariate technique of Principal Component Analysis (PCA) was used to analyze the relationships between vegetation and site factors. The results of classification revealed that species are classified to 6 ecological groups. The interesting result was that vascular and non-vascular plants were positioned in approximately separated groups. Also, each group according to the contained species showed different correlation with site factors. Properties of nutrient status, EC, texture and slope aspect were the most important factors that correlated strongly with the distribution of ecological groups in the study area, but the strength and weakness of the correlation was different based on the species of each group.
    [Show full text]
  • Volume 1, Chapter 7-4A: Water Relations: Leaf Strategies-Structural
    Glime, J. M. 2017. Water Relations: Leaf Strategies – Structural. Chapt. 7-4a. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-4a-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-4a WATER RELATIONS: LEAF STRATEGIES – STRUCTURAL TABLE OF CONTENTS Overlapping Leaves .......................................................................................................................................... 7-4a-4 Leaves Curving or Twisting upon Drying ......................................................................................................... 7-4a-5 Thickened Leaf.................................................................................................................................................. 7-4a-5 Concave Leaves ................................................................................................................................................ 7-4a-7 Cucullate Leaves ............................................................................................................................................. 7-4a-10 Plications ......................................................................................................................................................... 7-4a-10 Revolute and Involute Margins ......................................................................................................................
    [Show full text]