What Is a VAD?

Total Page:16

File Type:pdf, Size:1020Kb

What Is a VAD? 9/30/2016 A Bridge to Life MCS at UCSF Medical Center MCS: Yesterday, Today and Beyond Mechanical Circulatory Support Perfusion of Organs with Mechanical Devices ExtraCorporeal Membrane Left Ventricular Assist Device Isolated Organ Oxygenation HeartWare LVAD Perfusion ECMO “Lung in a Box” Michele Kassemos, RN BSN Mechanical Circulatory Support UCSF Medical Center What is a VAD? What is ECMO? It’s a pump! ExtraCorporeal Membrane Oxygenation A blood pump placed outside the body which circulates blood through an Ventricular Assist Device artificial membrane (or lung), and then back into the circulation, providing oxygenated blood to a patient in severe respiratory failure, cardiac failure, or both . A Mechanical Blood Pump that shunts blood from • Goal: Turning Blue Blood Red the heart back into the circulation • Indicated for severe respiratory and/or cardiac failure that is refractory to maximal therapies • Prolonged but temporary (usually <30 days) • Allows for organ rest while avoiding further iatrogenic injury • Sustains life while bridging to organ recovery or transplant The VAD “bypasses” the sick, weakened heart and provides circulation, or “flow,” to the body and vital organs 1 9/30/2016 Historical Context The early concepts of Mechanical Life Support 1813 - Le Gallois - first descriptions of mechanical support in rabbits 1926 – Soviet physician Brukhonenko developed first primitive heart-lung machine "The solution of the problem of the artificial circulation of the whole animal opens the door to the problem of operations on the heart, for example on the valve." Sergei S. Brukhonenko, 1928 Konstantinov, I MD, Alexi-Meskishvili, V MD, PhDb; Sergei S. Brukhonenko: the development of the first heart-lung machine for total body perfusion. Ann ThoracSurg 2000;69:962-966 History of MCS History of MCS Pioneers of Heart & Lung Assist Pioneers of Heart & Lung Assist 1953 - Dr John Gibbon “Father of CPB” 1954-55 – Dr Lillihei First to successfully use CPB for cardiac surgery “Cross Circulation” as biological oxygenator “…the idea occurred to me that if it were possible to remove continuously some of the blue blood from the patient’s swollen veins, put oxygen into the blood and allow carbon dioxide to escape from it, and then to inject continuously the new red blood back into the patient’s arteries, we might have been able to save her life.” Dr Lillihei with pediatric survivor of cardiac surgery using cross circulation JH Gibbon and wife Mali Cross circulation between parent and child using parent as heart/lung machine Miller BJ, Gibbon JH Jr ; Recent advances in the development of a mechanical heart and lung apparatus. Ann Surg 1951 2 9/30/2016 History of MCS History of MCS Pioneers of Heart & Lung Assist Pioneers of Heart & Lung Assist 1966 – Dr M. DeBakey First Successful VAD 1967 – Dr C. Barnard, South Africa • LVAD for failure to wean from CPB • First successful human heart transplant • Pneumatic, paracorporeal pump 1969 – Dr D. Cooley first Total Artificial Heart • Supported for 10 days, organ recovery, discharged • Lt Ventricular aneurysm repair, failure to wean from home CPB • Supported pt for 64 hrs until heart transplant performed • Concept of “Bridging to Transplant ” with MCS is established Historical Context Historical Context st 1971 – Dr. Don Hill First adult ECMO survivor (Adult ARDS) 1 LVAD-to-Cardiac Transplants 1984 – 1st successful LVAD-to-transplant with Novacor LVAD Stanford (Oyer MD) 1984 –LVAD-to-transplant with Thoratec pneumatic paracorporeal LVAD San Francisco (JD Hill) 1992 - LVAD-to-transplant with HeartMate IP LVAD Texas Heart Institute (Frazier) Santa Barbara, CA 1971 NIH-funded study stopped after 90% mortality rate in ECMO group From 1979-1995 Adult ECMO rarely used outside a number of small, dedicated centers Novacor HeartMate IP HeartMate Pearce- Donachey DDC Driver 3 9/30/2016 Historical Context Historical Context Today: Second Generation Pumps VADs Go Mobile in the 90s • 1991 – 1st successful implant of “untetherable” HeartMate VE LVAD Texas Heart (Frazier) New millennium brings “Continuous Flow” Rotary pumps (HM II, Jarvik, MicroDebakey) Centrifugal pumps (HeartWare, CentriMag, Rotoflow) • 1994 – HeartMate XVE LVAD FDA-approved for implantable pump for bridge-to-transplant April 2008 – HM II approved for bridge-to-transplant Jan 2010 – HM II approved for Destination Therapy Nov 2012 – HeartWare HVAD approved for bridge to transplant Wait….What Happened to ECMO? A New Era for Adult ECMO 2009 Essentially….nothing much Major Game Changers for Adult ECMO CESAR Trial – Oct 2009 H1N1 Influenza A epidemic – Fall of 2009 Avalon Dual Lumen VV Cannula FDA approved – Jan 2009 1972 2005 Up until early 2000s, ECMO still rarely used other than salvage cases, aka “Hail Mary Pass” 4 9/30/2016 CESAR Trial 2009 Flu Pandemic Conventional Ventilation or ECMO for Severe H1N1 Adult Respiratory Failure • Conducted from 2001 – 2006 in UK • Influenza A virus causing ARDS in rare cases • Randomized controlled trial • Study from Australia & New Zealand (JAMA 2009) • Comparing conventional ventilation vs ECMO in patients w/ • observed an 80% ECMO survival rate of adults w/ H1N1 ARDS ARDS (n=68) • Randomized to either VV ECMO (90 pts) or continuing • ELSO: conventional care at referral hospitals (90 pts) • “Review of the H1N1 data shows 72% survival rate when ECMO is • ECMO group: 57 of 90 (63%) met endpoint instituted within 6 days of intubation; 31% when pt intubated for 7 days or longer” • Conventional ventilatory group: 41 of 87 (47%) met end point Why Game Changer? Why a Game Changer? • • 63 % survival rate – demonstrating efficacy in adults 70-80 % Survival if ECMO initiated sooner rather than later • Data to support increased survival in transporting to ECMO • Efficacy in ECMO as tx for Acute Respiratory Distress centers Syndrome in adults Peek et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomized controlled trial. Lancet UCSF Develops Mobile ECMO Team Dual lumen VV ECMO Cannula Only Center in Region During H1N1, and post CESAR Trial, ECMO referrals exploded • Avalon Elite Patient’s too unstable for transport VV ECMO cannula for respiratory failure “ECMO TO GO” team formed in 2009 under Charles Cannulation via Rt Internal Jugular Hoopes and Jasleen Kukreja Leaving pt ambulatory Draining from two points (SVC & IVC) Flows directly back into Rt Atrium Very little recirculation rate(2%) Why a Game Changer? Improving candidacy for transplant Allows for ambulation Minimally invasive – no thoracotomy, no major artery cannulation 5 9/30/2016 History of Heart & Lung Asist UCSF at the forefront of bringing ECMO UCSF makes it’s mark from this…. 2/26/2009 – Dr. Charles Hoopes @ UCSF is the first surgeon in US to place Avalon Cath for Ambulatory Lung Assist st UCSF 1 ECMO center in the US using ambulatory ECMO as a bridge to lung transplant To THIS!! Central VA ECMO “Ambulatory Bypass” “Ambulatory Oxy RVAD” PA to LA central cannulation w/ VAD cannulae (PHTN, RV Failure, hypoxia, s/p PEA arrest to Bl lung Tx “Ambulatory Lung Assist” “Ambulatory Oxy RVAD” VV ECMO with DLC. End- PA to Lt Atrium w/ tunneled Stage CF, Bridged to Bilateral VAD cannulae. Lung Transplant. 33 days on (ILD, RV Failure, hypoxia -> support. bridged to bilateral lung tx “Walking Bypass” after 42 days of support). RA to AO central cannulation w/ VAD cannulae (PHTN, RV failure, s/p PEA arrest to Heart/Lung Tx) 6 9/30/2016 Happy Endings Central “Oxy RVAD” “Oxy RVAD” PA to LA central cannulation w/ VAD cannulae (PHTN, RV failure, Hypoxia, s/p PEA arrest to Bil Lung Tx) Pipeline Technology Pipeline Technology What’s next? What’s next? HeartWare mVAD – Continuous Flow Axial Pump HeartWare Pipeline 70% smaller than HVAD Reduced incision size Reduced complications (bleeding, RVF) Preservation of sternum Full or partial support Weaning Intervention in earlier stages of disease Gimbaled Sewing Ring Depth adjustment supporting smaller heart chambers mVAD Advantage Trial in progress Multi-center single arm trial 70 patients at 11 sites in Australis/Europe MVAD Video 7 9/30/2016 Pipeline Technology Percutaneous Right-Sided Support Impella RP HeartMate III – Continuous Flow Centrifugal Pump Impella RP Right-sided percutaneous support Superior Hematological Compatibility Short-term support of RV Minimized shear stress Support RV post LVAD surgery Minimizes stasis Minimize interactions between blood and foreign surface Full support 2 – 10 lpm flow Intervention in earlier stages of disease Modular Driveline Momentum III Trial in progress Multi-center trial Comercialized in Europe w/ over 200 implants Ongoing studies in 5 sites in US ECMO Circuits and Components Tandem Lung they’ve come a long way, Baby Ambulatory “Oxy-RVAD” Dual Lumen Cannula Inflow port: RA Outflow port: PA Minimally invasive approach 8 9/30/2016 Thank You for Your Time 9.
Recommended publications
  • The First Total Artificial Heart
    The First Total Artificial Heart On the night of December 1-2, 1982, with a major winter storm howling outside, medical history was being made inside the University of Utah Hospital. This event was the implantation of the first destination total artificial heart (TAH) in a human being. That person, 61-year-old Barney Clark, was a retired Seattle dentist with family roots in Utah. Dr. Clark’s several year history of dyspnea and fatigability had been attributed to chronic obstructive pulmonary disease in a University of Utah Hospital former smoker. However, 2 1/2 years before admission, a diagnosis of heart failure was made associated with atrial fibrillation with a rapid ventricular response. In-patient treatment for recurrent heart failure with paroxysmal ventricular tachycardia (VT) was required 1 ½ years before admission. Coronary angiography and left ventriculography established a diagnosis of advanced, non-ischemic dilated cardiomyopathy with an ejection fraction of 23%. Because of symptomatic progression of heart failure, Dr. Clark was referred to the author at LDS Hospital in Salt Lake City, near family members, for investigational inotrope therapy (amrinone), but this caused hypotension and exacerbated atrial and ventricular tachyarrhythmias. Endomyocardial biopsy showed low-grade cellular and humoral myocarditis, and a course of immunosuppressant therapy (prednisone and azathioprine) was begun with initial improvement. However, clinical deterioration resumed, with low- output failure and edema, 6 ½ months later, leading to hospitalization for IV diuretics and dobutamine. Clinical improvement was only marginal, leaving him in class IV heart failure. Jeffrey L. Anderson, MD: Barney Clark’s Cardiologist An opportune meeting occurred 3-4 months prior to the final admission between the author and Dr.
    [Show full text]
  • Ventricular Assist Devices (Vads) and Total Artificial Hearts These Services May Or May Not Be Covered by Your Healthpartners Plan
    Ventricular assist devices (VADs) and total artificial hearts These services may or may not be covered by your HealthPartners plan. Please see your plan documents for your specific coverage information. If there is a difference between this general information and your plan documents, your plan documents will be used to determine your coverage. Administrative Process Prior authorization is required for insertion of an implantable ventricular assist device (VAD). Prior authorization is required for placement of a total artificial heart (TAH). Prior authorization is not required in the event that either of the devices listed above is used under emergency circumstances for a critically ill member in an in-patient setting. Emergency use is defined as necessary to save the life or protect the immediate well-being of a given patient. However, services with specific coverage criteria may be reviewed concurrently or retrospectively to determine medical necessity. Prior authorization is not required for percutaneous ventricular assist devices (pVADs). Coverage Insertion of an implantable ventricular assist device (VAD) or total artificial heart (TAH) is covered per the member’s plan documents when the criteria outlined below are met and the procedure is performed at a HealthPartners Transplant Center of Excellence. Please see the Related Content section for the Transplant Centers of Excellence documents. Indications that are covered Implantable ventricular assist device Adult 1. An implantable VAD is covered as a bridge to recovery in patients with a potentially reversible condition when the following criteria are met: A. The requested device has received approval from the Food and Drug Administration (FDA) and is being used in accordance with device-specific, FDA-approved indications.
    [Show full text]
  • The Artificial Heart: Costs, Risks, and Benefits
    The Artificial Heart: Costs, Risks, and Benefits May 1982 NTIS order #PB82-239971 THE IMPLICATIONS OF COST-EFFECTIVENESS ANALYSIS OF MEDICAL TECHNOLOGY MAY 1982 BACKGROUND PAPER #2: CASE STUDIES OF MEDICAL TECHNOLOGIES CASE STUDY #9: THE ARTIFICIAL HEART: COST, RISKS, AND BENEFITS Deborah P. Lubeck, Ph. D. and John P. Bunker, M.D. Division of Health Services Research, Stanford University Stanford, Calif. Contributors: Dennis Davidson, M. D.; Eugene Dong, M. D.; Michael Eliastam, M. D.; Dennis Florig, M. A.; Seth Foldy, M. D.; Margaret Marnell, R. N., M. A.; Nancy Pfund, M. A.; Thomas Preston, M. D.; and Alice Whittemore, Ph.D. OTA Background Papers are documents containing information that supplements formal OTA assessments or is an outcome of internal exploratory planning and evalua- tion. The material is usually not of immediate policy interest such as is contained in an OTA Report or Technical Memorandum, nor does it present options for Con- gress to consider. -I \lt. r,,, ,.~’ . - > ‘w, . ,+”b Office of Technology Assessment ./, -. Washington, D C 20510 4,, P ---Y J, ,,, ,,,, ,,, ,. Library of Congress Catalog Card Number 80-600161 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This case study is one of 17 studies comprising Background Paper #2 for OTA’S assessment, The Implications of Cost-Effectiveness Analysis of Medical Technology. That assessment analyzes the feasibility, implications, and value of using cost-effec- tiveness and cost-benefit analysis (CEA/CBA) in health
    [Show full text]
  • 280 Total Artificial Hearts and Implantable Ventricular Assist
    Medical Policy Total Artificial Hearts and Implantable Ventricular Assist Devices Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History Policy Number: 280 BCBSA Reference Number: 7.03.11 Related Policies • Heart/Lung Transplant, #269 • Heart Transplant, #197 • Extracorporeal Membrane Oxygenation, #726 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Bridge to Transplantation Implantable ventricular assist devices (VADs) with Food and Drug Administration (FDA) approval or clearance may be considered MEDICALLY NECESSARY as a bridge to heart transplantation for patients who are currently listed as heart transplantation candidates and not expected to survive until a donor heart can be obtained, or are undergoing evaluation to determine candidacy for heart transplantation. Implantable (VADs) with FDA approval or clearance, including humanitarian device exemptions, may be considered MEDICALLY NECESSARY as a bridge to heart transplantation in children 16 years old or younger who are currently listed as heart transplantation candidates and not expected to survive until a donor heart can be obtained, or are undergoing evaluation to determine candidacy for heart transplantation. Total artificial hearts (TAHs) with FDA-approved devices may be considered MEDICALLY NECESSARY as a bridge to heart transplantation for patients with biventricular failure who have no other reasonable medical
    [Show full text]
  • Total Artificial Heart and Ventricular Assist Devices
    UnitedHealthcare® Commercial Medical Policy Total Artificial Heart and Ventricular Assist Devices Policy Number: 2021T0384V Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ........................................................................... 1 • Clinical Trials Documentation Requirements......................................................... 1 Applicable Codes .............................................................................. 2 Community Plan Policy Description of Services ..................................................................... 2 • Total Artificial Heart and Ventricular Assist Devices Clinical Evidence ............................................................................... 2 Medicare Advantage Coverage Summary U.S. Food and Drug Administration ................................................ 5 • Ventricular Assist Device (VAD) and Artificial Heart References ......................................................................................... 6 Policy History/Revision Information................................................ 7 Related Clinical Guidelines Instructions for Use ........................................................................... 8 • Mechanical Circulatory Support Devices (MCSD) • Transplant Review Guidelines: Solid Organ Transplantation Coverage Rationale The SynCardia™ temporary Total Artificial Heart is proven and medically necessary as a bridge to heart transplantation in members who meet all of
    [Show full text]
  • Total Artificial Heart Reference Number: CP.MP.127 Coding Implications Last Review Date: 11/20 Revision Log
    CEN,:'ENS:" ~·orporalion Clinical Policy: Total Artificial Heart Reference Number: CP.MP.127 Coding Implications Last Review Date: 11/20 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The SynCardia temporary Total Artificial Heart (TAH) (SynCardia Systems Inc.), formerly known as the CardioWest Total Artificial Heart, is a biventricular pulsatile pump that replaces the patient’s native ventricles and valves. This policy describes the medical necessity requirements for the total artificial heart. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® that the TAH is medically necessary as a bridge to heart transplantation when all of the following criteria are met: A. Member/enrollee is approved for cardiac transplant and is currently on transplant list; B. New York Heart Association (NYHA) Functional Class IV; C. Presence of non-reversible biventricular failure unresponsive to all other treatments; D. Ineligible for other ventricular support devices; E. Compatible donor heart is currently unavailable; F. Imminent risk of death; G. The device is U.S. FDA approved and used according to the FDA-labeled indications, contraindications, warnings and precautions; H. Member/enrollee is able to receive adequate anti-coagulation while on the total artificial heart. II. It is the policy of health plans affiliated with Centene Corporation that the TAH is experimental/investigational for use as destination therapy (permanent replacement of the failing heart). III. It is the policy of health plans affiliated with Centene Corporation that hospital discharge of members/enrollees implanted with the TAH who are supported by portable drivers (e.g., the Freedom portable driver) is experimental/investigational.
    [Show full text]
  • PG0070 Ventricular Assist Devices
    Ventricular Assist Devices Policy Number: PG0070 ADVANTAGE | ELITE | HMO Last Review: 07/01/2021 INDIVIDUAL MARKETPLACE | PROMEDICA MEDICARE PLAN | PPO GUIDELINES This policy does not certify benefits or authorization of benefits, which is designated by each individual policyholder terms, conditions, exclusions and limitations contract. It does not constitute a contract or guarantee regarding coverage or reimbursement/payment. Self-Insured group specific policy will supersede this general policy when group supplementary plan document or individual plan decision directs otherwise. Paramount applies coding edits to all medical claims through coding logic software to evaluate the accuracy and adherence to accepted national standards. This medical policy is solely for guiding medical necessity and explaining correct procedure reporting used to assist in making coverage decisions and administering benefits. SCOPE X Professional _ Facility DESCRIPTION Ventricular assist devices (VAD) are blood pumps that are designed to assist or replace the function of either the right or left ventricle of the heart. There are three kinds of ventricular assist devices: biventricular (BiVADs), right ventricular (RVADs), and left ventricular (LVADs). A right VAD supports the pulmonary (lung) circulation, while a left VAD (the most commonly used) provides blood flow to the rest of the body. Ventricular assist devices are utilized to promote cardiac health in those patients suffering from reversible cardiac dysfunction, to support patients who are awaiting heart transplantation or to provide permanent circulatory support in patients with end-stage heart failure who are not candidates for transplantation (known as destination therapy). External implanted ventricular assist devices include the following types: A destination VAD: the placement of the device when no transplant is being considered A Bridge to Transplant VAD: the device is placed to support functioning in anticipation of a heart transplant.
    [Show full text]
  • Bioengineered Hearts
    The Science Journal of the Lander College of Arts and Sciences Volume 8 Number 1 Fall 2014 - 1-1-2014 Bioengineered Hearts Rivky Loeb Touro College Follow this and additional works at: https://touroscholar.touro.edu/sjlcas Part of the Cardiovascular System Commons, and the Molecular, Cellular, and Tissue Engineering Commons Recommended Citation Loeb, R. (2014). Bioengineered Hearts. The Science Journal of the Lander College of Arts and Sciences, 8(1). Retrieved from https://touroscholar.touro.edu/sjlcas/vol8/iss1/13 This Article is brought to you for free and open access by the Lander College of Arts and Sciences at Touro Scholar. It has been accepted for inclusion in The Science Journal of the Lander College of Arts and Sciences by an authorized editor of Touro Scholar. For more information, please contact [email protected]. Bioengineered Hearts By: Rivky Loeb Rivky graduated in June 2014 with a B.S. in biology. Abstract Heart disease is one of the highest causes for fatality in the world. Although many such diseases can be treated by a heart transplant, this in itself can cause countless problems. Aside from the high demand for donor hearts, there is the risk of the patient’s immune system rejecting the transplanted heart. A bioengineered heart would reduce the need for donor hearts, and thus save countless lives. Finding a suitable scaffold, obtaining appropriate cells, and ensuring that the tissue will function properly are the main focuses in creating an artificial heart. While most of the studies done have been concentrated on creating cardiac tissue rather than the full organ, with the integration of these aspects scientists are getting closer to the goal of engineering a fully functioning artificial heart.
    [Show full text]
  • INFORMED CONSENT to the ARTIFICIAL HEART George J
    Western New England Law Review Volume 9 9 (1987) Article 7 Issue 1 1-1-1987 DEATH AND THE MAGIC MACHINE: INFORMED CONSENT TO THE ARTIFICIAL HEART George J. Annas Follow this and additional works at: http://digitalcommons.law.wne.edu/lawreview Recommended Citation George J. Annas, DEATH AND THE MAGIC MACHINE: INFORMED CONSENT TO THE ARTIFICIAL HEART, 9 W. New Eng. L. Rev. 89 (1987), http://digitalcommons.law.wne.edu/lawreview/vol9/iss1/7 This Article is brought to you for free and open access by the Law Review & Student Publications at Digital Commons @ Western New England University School of Law. It has been accepted for inclusion in Western New England Law Review by an authorized administrator of Digital Commons @ Western New England University School of Law. For more information, please contact [email protected]. DEATH AND THE MAGIC MACHINE: INFORMED CONSENT TO THE ARTIFICIAL HEARTt GEORGE J. ANNAS· INTRODUCTION Jay Katz introduces his remarkable and insightful book, The Si­ lent World of Doctor and Patient,1 by recounting a portion of Solzhenitsyn's Cancer Ward. 2 He describes an encounter between a patient, Oleg Kostoglotov, and his doctor, Dr. Ludmilla Afanasyevna. The doctor wanted to use experimental hormone treatment, but the patient refused. Katz argues that what made conversation impossible between them was the patient's undisclosed intention of leaving the hospital to treat himself with "a secret medicine, a mandrake root from Issyk Kul." He could not trust the doctor with this information because the doctor would make the decision for the patient in any event, because the doctor believed, "doctors are entitled to that right ..
    [Show full text]
  • Heart, Lung, and Heart-Lung Transplantation
    Medical Coverage Policy Effective Date ............................................. 9/15/2021 Next Review Date ....................................... 9/15/2022 Coverage Policy Number .................................. 0129 Heart, Lung, and Heart-Lung Transplantation Table of Contents Related Coverage Resources Overview .............................................................. 1 Ventricular Assist Devices (VADs), Percutaneous Coverage Policy ................................................... 1 Cardiac Support Systems and Total Artificial General Background ............................................ 3 Heart Medicare Coverage Determinations .................. 16 Transplantation Donor Charges Coding/Billing Information .................................. 16 Laboratory Testing for Transplantation Rejection Extracorporeal Photopheresis References ........................................................ 17 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary
    [Show full text]
  • Total Artificial Heart and Ventricular Assist Devices
    UnitedHealthcare® Value & Balance Exchange Medical Policy Total Artificial Heart and Ventricular Assist Devices Policy Number: IEXT0384.01 Effective Date: January 1, 2021 Instructions for Use Table of Contents Page Related Policy Applicable States ........................................................................... 1 • Clinical Trials Coverage Rationale ....................................................................... 1 Applicable Codes .......................................................................... 2 Related Clinical Guidelines Description of Services ................................................................. 2 • Mechanical Circulatory Support Devices (MCSD) Clinical Evidence ........................................................................... 2 Clinical Guideline U.S. Food and Drug Administration ............................................. 5 • Transplant Review Guidelines: Solid Organ Centers for Medicare and Medicaid Services ............................. 6 Transplantation References ..................................................................................... 7 Policy History/Revision Information ............................................. 7 Instructions for Use ....................................................................... 8 Applicable States This Medical Policy only applies to the states of Arizona, Maryland, North Carolina, Oklahoma, Tennessee, Virginia, and Washington. Coverage Rationale The SynCardia™ temporary Total Artificial Heart is proven and medically necessary
    [Show full text]
  • Interagency Registry for Mechanically Assisted Circulatory Support Report on the Total Artificial Heart
    http://www.jhltonline.org FEATURED PAPERS Interagency registry for mechanically assisted circulatory support report on the total artificial heart Francisco A. Arabía, MD, MBA,a Ryan S. Cantor, PhD,b Devin A. Koehl, BS,b Vigneshwar Kasirajan, MD,c Igor Gregoric, MD,d Jaime D. Moriguchi, MD,e Fardad Esmailian, MD,a Danny Ramzy, MD, PhD,a Joshua S. Chung, MD,a Lawrence S. Czer, MD,e Jon A Kobashigawa, MD,e Richard G. Smith, MSEE, CCE,f and James K. Kirklin, MDb From the aCardiothoracic Surgery Division, Cedars-Sinai Medical Center, Los Angeles, California; bKirklin Institute for Research in Surgical Outcomes, University of Alabama at Birmingham, Birmingham, Alabama; cDepartment of Surgery, Virginia Commonwealth University Health System, Richmond, Virginia; dCenter for Advanced Heart Failure Program, University of Texas Health Science Center Houston, Houston, Texas; eCardiology Division, Cedars-Sinai Medical Center, Los Angeles, California; and the fArtificial Heart and Perfusion Programs, Banner University Medical Center, Tucson, Arizona. KEYWORDS: BACKGROUND: We sought to better understand the patient population who receive a temporary total total artificial heart; artificial heart (TAH) as bridge to transplant or as bridge to decision by evaluating data from the mechanical circulatory Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) database. support; METHODS: We examined data related to survival, adverse events, and competing outcomes from INTERMACS; patients who received TAHs between June 2006 and April 2017 and used hazard function analysis to biventricular failure; explore risk factors for mortality. bridge to RESULTS: Data from 450 patients (87% men; mean age, 50 years) were available in the INTERMACS transplantation database.
    [Show full text]