Heart, Lung, and Heart-Lung Transplantation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surgical Advances in Heart and Lung Transplantation
Anesthesiology Clin N Am 22 (2004) 789–807 Surgical advances in heart and lung transplantation Eric E. Roselli, MD*, Nicholas G. Smedira, MD Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, Desk F25, 9500 Euclid Avenue, Cleveland, OH 44195, USA The first heart transplants were performed in dogs by Alexis Carrel and Charles Guthrie in 1905, but it was not until the 1950s that attempts at human orthotopic heart transplant were reported. Several obstacles, including a clear definition of brain death, adequate organ preservation, control of rejection, and an easily reproducible method of implantation, slowed progress. Eventually, the first successful human to human orthotopic heart transplant was performed by Christian Barnard in South Africa in 1967 [1]. Poor healing of bronchial anastomoses hindered early progress in lung transplantation, first reported in 1963 [2]. The first successful transplant of heart and both lungs was accomplished at Stanford University School of Medicine (Stanford, CA) in 1981 [3]. The introduction of cyclosporine to immunosuppres- sion protocols, with lower doses of steroids, led to the first successful isolated lung transplant, performed at Toronto General Hospital in 1983 [4]. Since these early successes at thoracic transplantation, great progress has been made in the care of patients with end-stage heart and lung disease. Although only minor changes have occurred in surgical technique for heart and lung transplantation, the greatest changes have been in liberalizing donor criteria to expand the donor pool. This article focuses on more recent surgical advances in donor selection and management, procurement and implantation, and the impact these advances have had on patient outcome. -
Clinical Policy: Lung Transplantation Reference Number: CP.MP.57 Coding Implications Last Review Date: 05/20 Revision Log
Clinical Policy: Lung Transplantation Reference Number: CP.MP.57 Coding Implications Last Review Date: 05/20 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Medical necessity criteria for the review of lung transplantation requests. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® that lung transplant for members with chronic, end-stage lung disease who have failed maximal medical therapy is medically necessary when all of the following criteria are met: A. High (> 50%) risk of death from lung disease within 2 years if lung transplantation is not performed. B. High (> 80%) likelihood of surviving at least 90 days after lung transplantation. C. High (> 80%) likelihood of 5-year post-transplant survival from a general medical perspective provided that there is adequate graft function. D. Does not have ANY of the following absolute contraindications: 1. Malignancy, except for non-melanoma localized skin cancer that has been treated appropriately, low grade prostate cancer, a malignancy that has been completely resected, or a treated malignancy determined to have a small likelihood of recurrence and acceptable future risks; 2. Untreatable significant dysfunction of another major organ system unless combined organ transplantation can be performed; 3. Uncorrected atherosclerotic disease with suspected or confirmed end-organ ischemia or dysfunction and/or coronary artery disease not amenable to revascularization; 4. Acute medical instability, including, but not limited to, acute sepsis, acute viral respiratory infection, myocardial infarction, and liver failure; 5. Uncorrectable bleeding diathesis; 6. Chronic infection with highly virulent and/or resistant microbes that are poorly controlled pre-transplant; 7. -
Lung Transplantation with the OCS (Organ Care System)
Lung Transplantation with the OCSTM (Organ Care System) Lung System Bringing Breathing Lung Preservation to Transplant Patients A Guide for You and Your Family DRAFT ABOUT THIS BOOKLET This booklet was created for patients like you who have been diagnosed with end-stage lung failure and are candidates for a lung transplant. It contains information that will help you and your family learn about options available to you for a transplant. This booklet includes information on your lungs, how they function, and respiratory failure. In addition, you will learn about a new way to preserve lungs before transplantation, called breathing lung preservation. Your doctor is the best person to explain your treatment options and their risks and to help you decide which option is right for you. The booklet explains: • Breathing lung preservation with the OCS™ Lung System • How the OCS™ Lung System works • Who is eligible for the OCS™ Lung System • Lung transplant complications • How the lungs function • What is respiratory failure and the treatment options • What to expect during your treatment • Summary of clinical data for the OCS™ Lung System • Contact Information Please read this booklet carefully and share it with your family and caregivers. For your convenience, a glossary is provided in the front of this booklet. Terms in the text in bold italics are explained in the glossary. If you have questions about the OCS™ Lung System that are not answered in this booklet, please ask your physician. This booklet is intended for general information only. It is not intended to tell you everything you need to know about a lung transplant. -
The First Total Artificial Heart
The First Total Artificial Heart On the night of December 1-2, 1982, with a major winter storm howling outside, medical history was being made inside the University of Utah Hospital. This event was the implantation of the first destination total artificial heart (TAH) in a human being. That person, 61-year-old Barney Clark, was a retired Seattle dentist with family roots in Utah. Dr. Clark’s several year history of dyspnea and fatigability had been attributed to chronic obstructive pulmonary disease in a University of Utah Hospital former smoker. However, 2 1/2 years before admission, a diagnosis of heart failure was made associated with atrial fibrillation with a rapid ventricular response. In-patient treatment for recurrent heart failure with paroxysmal ventricular tachycardia (VT) was required 1 ½ years before admission. Coronary angiography and left ventriculography established a diagnosis of advanced, non-ischemic dilated cardiomyopathy with an ejection fraction of 23%. Because of symptomatic progression of heart failure, Dr. Clark was referred to the author at LDS Hospital in Salt Lake City, near family members, for investigational inotrope therapy (amrinone), but this caused hypotension and exacerbated atrial and ventricular tachyarrhythmias. Endomyocardial biopsy showed low-grade cellular and humoral myocarditis, and a course of immunosuppressant therapy (prednisone and azathioprine) was begun with initial improvement. However, clinical deterioration resumed, with low- output failure and edema, 6 ½ months later, leading to hospitalization for IV diuretics and dobutamine. Clinical improvement was only marginal, leaving him in class IV heart failure. Jeffrey L. Anderson, MD: Barney Clark’s Cardiologist An opportune meeting occurred 3-4 months prior to the final admission between the author and Dr. -
Ventricular Assist Devices (Vads) and Total Artificial Hearts These Services May Or May Not Be Covered by Your Healthpartners Plan
Ventricular assist devices (VADs) and total artificial hearts These services may or may not be covered by your HealthPartners plan. Please see your plan documents for your specific coverage information. If there is a difference between this general information and your plan documents, your plan documents will be used to determine your coverage. Administrative Process Prior authorization is required for insertion of an implantable ventricular assist device (VAD). Prior authorization is required for placement of a total artificial heart (TAH). Prior authorization is not required in the event that either of the devices listed above is used under emergency circumstances for a critically ill member in an in-patient setting. Emergency use is defined as necessary to save the life or protect the immediate well-being of a given patient. However, services with specific coverage criteria may be reviewed concurrently or retrospectively to determine medical necessity. Prior authorization is not required for percutaneous ventricular assist devices (pVADs). Coverage Insertion of an implantable ventricular assist device (VAD) or total artificial heart (TAH) is covered per the member’s plan documents when the criteria outlined below are met and the procedure is performed at a HealthPartners Transplant Center of Excellence. Please see the Related Content section for the Transplant Centers of Excellence documents. Indications that are covered Implantable ventricular assist device Adult 1. An implantable VAD is covered as a bridge to recovery in patients with a potentially reversible condition when the following criteria are met: A. The requested device has received approval from the Food and Drug Administration (FDA) and is being used in accordance with device-specific, FDA-approved indications. -
The Artificial Heart: Costs, Risks, and Benefits
The Artificial Heart: Costs, Risks, and Benefits May 1982 NTIS order #PB82-239971 THE IMPLICATIONS OF COST-EFFECTIVENESS ANALYSIS OF MEDICAL TECHNOLOGY MAY 1982 BACKGROUND PAPER #2: CASE STUDIES OF MEDICAL TECHNOLOGIES CASE STUDY #9: THE ARTIFICIAL HEART: COST, RISKS, AND BENEFITS Deborah P. Lubeck, Ph. D. and John P. Bunker, M.D. Division of Health Services Research, Stanford University Stanford, Calif. Contributors: Dennis Davidson, M. D.; Eugene Dong, M. D.; Michael Eliastam, M. D.; Dennis Florig, M. A.; Seth Foldy, M. D.; Margaret Marnell, R. N., M. A.; Nancy Pfund, M. A.; Thomas Preston, M. D.; and Alice Whittemore, Ph.D. OTA Background Papers are documents containing information that supplements formal OTA assessments or is an outcome of internal exploratory planning and evalua- tion. The material is usually not of immediate policy interest such as is contained in an OTA Report or Technical Memorandum, nor does it present options for Con- gress to consider. -I \lt. r,,, ,.~’ . - > ‘w, . ,+”b Office of Technology Assessment ./, -. Washington, D C 20510 4,, P ---Y J, ,,, ,,,, ,,, ,. Library of Congress Catalog Card Number 80-600161 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword This case study is one of 17 studies comprising Background Paper #2 for OTA’S assessment, The Implications of Cost-Effectiveness Analysis of Medical Technology. That assessment analyzes the feasibility, implications, and value of using cost-effec- tiveness and cost-benefit analysis (CEA/CBA) in health -
Chronic Lung Allograft Dysfunction Post Lung Transplantation: a Review of Computed Tomography Quantitative Methods for Detection and Follow-Up
Journal of Clinical Medicine Review Chronic Lung Allograft Dysfunction Post Lung Transplantation: A Review of Computed Tomography Quantitative Methods for Detection and Follow-Up Trieu-Nghi Hoang-Thi 1,2,3 , Guillaume Chassagnon 1, Thong Hua-Huy 3, Veronique Boussaud 4, Anh-Tuan Dinh-Xuan 3 and Marie-Pierre Revel 1,* 1 AP-HP.Centre, Hôpital Cochin, Department of Radiology, Université de Paris, 75014 Paris, France; [email protected] (T.-N.H.-T.); [email protected] (G.C.) 2 Department of Diagnostic Imaging, Vinmec Central Park Hospital, Ho Chi Minh City 70000, Vietnam 3 AP-HP.Centre, Hôpital Cochin, Department of Respiratory Physiology, Université de Paris, 75014 Paris, France; [email protected] (T.H.-H.); [email protected] (A.-T.D.-X.) 4 AP-HP.Centre, Hôpital Cochin, Department of Pneumology, Université de Paris, 75014 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +33-1-5841-2471 Abstract: Chronic lung allograft dysfunction (CLAD) remains the leading cause of morbidity and mortality after lung transplantation. The term encompasses both obstructive and restrictive pheno- types, as well as mixed and undefined phenotypes. Imaging, in addition to pulmonary function tests, plays a major role in identifying the CLAD phenotype and is essential for follow-up after Citation: Hoang-Thi, T.-N.; lung transplantation. Quantitative imaging allows for the performing of reader-independent precise Chassagnon, G.; Hua-Huy, T.; Boussaud, V.; Dinh-Xuan, A.-T.; evaluation of CT examinations. In this review article, we will discuss the role of quantitative imaging Revel, M.-P. -
280 Total Artificial Hearts and Implantable Ventricular Assist
Medical Policy Total Artificial Hearts and Implantable Ventricular Assist Devices Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History Policy Number: 280 BCBSA Reference Number: 7.03.11 Related Policies • Heart/Lung Transplant, #269 • Heart Transplant, #197 • Extracorporeal Membrane Oxygenation, #726 Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Bridge to Transplantation Implantable ventricular assist devices (VADs) with Food and Drug Administration (FDA) approval or clearance may be considered MEDICALLY NECESSARY as a bridge to heart transplantation for patients who are currently listed as heart transplantation candidates and not expected to survive until a donor heart can be obtained, or are undergoing evaluation to determine candidacy for heart transplantation. Implantable (VADs) with FDA approval or clearance, including humanitarian device exemptions, may be considered MEDICALLY NECESSARY as a bridge to heart transplantation in children 16 years old or younger who are currently listed as heart transplantation candidates and not expected to survive until a donor heart can be obtained, or are undergoing evaluation to determine candidacy for heart transplantation. Total artificial hearts (TAHs) with FDA-approved devices may be considered MEDICALLY NECESSARY as a bridge to heart transplantation for patients with biventricular failure who have no other reasonable medical -
Total Artificial Heart and Ventricular Assist Devices
UnitedHealthcare® Commercial Medical Policy Total Artificial Heart and Ventricular Assist Devices Policy Number: 2021T0384V Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ........................................................................... 1 • Clinical Trials Documentation Requirements......................................................... 1 Applicable Codes .............................................................................. 2 Community Plan Policy Description of Services ..................................................................... 2 • Total Artificial Heart and Ventricular Assist Devices Clinical Evidence ............................................................................... 2 Medicare Advantage Coverage Summary U.S. Food and Drug Administration ................................................ 5 • Ventricular Assist Device (VAD) and Artificial Heart References ......................................................................................... 6 Policy History/Revision Information................................................ 7 Related Clinical Guidelines Instructions for Use ........................................................................... 8 • Mechanical Circulatory Support Devices (MCSD) • Transplant Review Guidelines: Solid Organ Transplantation Coverage Rationale The SynCardia™ temporary Total Artificial Heart is proven and medically necessary as a bridge to heart transplantation in members who meet all of -
Islet Interleukin-1Β Immunoreactivity Is an Early Feature of Cystic Fibrosis That May Contribute to Β-Cell Failure
Diabetes Care 1 Islet Interleukin-1b Rebecca L. Hull,1 Ronald L. Gibson,2 Sharon McNamara,2 Gail H. Deutsch,3 Immunoreactivity Is an Early Corinne L. Fligner,3 Charles W. Frevert,1,4 Bonnie W. Ramsey,2 and Srinath Sanda5,6 Feature of Cystic Fibrosis That May Contribute to b-Cell Failure https://doi.org/10.2337/dc17-1387 OBJECTIVE Cystic fibrosis–related diabetes (CFRD) is a common complication of cystic fibrosis (CF), increasing patient morbidity and mortality. Poor understanding of CFRD path- ogenesis limits the development of targeted therapies to treat and/or prevent the disease. The aim of this study was to evaluate islet pathology, specifically, inflam- mation, amyloid deposition, and endocrine cell composition in subjects with CF with diabetes and with CF without diabetes. RESEARCH DESIGN AND METHODS A retrospective analysis of archived pancreas tissue collected at autopsy was con- ducted using pancreas tissue from subjects with CF and diabetes (CFRD) (n = 18) and PATHOPHYSIOLOGY/COMPLICATIONS CF without diabetes (CF-no DM) (n = 17). Two cohorts of control non-CF subjects were identified, each matched to CFRD and CF-no DM subjects for age, sex, and BMI (non-CF older, n = 20, and non-CF younger, n = 20), respectively. Immunohistochem- istry was performed to assess IL-1b and islet hormone (insulin, glucagon, somato- statin, and pancreatic polypeptide) immunoreactivity; histochemistry was performed 1Department of Medicine, University of Wash- to quantify amyloid deposition. ington, Seattle, WA 2Department of Pediatrics, University of Wash- RESULTS ington, Seattle, WA 3Department of Pathology, University of Wash- Islet IL-1b immunoreactivity was substantially increased in both CFRD and CF-no DM ington, Seattle, WA subjects compared with non-CF subjects and was common in young subjects with CF 4Department of Comparative Medicine, Univer- (£10 years of age). -
Total Artificial Heart Reference Number: CP.MP.127 Coding Implications Last Review Date: 11/20 Revision Log
CEN,:'ENS:" ~·orporalion Clinical Policy: Total Artificial Heart Reference Number: CP.MP.127 Coding Implications Last Review Date: 11/20 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description The SynCardia temporary Total Artificial Heart (TAH) (SynCardia Systems Inc.), formerly known as the CardioWest Total Artificial Heart, is a biventricular pulsatile pump that replaces the patient’s native ventricles and valves. This policy describes the medical necessity requirements for the total artificial heart. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® that the TAH is medically necessary as a bridge to heart transplantation when all of the following criteria are met: A. Member/enrollee is approved for cardiac transplant and is currently on transplant list; B. New York Heart Association (NYHA) Functional Class IV; C. Presence of non-reversible biventricular failure unresponsive to all other treatments; D. Ineligible for other ventricular support devices; E. Compatible donor heart is currently unavailable; F. Imminent risk of death; G. The device is U.S. FDA approved and used according to the FDA-labeled indications, contraindications, warnings and precautions; H. Member/enrollee is able to receive adequate anti-coagulation while on the total artificial heart. II. It is the policy of health plans affiliated with Centene Corporation that the TAH is experimental/investigational for use as destination therapy (permanent replacement of the failing heart). III. It is the policy of health plans affiliated with Centene Corporation that hospital discharge of members/enrollees implanted with the TAH who are supported by portable drivers (e.g., the Freedom portable driver) is experimental/investigational. -
Airway Versus Transbronchial Biopsy and BAL in Lung Transplant Recipients: Different but Complementary
Eur Respir J 1997; 10: 2876–2880 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10122876 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Airway versus transbronchial biopsy and BAL in lung transplant recipients: different but complementary C. Ward, G.I. Snell, B. Orsida, L. Zheng, T.J. Williams, E.H. Walters Airway versus transbronchial biopsy and BAL in lung transplant recipients: different Dept of Respiratory Medicine, Alfred but complementary. C. Ward, G.I. Snell, B. Orsida, L. Zheng, T.J. Williams, E.H. Walters. Hospital and Monash University Medical ©ERS Journals Ltd 1997. School, Melbourne, Australia. ABSTRACT: Lung transplantation is now an established therapeutic intervention Correspondence: E.H Walters for end-stage cardiopulmonary disease in humans. Chronic rejection, in the form Dept of Respiratory Medicine of bronchiolitis obliterans syndrome (BOS), remains the commonest cause of mor- Alfred Hospital bidity and mortality in those surviving more than 3 months. The pathology of BOS Prahran involves airway changes. We have evaluated the potential for endobronchial biop- Melbourne sies (EBB) to complement existing sampling methods used in allograft monitoring Victoria 3181 and have compared the results of EBB findings with those of bronchoalveolar Australia lavage (BAL) and transbronchial biopsy (TBB) in 18 clinically stable patients. Keywords: Bronchoalveolar lavage We found that all the EBB had inflammatory cells present but that only five endobronchial biopsy TBB specimens had evidence of inflammation, with airway material being present lung transplant in 78% of the TBB. Paired BAL and EBB yielded different results, with no cor- transbronchial biopsy relations between total macrophages, lymphocytes, CD4+ cells or CD8+ cells.