Lake Superior North Wateshed Stressor Identification Report

Total Page:16

File Type:pdf, Size:1020Kb

Lake Superior North Wateshed Stressor Identification Report Stressor Identification March 2018 Lake Superior North Stressor Identification Report A study of local stressors limiting the biotic communities in the Lake Superior North Watershed Authors Jeff Jasperson, MPCA Duluth The MPCA is reducing printing and mailing costs Tim Beaster, So. Saint Louis County SWCD by using the Internet to distribute reports and information to wider audience. Visit our Jenny Jasperson, MPCA Duluth website for more information. Ann Thompson, So. Saint Louis County SWCD MPCA reports are printed on 100% post- Contributors/acknowledgements consumer recycled content paper manufactured without chlorine or chlorine Nathan Stewart, DNR derivatives. Matt Weberg, DNR Editing and graphic design Barb Olafson Project dollars provided by the Clean Water Fund (from the Clean Water, Land and Legacy Amendment). Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | 651-296-6300 | 800-657-3864 | Or use your preferred relay service. | [email protected] This report is available in alternative formats upon request, and online at www.pca.state.mn.us. Document number: wq-ws5-04010101a Contents Key terms and abbreviations ................................................................................................................................ i Executive summary .................................................................................................................................. 1 1.0 Report purpose, process, and overview ......................................................................................... 2 2.0 Introduction and study area .......................................................................................................... 2 Review of Lake Superior North Watershed Assessment process..................................................................... 2 Rationale for selection of focus sub-watersheds ............................................................................................. 3 3.0 Methods ...................................................................................................................................... 5 3.1 Stream temperature monitoring and analysis ..................................................................................... 5 3.1.1 Thermal classification of Norh Shore coldwater streams ....................................................................... 6 3.2 Tolerance Indicator Values ................................................................................................................... 9 3.3 Streambank erosion (BANCS Model) and Bank-Height Ratio................................................................... 10 3.4 Stream channel stability and habitat assessments .................................................................................. 11 3.5 Stream connectivity, crossings, and aquatic organism passage .............................................................. 11 3.6 Stable isotope: hydrology ......................................................................................................................... 13 4.0 Flute Reed River ............................................................................................................................... 14 4.1 Watershed characteristics ........................................................................................................................ 14 4.1.1 Red clay soils ......................................................................................................................................... 14 4.2 Overview of biological data ...................................................................................................................... 17 4.2.1 Flute Reed River fisheries management and sampling history ............................................................ 17 4.2.2 MPCA Biological monitoring results ..................................................................................................... 18 4.3 Total Suspended Solids impairment ......................................................................................................... 20 4.3.1 Synoptic sampling results ..................................................................................................................... 20 4.3.2 Trends at “long-term” stations ............................................................................................................. 21 4.3.3 Load duration curve .............................................................................................................................. 21 4.4 Flute Reed Watershed Sediment Sources and pathways......................................................................... 26 4.4.1 Channel stability ................................................................................................................................... 26 4.4.2 BANCS model results ............................................................................................................................ 29 4.4.3 Systemic channel incision ..................................................................................................................... 32 4.4.4 Channel blockages and cut-offs ............................................................................................................ 32 4.4.5 Mass wasting / Bluff and valley wall erosion ........................................................................................ 32 4.4.6 Headcuts on tributaries/Gullies ............................................................................................................ 33 4.4.7 Upland Sources – roads, timber harvest, and open lands .................................................................... 33 4.4.8 Beaver dams as a source of increased turbidity and total suspended solids ....................................... 35 4.5 Biological response to elevated TSS concentrations ................................................................................ 38 4.5.1 Fish community response to TSS .......................................................................................................... 38 4.5.2 Macroinvertebrate community response to TSS .................................................................................. 38 4.6 Habitat quality .......................................................................................................................................... 41 4.7.2 Beaver dams ......................................................................................................................................... 44 4.8 Water temperature .................................................................................................................................. 45 4.8.1 Review of water temperature data ...................................................................................................... 45 4.8.2 Biological response to water temperature gradient ............................................................................ 48 i 4.9 Hydrogeology of the Flute Reed River Watershed ................................................................................... 50 4.9.1 Geology ................................................................................................................................................. 50 4.9.2 Flow duration curves and stream flashiness ........................................................................................ 51 4.9.3 Watershed isotope characterization .................................................................................................... 51 4.9.4 Local Meteoric waterline for the Grand Marais/Hovland Area ............................................................ 52 4.9.5 Stream isotope sample collection ........................................................................................................ 52 4.9.6 Isotope signal variability along the North Shore .................................................................................. 52 4.9.7 Lake-fed streams................................................................................................................................... 54 4.9.8 Source waters of the Flute Reed River ................................................................................................. 54 4.9.9 Conclusions ........................................................................................................................................... 58 4.10 Summary and recommendations for Flute Reed River .......................................................................... 60 4.10.1 Key stressors and threats.................................................................................................................... 60 4.10.2 Implementation suggestions – protection and restoration................................................................ 61 5.0 Woods Creek .................................................................................................................................... 63 5.1 Stream and watershed characteristics ..................................................................................................... 63 5.2 Overview of biological data ...................................................................................................................... 64 5.2.1 MPCA biological monitoring results ..................................................................................................... 64 5.3 Water
Recommended publications
  • Lake Superior South Watershed Monitoring and Assessment Report
    Summary Monitoring and Assessment Lake Superior-South Watershed Why is it The undeveloped nature of the Lake Superior-South Watershed, along Minnesota’s North Shore within the Lake Superior Basin, is undoubtedly a key reason for the high important? water quality found in most parts of the watershed. This watershed covers 624 square miles of St. Louis and Lake counties, with nearly half of the land under state ownership (42%). Almost 90% is forested. The watershed is home to several small cities and supports diverse species of wildlife and fish populations. It contains 1,067 miles of streams of which 800 are designated as coldwater. Its immaculate waters produce some of the state’s highest-quality stream trout fisheries. The watershed is a valuable resource for drinking water, habitat for aquatic life, recreational opportunities and timber production. Key issues Overall, water quality conditions are good and can be attributed to the forest and wetlands that dominate the watershed’s land cover. Many stream segments have exceptional biological, chemical, and physical characteristics and should be considered for additional protections to preserve their high quality. The top five stream resources include: McCarthy Creek, Unnamed Creek (West Branch Little Knife River), Gooseberry River, Stewart River and Captain Jacobson Creek. Problem areas do occur but are typically limited to the lower reaches of streams where stressors from land use practices may accumulate. Impairments are likely a function of both natural and human-caused stressors. Historical and recent forest cover changes, along with urban/industrial development, draining of wetlands and damming of streams are likely stressors affecting biological communities within the watershed.
    [Show full text]
  • What the “Trail Eyes” Pros Taught Us About the SHT P H
    A publication oF the Superior Hiking TrAil AssoCiation SUmmEr 2019 What the “Trail Eyes” Pros Taught Us About the SHT P H o im Malzhan iS the trail operations director T o for our sister trail organization the ice Age B y Fr Trail Alliance in Wisconsin. Doing business as esh T “Trail Eyes,” Tim was one of four entities the SHTA Tr hired in the fall of 2018 to evaluate and recom- ac mend renewal strategies for what we have dubbed k S mE D “The Big Bad Five,” those sections of the SHT most damaged from heavy use and old age (or both). i A Though all four evaluators—malzhan, Critical Connections Ecological Services (Jason and Amy Husveth), the north Country Trail Association, and (Continued on page 2) What the “Trail Eyes” Taught Us About the SHT (continued from cover) Great Lakes Trail Builders (Wil- lie Bittner)—did what we asked (provide specific prescriptions for the Big Bad Five), their ex- pert observations gave us much more: they shed light on the en- tire Superior Hiking Trail. In other words, what they saw on the Split Rock River loop, or the sections from Britton Peak to Oberg Mountain and Oberg to the Lutsen ski complex, or the proposed reroute of the SHT north of Gooseberry Falls State Park, were microcosms of bigger, more systemic issues with the SHT. ❚ “keep people on the Trail and water off of it.” This suc- cinct wisdom comes from Matt no bridge is not the only problem at the Split rock river loop.
    [Show full text]
  • More Than Just a Lake! TOPIC Great Lake Drainage Basins AUDIENCE Grades 1-6; 10-30 Students
    More Than Just a Lake! TOPIC Great Lake drainage basins AUDIENCE Grades 1-6; 10-30 students SETTING By creating a map of the rivers flowing into your Great Lake, Large, open indoor space is learn how rivers form a watershed. required GOAL To understand the concept of a drainage basin or watershed, and how that concept relates to the BACKGROUND around the lake as gravity pulls water local Great Lake watershed. All lakes and rivers have a set area to the lowest point. Water draining of land that water drains into them to the lowest common point is the OBJECTIVES • Students will understand the from, called the “watershed” or simplest definition of a watershed. defining role that rivers have “drainage basin.” Drainage basins are in watershed activity important environmentally because 2. Introduction to the model • Students will be able to state whether they live inside or whatever happens within the basin of watershed outside the drainage basin of the lake can happen to the lake itself. Students gather around the “shore” their Great Lake Toxic substances spilled or placed of the lake. Explain that the blue • Older students will be able to identify the river drainage on the land or in watershed rivers yarn represents rivers. With younger basin in which they live can end up in the lake. See the Great students, demonstrate how one river Lakes Watershed Fact Sheets for ad- might look on the map as it flows MATERIALS ditional information about your local into your Great Lake. • Large floor map of your Great Lake (or an outline on the watershed.
    [Show full text]
  • Map 2, Lake Superior State Water Trail from Knife River to Split Rock
    ROUTE DESCRIPTION - River miles 26 to 60 (34 miles) (0.0 at Minnesota Entrance – Duluth Lift Bridge). 48.0 Private resort. [47° 07.135' N / 91° 30.265' W] 57.7 Little Two Harbors at Split Rock Lighthouse State Park. Access to park and lighthouse, a MAP 2 - Knife River to Split Rock Lighthouse State Park 51.0 Gooseberry Falls State Park and Gooseberry Minnesota Historic Site. Trailer access, parking, River. Carry-in access, parking, campground, 2 campground, picnic area and trails. 26.5 Knife River Marina. Access at launch area. watercraft campsites (available on a first-come, [47° 11.865' N / 91° 22.620' W] Parking, toilets. [46° 56.705' N / 91° 46.950' W] first-served basis), picnic area and trails. [47° 08.560' N / 91° 27.500' W] 59.0 Gold Rock Point. Wreck of the Madeira, driven 26.6 Knife River Beach. Carry-in access, rest area, ashore in 1905, lies scattered on the bottom in parking, toilet. Sand and pebble beach. 53.0 Thompson Beach. Four watercraft campsites 10 to 100' of water with portions clearly visible [46° 56.785' N / 91° 46.845' W] and rest area, toilet. No fires. First-come, in calm water. A popular recreational diving site, first-served. [47° 09.480' N / 91° 26.230' W] please be alert to divers in the water. Rest area 30.2 Private resort. Rocky Beach. on small beach nearby. No facilities. [46° 59.025' N / 91° 44.170' W] 53.8 Twin Points. Rest area, trailer access, parking. [47° 12.410' N / 91° 21.520' W] No camping permitted.
    [Show full text]
  • Assessing Impacts of Climate Change on Vulnerability of Brook Trout in Lake Superior’S Tributary Streams of Minnesota
    Assessing Impacts of Climate Change on Vulnerability of Brook Trout in Lake Superior’s Tributary Streams of Minnesota Lucinda B. Johnson, Natural Resources Research Institute, University of Minnesota Duluth William Herb, St. Anthony Falls Laboratory, University of Minnesota, Minneapolis Meijun Cai, Natural Resources Research Institute, University of Minnesota Duluth Report to Minnesota Department of Natural Resources, upon completion of contract # MN DNR/1229G WO 47578 Natural Resources Research Institute technical report number NRRI/TR-2013/05 1 Executive Summary Water temperature is generally considered one of the primary physical habitat parameter determining the suitability of stream habitat for fish species, with effects on the mortality, metabolism, growth, behavior, and reproduction of individuals. In this study we assessed the potential threats of climate change on stream temperatures and flow regimes in Lake Superior tributary streams in Minnesota, USA. The study included deterministic models for stream flow and temperature of three study streams (Amity Creek, Baptism River, Knife River), and regional (empirical) models for specific flow and temperature parameters to give better spatial coverage of the region. Information on stream flow, stream temperature, and land cover was used to develop a brook trout presence/absence model to understand the current pattern of distribution of brook trout and predict future distributions under future climate. The hydrology of north shore streams is mainly driven by air temperature and precipitation. Historical air temperatures in the region have a significant upward trend, particularly since 1980. Global climate model (GCM) outputs project a continued increasing trend in air temperature, with an increase in mean annual air temperature of 2 to 3 °C by 2089.
    [Show full text]
  • Water Quality Trends at Minnesota Milestone Sites
    Water Quality Trends for Minnesota Rivers and Streams at Milestone Sites Five of seven pollutants better, two getting worse June 2014 Author The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and David Christopherson information to wider audience. Visit our website for more information. MPCA reports are printed on 100% post- consumer recycled content paper manufactured without chlorine or chlorine derivatives. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us . Document number: wq-s1-71 1 Summary Long-term trend analysis of seven different water pollutants measured at 80 locations across Minnesota for more than 30 years shows consistent reductions in five pollutants, but consistent increases in two pollutants. Concentrations of total suspended solids, phosphorus, ammonia, biochemical oxygen demand, and bacteria have significantly decreased, but nitrate and chloride concentrations have risen, according to data from the Minnesota Pollution Control Agency’s (MPCA) “Milestone” monitoring network. Recent, shorter-term trends are consistent with this pattern, but are less pronounced. Pollutant concentrations show distinct regional differences, with a general pattern across the state of lower levels in the northeast to higher levels in the southwest. These trends reflect both the successes of cleaning up municipal and industrial pollutant discharges during this period, and the continuing challenge of controlling the more diffuse “nonpoint” polluted runoff sources and the impacts of increased water volumes from artificial drainage practices.
    [Show full text]
  • LAND USE and WATER RESOURCES in the MINNESOTA NORTH SHORE DRAINAGE BASIN Carol A. Johnston, Brian Allen, John Bonde, Jim Sal6s
    LAND USE AND WATER RESOURCES IN THE MINNESOTA NORTH SHORE DRAINAGE BASIN Carol A. Johnston, Brian Allen, John Bonde, Jim Sal6s, and Paul Meysembourg Natural Resources GIS Laboratory (NRGIS) NRRI Technical Report NRRI/TR-91/07 July 1991 Research funded by the Legislative Commission on Minnesota Resources INTRODUCTION Rivers and streams are an important feature of the Minnesota North Shore. A dozen state parks and waysides lie at the mouths of rivers that cascade down the steep slopes of Minnesota’s northern highlands into Lake Superior,-carving beautiful waterfalls out the basalt bedrock. But the rivers that drain the 5778 km2 North Shore drainage basin provide more than scenic beauty, delivering nutrients and other materials to Lake Superior. Lake Superior’s tributaries provide about half of its annual water input (Bennett 1978), more than 90% of its total dissolved solids, and 68% of its phosphorus (Upper Lakes Reference Group 1977). Moreover, the water from these tributaries is delivered to the nearshore zone, in which Lake Superior’s biological communities are concentrated (Rao 1978, Munawar and Munawar 1978, Watson and Wilson 1978). Since these communities of bacteria, algae, and zooplankton form the basis of the food web, the productivity and integrity of Lake Superior’s waters are heavily dependent on water supplied by the North Shore drainage basin. While some of the materials delivered by rivers and streams are essential to aquatic life, excessive inputs of sediment and nutrients can cause nonpoint source pollution, the flow of pollutants from land to water in stormwater runoff or from seepage through the soil.
    [Show full text]
  • Brule Rainbow/Steelhead History
    Brule River Sportsmen’s Club, Inc. 2020 June OVER 500 MEMBERS DEDICATED TO THE IMPROVEMENT AND PRESERVATION OF THE BRULE Brule Rainbow/Steelhead History by Dennis Pratt The story begins with the railroad This type of rainbow (called the Shas- the Brule River and many other western finally reaching the town of Brule in ta strain) was a true non-migrating strain Lake Superior tributaries for nearly a 1885. Previously, the only way to reach first collected by the U.S. Fish Commis- decade before the State of Wisconsin the famous Brule River brook trout fish- sion from the McCloud River, a headwa- developed its own steelhead stocking ery (located mainly from Brule to the ters tributary of northern California’s program at the Salmo Fish Hatchery in headwaters) was via forest trail with a Sacramento River. Bayfield, Wisconsin. wagon or horse. Numbers of anglers Those fish were distributed to states A total of 3.7 million rain- dramatically increased with this new, throughout the nation. Nicholas placed bow/steelhead have been stocked in the easy access, and it soon became apparent these first rainbows in the Brule headwa- Brule. Many strains originating from that a decline in the brook trout fishery ters and a few other nearby tributaries. streams in northern California, Oregon, was inevitable as anglers began over- He continued to stock for a couple more and Washington were used. Over the whelming the fishery. years, getting each year’s supply by rail last 130 years, survivors of those various Brook trout reproduction simply from the Madison, Wisconsin hatchery.
    [Show full text]
  • Economic Analysis of Critical Habitat Designation for the Canada Lynx
    ECONOMIC ANALYSIS OF CRITICAL HABITAT DESIGNATION FOR THE CANADA LYNX Final Economic Analysis | October 31, 2006 prepared for: Division of Economics U.S. Fish and Wildlife Service 4401 N. Fairfax Drive Arlington, VA 22203 prepared by: Industrial Economics, Incorporated 2067 Massachusetts Avenue Cambridge, MA 02140 Final Economic Analysis – October 31, 2006 TABLE OF CONTENTS EXECUTIVE SUMMARY SECTION 1 FRAMEWORK FOR THE ANALYSIS 1-1 1.1 Approach to Estimating Economic Effects 1-2 1.2 Scope of the Analysis 1-6 1.3 Analytic Time Frame 1-11 1.4 Information Sources 1-11 1.5 Structure of Report 1-12 SECTION 2 BACKGROUND 2-1 2.1 Proposed Critical Habitat Designation 2-1 2.2 Threats to the Species and its Habitat 2-8 SECTION 3 TIMBER ACTIVITIES 3-1 3.1 Profiles of Regional Timber Industries 3-2 3.2 Changes in Timber Management Practices as a Result of Lynx Conservation Efforts 3-9 3.3 Pre-Designation Impacts to Timber Activities 3-12 3.4 Post-Designation Impacts to Timber Activities 3-13 3.5 Caveats 3-18 SECTION 4 DEVELOPMENT 4-1 4.1 Summary of Results 4-2 4.2 Methods and Assumptions 4-4 4.3 Unit by Unit Analysis 4-8 SECTION 5 RECREATION 5-1 5.1 Summary of Impacts to Recreation 5-1 5.2 Methods and Assumptions 5-5 5.3 Snowmobiling Scenario 2: Estimated Impacts by Unit 5-12 5.4 Hunting and Trapping 5-22 5.5 Other Recreational Projects 5-24 Final Economic Analysis – October 31, 2006 SECTION 6 PUBLIC LANDS MANAGEMENT AND CONSERVATION PLANNING 6-1 6.1 Summary of Impacts to Public Lands Management and Conservation Planning 6-1 6.2 Methods and Assumptions
    [Show full text]
  • Superior Hiking Trail Rises to Craggy Peaks and Plunges Into Forests of Birch, Maple, Spruce, Cedar, and Pine
    Photography by Gary Alan Nelson A Trail With a View For spectacular vistas, follow a footpath along the North Shore’s rocky ridge. Are you up for a day hike in one of Minnesota’s most dramatic landscapes? The Superior Hiking Trail rises to craggy peaks and plunges into forests of birch, maple, spruce, cedar, and pine. It crosses rushing streams and opens to panoramas of Lake Superior and the highlands. Built just for hiking and backpacking, the 296-mile footpath runs from Jay Cooke State Park to the Ontario border. Each year more than 50,000 hikers explore parts of this sensational trail. With 53 trailhead parking lots, one about every 5 to 10 miles, you can easily hop on and hike for an hour or a day. Here’s a look at some of the sights along three stretches. 26 Minnesota Conservation Volunteer July–August 2014 27 Gooseberry to Split Rock Gooseberry Falls State Park is a popular starting point. In the park, a bench overlooks the Gooseberry River. Markers assure hikers they’re on trail. This 6-mile section follows Bread Loaf Ridge. Atop a cliff, hikers gain a bird’s-eye view. During spring and fall, hikers can see migratory birds along this North Shore flyway. July–August 2014 29 Waterfalls on the Gooseberry River create a soundscape. From time to time, hikers get a view of the open sky over the big lake. In the late 1890s, lumber companies logged the land along the river. By the 1920s logging and fire had cleared the pines.
    [Show full text]
  • Annual Report, for the Year 1893
    Digitized by the Internet Archive in 2010 with funding from University of Toronto http://www.archive.org/details/annualreport22geol w THE GEOLOGICAL AND NATURAL HISTORY SURVEY OF MINNESOTA. The Twenty-second Annual Report, for the Year 1893. State Geologist. MINNEAPOLIS: HARRISON & SMITH, STATE PRINTERS. 1894. ISL7 THE BOARD OF RECrENTS OF THE UNIVERSITY OF MINNESOTA. Hon. Stephen Mahoney, Minneapolis ]895 Hon. Sidney M. Owen, Minneapolis 1895 Hon. John Lind, New Ulm 1896 Hon. John S. Pillsbury, Minneapolis 1896 Hon. Ozora P. Stearns, Duluth 1897 Hon. William Liggett, Benson 1897 Hon. Joel P. Heatwole, Northfleld 1897 Hon. Greenleaf Clark, St. Paul 1898 Hon. Cushsian K. Davis, St. Paul 1898 Hon. Knute Nelson, Governor of the State Ex-officto Hon. W. W. Pendergast, Supt. of Public Instruction Ex-officin Dr. Cyrus Northrop, President of the University Ex-officio OFFICERS OF THE BOARD. Hon. John S. Pillsbijry President Hon. D. L. Kiehle Recording Secretary President Cyrus Northrop Cm-respoiiding Secretary Joseph E. Ware Treamrer - ADDRESS. Minneapolis, Minn., Aug. 1, 1894. To the President of the Board, of Regents: Dear Sir —I have the honor to offer herewith the twenty second annual report of the Geological and Natural History- Survey of Minnesota. It embraces preliminary field reports on a large amount of work, contributed by the various assist- ants who were engaged on the survey during the season of 1893. It also contains lists of additions to the library and to the museum. Respectfully submitted, N. H. WINCHELL, State Geologist and Curator of the General Museum. GEOLOGICAL CORPS. N. H. WiNCHEi.L State Geologist Warren Upham Assistant Geologist U.
    [Show full text]
  • Survey and Fish Man- E Streams of the North Shore Watershed
    nical Bulletin Number 1 SURVEY AND FISH MAN- E STREAMS OF THE NORTH SHORE WATERSHED LLOYD L. SM ITH, JR. and JOHN B. MOYLE DEPARTMENT Of CONSERVATION ISION OF GAME AND FISH This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.) MINNESOTA DEPARTMENT OF CONSERVATION DIVISION OF GAME AND FISH A BIOLOGICAL SURVEY AND FISHERY MAN­ AGEMENT PLAN FOR THE STREAMS OF THE LAKE SUPERIOR NORTH SHORE WATERSHED LLOYD L. SMITH, JR. Research Supervisor and JOHN B. MOYLE Aquatic Biologist A CONTRIBUTION FROM THE MINNESOTA FISHERIES RESEARCH LABORATORY TECHNICAL BULLETIN NO. 1 1 9 4 4 STATE OF MINNESOTA The Honorable Edward J. Thye ................... Governor MINNESOTA DEPARTMENT OF CONSERVATION Chester S. Wilson ............................ Commissioner E. V. Willard ........................ Deputy Commissioner DIVISION OF GAME AND FISH Verne E. Joslin ............................. Acting Director E. R. Starkweather ........................ Law Enforcement Norman L. Moe ........................... Fish Propagation George Weaver ........................ Commercial Fisheries Stoddard Robinson .................... Rough Fish Removal Lloyd L. Smith,- Jr........................ Fisheries Research Thomas Evans ........................ Stream Improvement Frank Blair .......................... ~ .. Game Management
    [Show full text]