Differential Effects of Diabetes on Rat Choroid Plexus Ion Transporter Expression Richard D

Total Page:16

File Type:pdf, Size:1020Kb

Differential Effects of Diabetes on Rat Choroid Plexus Ion Transporter Expression Richard D Differential Effects of Diabetes on Rat Choroid Plexus Ion Transporter Expression Richard D. Egleton, Christopher C. Campos, Jason D. Huber, Rachel C. Brown, and Thomas P. Davis Though diabetes is a disease with vascular complica- alus (6,7). Hydrocephalus is caused by excessive retention tions, little is known about its effects on the blood-brain or production of cerebrospinal fluid (CSF) within the barrier or the blood–cerebrospinal fluid barrier central nervous system. CSF is produced by the choroidal (BCSFB). The BCSFB is situated at choroid plexuses epithelial cells of the choroid plexus (8). The choroid located in the lateral, third, and fourth ventricles. Cho- plexuses are also the site of the BCSFB and are located in roid plexuses are the primary site of cerebrospinal fluid the lateral, third, and fourth ventricles. Capillaries of the (CSF) production and express numerous ion transport- choroid plexus are fenestrated, allowing extracellular fluid ers. Previous studies have shown a perturbation of ion formation (unlike other brain capillary beds). CSF produc- transport in the periphery and brain during diabetes. In tion involves the combination of a number of transport this study, we investigated the effect of diabetes on ion systems in the choroid plexus (9) (Fig. 1). transporters in the choroid plexuses of streptozotocin ϩ ϩ (STZ)-induced diabetic rats. Diabetes was induced in Animal models of diabetes have shown that the Na -H exchanger (10–12), Naϩ-Kϩ-2ClϪ cotransporter (13), and male Sprague-Dawley rats by intraperitoneal injection ϩ ϩ of STZ (60 mg/kg in citrate buffer, confirmed by glucose Na -K -ATPase (14–17) have altered expression and ac- -analysis: 601 ؎ 22 mg/dl diabetic rats, 181 ؎ 46 mg/dl tivity in a number of vascular beds. These three transport age-matched controls); and at 28 days, rats were killed, ers are critical for CSF production and pH maintenance choroid plexuses harvested, and protein extracted. (9). In this study, we have investigated the effects of the Western blot analyses were carried out using antibodies -؉ ؉ ؊ streptozotocin (STZ) model of type 1 diabetes on expres for ion transporters, including Na -K -2Cl cotrans- ϩ ϩ ϩ ϩ Ϫ -؉ ؉ sion of the Na -H exchanger, Na -K -2Cl cotrans porter and the Na -K -ATPase ␣1-subunit. The efflux of ϩ ϩ .؉ ؉ porter, and Na -K -ATPase in the rat choroid plexus the K analog 86Rb from choroid plexus was also studied. Diabetic rats showed an increase in expression ؉ ؉ ؊ ؉ ؉ of the Na -K -2Cl cotransporter and the Na -K - RESEARCH DESIGN AND METHODS ATPase ␣1-subunit, as compared with age-matched con- ؉ ؉ Induction of diabetes. All protocols used in this study were approved by the trols, a decrease in Na -H exchanger expression, and University of Arizona Institutional Animal Care and Use Committee and abide ؉ ؉ no change in Na -K -ATPase ␤1- or ␤2-subunit. The net by National Institutes of Health guidelines. Diabetes was induced in male 300- effect of these changes was a 66% increase in 86Rb؉ to 325-g Sprague-Dawley rats (Harlan, Indianapolis, IN) via an intraperitoneal efflux from diabetic choroid plexus compared with con- injection of 60 mg/kg STZ (Sigma, St. Louis, MO) in sterile phosphate buffered trols. These changes in expression may affect choroid saline. Control animals were injected intraperitoneally with phosphate buff- plexus ion balance and thus significantly affect CSF ered saline. The animals were housed under standard 12-h light-dark condi- Diabetes tions and received food and water ad libitum for 28 days. Induction of diabetes production in diabetic rats. 52:1496–1501, was assessed by weight changes and blood glucose levels. 2003 Blood and CSF chemistry. Heparinized blood samples were collected and analyzed using an ABL 505 blood gas analyzer (Radiometer Copenhagen). CSF samples were taken from the cisterna magna before decapitation and analyzed as for blood. iabetes is a disease with numerous vascular Protein isolation. Rats were anesthetized with sodium pentobarbital (64.8 mg/kg) and decapitated. The brains were rapidly removed, and the choroid complications. Previous studies have shown plexuses of the lateral ventricles were removed. Protein was isolated from the perturbations in ion transport in both the pe- choroid plexuses by incubating overnight in 6 mol/l urea buffer (6 mol/l urea, riphery and the brain during diabetes (1–3). 10 mmol/l Tris, 1 mmol/l dithiothreitol, 5 mmol/l MgCl2, 5 mmol/l EGTA, 150 D mmol/l NaCl, pH 8.0, complete mini EDTA free protease inhibitor [one Though diabetes is a vascular disease, little is known regarding the effects of diabetes on the blood-brain barrier tablet/10 ml of buffer; Roche, Mannheim, Germany]). Protein was quantified using the bicinchoninic acid method (Pierce, Indianapolis, IN). (BBB) or the blood–cerebrospinal fluid barrier (BCSFB). Western blot analyses. Protein samples (20 ␮g) were separated on Novex It has been reported that diabetes is a risk factor not only 4–12% Tris-glycine gels using an electrophoretic field at 125 V for 75–90 min. for stroke (4,5), but also for normal-pressure hydroceph- Proteins were transferred to polyvinylidene fluoride membranes using 240 mA at 4°C for 30 min. The membranes were then blocked using 5% nonfat milk/Tris-buffered saline (20 mmol/l Tris, 137 mmol/l NaCl, pH 7.6) with 0.1% From the Department of Pharmacology, College of Medicine, The University Tween-20. Membranes were incubated overnight at 4°C with primary antibod- of Arizona, Tucson, Arizona. ies (anti–Naϩ-Hϩ exchanger [1:250; Transduction Laborotories]; anti–Naϩ-Kϩ- Address correspondence and reprint requests to Dr. Thomas P. Davis, 2ClϪ cotransporter [1:2,000; The University of Iowa Hybridoma Bank]; anti-rat Department of Pharmacology, P.O. Box 245050, The University of Arizona, Naϩ-Kϩ-ATPase ␣1-, ␤1-, and ␤2-subunits [1:2,000; Research Diagnostics]). Tucson, AZ 85724. E-mail: [email protected]. Primary antibodies were chosen based on their ability to bind to rat trans- Received for publication 14 July 2002 and accepted in revised form 24 porters. Following incubation with primary antibodies, the membranes were February 2003. aCSF, artificial cerebrospinal fluid; BBB, blood-brain barrier; BCSFB, washed with 5% nonfat milk/TBS buffer before incubation with respective blood–cerebrospinal fluid barrier; CSF, cerebrospinal fluid; PKC, protein secondary antibodies (anti-mouse and anti-rabbit [Amersham, Springfield, IL] kinase C; STZ, streptozotocin. at 1:2,000 and 1:3,000 dilutions, respectively, in PBS/0.5% BSA) for 30 min at © 2003 by the American Diabetes Association. room temperature. Membranes were developed using the enzyme chemilumi- 1496 DIABETES, VOL. 52, JUNE 2003 R.D. EGLETON AND ASSOCIATES adding 1 ml TS2 tissue solubilizer (Research Products International, Mt. Prospect, IL) and incubated overnight. Before counting on a Beckman LS5000 counter (Beckman Instruments Fullerton, CA), 100 ␮l 30% acetic acid and 4 ml Budget Solve scintillation cocktail (Research Products International, Mt. Prospect, IL) were added to each sample. Efflux rate constants were calculated for 86Rbϩ from the slope of the logarithmic plot of 86Rbϩ remaining in the choroid plexus against time. Total tissue 86Rbϩ was taken as 100% at time 0. The amount of 86Rbϩ remaining at each time point was based on sequential subtractions of the amount effluxed for each 20-s time point from the total radioactivity. Data analysis. All data are presented as mean Ϯ SE of measurements from 4–24 separate animals (numbers for individual experiments noted in text and figures). Statistical significance was calculated using Student’s t tests between control and diabetic values, using the Pharmacological Calculation System software package (19). RESULTS Blood and CSF chemistry. Diabetes was assessed in this study by monitoring weight changes and blood glucose levels of both PBS- and STZ-injected rats (Table 1). Control rats gained 101 Ϯ 26 g over the 28-day period, while diabetic rats lost 68 Ϯ 9 g. Weight loss was paralleled by a significant increase (P Ͻ 0.01) in blood glucose levels, from 181 Ϯ 46 mg/dl in control to 601 Ϯ 22 mg/ml in diabetic rats. Levels of electrolytes within the CSF and plasma were similar, with a small increase in plasma Kϩ levels in diabetic rats compared with controls (Table 2). FIG. 1. Schematic showing location of transporters and direction of ion Western blot analyses of transporter expression. flow during CSF production by choroidal epithelial cells, based on Figure 2A– C shows the expression of the ␣1-, ␤1-, and Speake et al. (9). Carbonic anhydrase (C.A.) catalyzes the production ϩ ϩ -؊ ␤2-subunits of the Na -K -ATPase transporter. A signifi of HCO3- ions from H2O and CO2.Cl accumulation in the choroidal ؊ Ͻ ϳ epithelial cell is driven by the basolateral HCO3-/Cl exchanger. HCO3- cant increase (P 0.05) of 60% was seen in expression can also move down an electrochemical gradient across the apical of the ␣1 catalytic subunit in diabetic rats as compared membrane via various channels. Cl؊ enters the CSF via either anion ␤ ؉ ؉ ؊ ؉ channels or the Na -K -2Cl cotransporter. Na enters the choroid with controls (Fig. 2A), with no significant change in 1- or .(plexus from the blood down a chemical gradient via the Na؉-H؉ ␤2-subunit expression (Fig. 2B and C exchanger on the basolateral membrane (H؉ supplied from the produc- ϩ ϩ Ϫ ؉ Figure 2D shows the expression of the Na -K -2Cl tion of HCO3-). Na crosses the apical membrane to the CSF via the ,Na؉-K؉-ATPase and the Na؉-K؉-2Cl؊ cotransporter. Secretion of Na؉, cotransporter, which showed a significant increase (40% ؊ Cl , and HCO3- into the ventricles leads to an osmotic gradient, which P Ͻ 0.05) in expression in diabetic choroid plexuses as drives H2O movement into the CSF via aquaporins.
Recommended publications
  • Iron Transport Proteins: Gateways of Cellular and Systemic Iron Homeostasis
    Iron transport proteins: Gateways of cellular and systemic iron homeostasis Mitchell D. Knutson, PhD University of Florida Essential Vocabulary Fe Heme Membrane Transport DMT1 FLVCR Ferroportin HRG1 Mitoferrin Nramp1 ZIP14 Serum Transport Transferrin Transferrin receptor 1 Cytosolic Transport PCBP1, PCBP2 Timeline of identification in mammalian iron transport Year Protein Original Publications 1947 Transferrin Laurell and Ingelman, Acta Chem Scand 1959 Transferrin receptor 1 Jandl et al., J Clin Invest 1997 DMT1 Gunshin et al., Nature; Fleming et al. Nature Genet. 1999 Nramp1 Barton et al., J Leukocyt Biol 2000 Ferroportin Donovan et al., Nature; McKie et al., Cell; Abboud et al. J. Biol Chem 2004 FLVCR Quigley et al., Cell 2006 Mitoferrin Shaw et al., Nature 2006 ZIP14 Liuzzi et al., Proc Natl Acad Sci USA 2008 PCBP1, PCBP2 Shi et al., Science 2013 HRG1 White et al., Cell Metab DMT1 (SLC11A2) • Divalent metal-ion transporter-1 • Former names: Nramp2, DCT1 Fleming et al. Nat Genet, 1997; Gunshin et al., Nature 1997 • Mediates uptake of Fe2+, Mn2+, Cd2+ • H+ coupled transporter (cotransporter, symporter) • Main roles: • intestinal iron absorption Illing et al. JBC, 2012 • iron assimilation by erythroid cells DMT1 (SLC11A2) Yanatori et al. BMC Cell Biology 2010 • 4 different isoforms: 557 – 590 a.a. (hDMT1) Hubert & Hentze, PNAS, 2002 • Function similarly in iron transport • Differ in tissue/subcellular distribution and regulation • Regulated by iron: transcriptionally (via HIF2α) post-transcriptionally (via IRE) IRE = Iron-Responsive Element Enterocyte Lumen DMT1 Fe2+ Fe2+ Portal blood Enterocyte Lumen DMT1 Fe2+ Fe2+ Fe2+ Fe2+ Ferroportin Portal blood Ferroportin (SLC40A1) • Only known mammalian iron exporter Donovan et al., Nature 2000; McKie et al., Cell 2000; Abboud et al.
    [Show full text]
  • Primary and Secondary Thyroid Hormone Transporters Anita Kinne, Ralf Schülein, Gerd Krause*
    Kinne et al. Thyroid Research 2011, 4(Suppl 1):S7 http://www.thyroidresearchjournal.com/content/4/S1/S7 REVIEW Open Access Primary and secondary thyroid hormone transporters Anita Kinne, Ralf Schülein, Gerd Krause* Abstract Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4) and the large neutral amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b) the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators.
    [Show full text]
  • Invited Review Ion Transport in Chondrocytes: Membrane
    Histol Histopathol (1998) 13: 893-910 Histology and 001: 10.14670/HH-13.893 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Invited Review Ion transport in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH A. MobasherP, R. Mobasherl2, M.J.O. Francis3, E. Trujillo4, D. Alvarez de la Rosa4 and P. Martin-Vasallo4 1 University Laboratory of Physiology, University of Oxford, and Department of Biomedical Sciences, School of Biosciences, University of Westminster, London, 2United Medical and Dental Schools of Guy's and St Thomas's Hospitals, London, 3Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, Headington, UK and 4Laboratory of Developmental Biology, Department of Biochemistry and Molecular Biology, University of La Laguna, La Laguna, Tenerife, Spain Summary. Chondrocytes exist in an unusual and their patterns of isoform expression underscore the variable ionic and osmotic environment in the extra­ subtlety of ion homeostasis and pH regulation in normal cellular matrix of cartilage and are responsible for cartilage. Perturbations in these mechanisms may affect maintaining the delicate equilibrium between extra­ the physiological turnover of cartilage and thus increase cellular matrix synthesis and degradation. The the susceptibility to degenerative joint disease. mechanical performance of cartilage relies on the biochemical properties of the matrix. Alterations to the Key words: Chondrocyte, Cartilage, Ion transport, £H ionic and osmotic extracellular environment of chondro­ regulation, Na+, K+-ATPase, Na+/H+ exchange, Ca +­ cytes have been shown to influence the volume, ATPase intracellular pH and ionic content of the cells, which in turn modify the synthesis and degradation of extra­ cellular matrix macromolecules.
    [Show full text]
  • Structure and Mechanism of the Divalent Anion/Na+ Symporter
    International Journal of Molecular Sciences Review Structure and Mechanism of the Divalent Anion/Na+ Symporter Min Lu Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA; [email protected]; Tel.: +1-847-578-8357 Received: 21 December 2018; Accepted: 18 January 2019; Published: 21 January 2019 Abstract: Integral membrane proteins of the divalent anion/Na+ symporter (DASS) family are conserved from bacteria to humans. DASS proteins typically mediate the coupled uptake of Na+ ions and dicarboxylate, tricarboxylate, or sulfate. Since the substrates for DASS include key intermediates and regulators of energy metabolism, alterations of DASS function profoundly affect fat storage, energy expenditure and life span. Furthermore, loss-of-function mutations in a human DASS have been associated with neonatal epileptic encephalopathy. More recently, human DASS has also been implicated in the development of liver cancers. Therefore, human DASS proteins are potentially promising pharmacological targets for battling obesity, diabetes, kidney stone, fatty liver, as well as other metabolic and neurological disorders. Despite its clinical relevance, the mechanism by which DASS proteins recognize and transport anionic substrates remains unclear. Recently, the crystal structures of a bacterial DASS and its humanized variant have been published. This article reviews the mechanistic implications of these structures and suggests future work to better understand how the function of DASS can be modulated for potential therapeutic benefit. Keywords: membrane protein; anion transporter; sodium symporter; dicarboxylate transporter; substrate recognition; sodium coordination 1. Introduction Integral membrane proteins from the divalent anion/Na+ symporter (DASS) family are found in all domains of life [1–3].
    [Show full text]
  • Modulation of Brain Cation-Clâˆ' Cotransport Via the SPAK Kinase
    ARTICLE https://doi.org/10.1038/s41467-019-13851-6 OPEN Modulation of brain cation-Cl− cotransport via the SPAK kinase inhibitor ZT-1a Jinwei Zhang 1,2,14*, Mohammad Iqbal H. Bhuiyan 3,14, Ting Zhang4,14, Jason K. Karimy5, Zhijuan Wu 6, Victoria M. Fiesler3, Jingfang Zhang4, Huachen Huang3, Md Nabiul Hasan3, Anna E. Skrzypiec1, Mariusz Mucha1, Daniel Duran 5, Wei Huang4, Robert Pawlak1, Lesley M. Foley7, T. Kevin Hitchens7,8, Margaret B. Minnigh9, Samuel M. Poloyac9, Seth L. Alper10, Bradley J. Molyneaux3,11, Andrew J. Trevelyan12, Kristopher T. Kahle5*, Dandan Sun3,13* & Xianming Deng4* 1234567890():,; The SLC12A cation-Cl− cotransporters (CCC), including NKCC1 and the KCCs, are important determinants of brain ionic homeostasis. SPAK kinase (STK39) is the CCC master regulator, which stimulates NKCC1 ionic influx and inhibits KCC-mediated efflux via phosphorylation at conserved, shared motifs. Upregulation of SPAK-dependent CCC phosphorylation has been implicated in several neurological diseases. Using a scaffold-hybrid strategy, we develop a novel potent and selective SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano) methyl)-2-methylphenyl)-2-hydroxybenzamide (“ZT-1a”). ZT-1a inhibits NKCC1 and stimu- lates KCCs by decreasing their SPAK-dependent phosphorylation. Intracerebroventricular delivery of ZT-1a decreases inflammation-induced CCC phosphorylation in the choroid plexus and reduces cerebrospinal fluid (CSF) hypersecretion in a model of post-hemorrhagic hydrocephalus. Systemically administered ZT-1a reduces ischemia-induced CCC phosphor- ylation, attenuates cerebral edema, protects against brain damage, and improves outcomes in a model of stroke. These results suggest ZT-1a or related compounds may be effective CCC modulators with therapeutic potential for brain disorders associated with impaired ionic homeostasis.
    [Show full text]
  • Characterization of the Ion Transporter NKCC1 in the Field of Chemosensation
    Characterization of the Ion Transporter NKCC1 in the Field of Chemosensation Dissertation to obtain the degree Doctor Rerum Naturalium (Dr.rer.nat.) at the Faculty of Biology and Biotechnology Ruhr-University Bochum International Graduate School of Biosciences Ruhr-University Bochum (Department of Cellphysiology) submitted by Claudia Haering from Dortmund, Germany Bochum (April, 2015) First Referee: Prof. Dr. Dr. Dr. Hatt Second Referee: Prof. Dr. Wiese Charakterisierung des Ionentransporters NKCC1 in der Chemosensorik Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät Biologie und Biotechnologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt im Lehrstuhl für Zellphysiologie vorgelegt von Claudia Haering aus Dortmund, Deutschland Bochum (April, 2015) Referent: Prof. Dr. Dr. Dr. Hatt Korreferent: Prof. Dr. Wiese ERKLÄRUNG Hiermit erkläre ich, dass ich die Arbeit selbständig verfasst und bei keiner anderen Fakultät eingereicht und dass ich keine anderen als die angegebenen Hilfsmittel verwendet habe. Es handelt sich bei der heute von mir eingereichten Dissertation um sechs in Wort und Bild völlig übereinstimmende Exemplare. Weiterhin erkläre ich, dass digitale Abbildungen nur die originalen Daten enthalten und in keinem Fall inhaltsverändernde Bildbearbeitung vorgenommen wurde. Bochum, den (Claudia Haering) Table of contents 1. Introduction __________________________________________________________ 1 1.1 General introduction - Olfaction_________________________________________
    [Show full text]
  • Human Intestinal Nutrient Transporters
    Gastrointestinal Functions, edited by Edgard E. Delvin and Michael J. Lentze. Nestle Nutrition Workshop Series. Pediatric Program. Vol. 46. Nestec Ltd.. Vevey/Lippincott Williams & Wilkins, Philadelphia © 2001. Human Intestinal Nutrient Transporters Ernest M. Wright Department of Physiology, UCLA School of Medicine, Los Angeles, California, USA Over the past decade, advances in molecular biology have revolutionized studies on intestinal nutrient absorption in humans. Before the advent of molecular biology, the study of nutrient absorption was largely limited to in vivo and in vitro animal model systems. This did result in the classification of the different transport systems involved, and in the development of models for nutrient transport across enterocytes (1). Nutrients are either absorbed passively or actively. Passive transport across the epithelium occurs down the nutrient's concentration gradient by simple or facilitated diffusion. The efficiency of simple diffusion depends on the lipid solubility of the nutrient in the plasma membranes—the higher the molecule's partition coefficient, the higher the rate of diffusion. Facilitated diffusion depends on the presence of simple carriers (uniporters) in the plasma membranes, and the kinetic properties of these uniporters. The rate of facilitated diffusion depends on the density, turnover number, and affinity of the uniporters in the brush border and basolateral membranes. The ' 'active'' transport of nutrients simply means that energy is provided to transport molecules across the gut against their concentration gradient. It is now well recog- nized that active nutrient transport is brought about by Na+ or H+ cotransporters (symporters) that harness the energy stored in ion gradients to drive the uphill trans- port of a solute.
    [Show full text]
  • Ion Traffic Across Cellular Membranes
    ION TRAFFIC ACROSS CELLULAR MEMBRANES by Jill Gallaher April, 2010 m Under the direction of Dr. Martin Bier DEPARTMENT OF PHYSICS The cell membrane protects the delicate internal machinery of the cell and hosts a complex transport system for ion exchange with the environment. Energy is continually expended to main- tain a transmembrane electrical potential of about 80 mV. Low extracellular potassium leads to some interesting dynamics that elucidate mechanisms for + energy expenditure and survival. As the extracellular potassium concentration, [K ]o, is lowered, + the transmembrane potential hyperpolarizes. But at a certain point in decreasing [K ]o, a switch to a depolarized state occurs. A switch back to the hyperpolarized state occurs when again increasing + + the [K ]o, but this switch occurs at a higher [K ]o than the one at which the switch to depolarization occurred. So there is an apparent hysteresis. In a system of ion pumps, ion channels, and ion transporters the flows of sodium, potassium, and chloride are tightly coupled. A model is set up involving the most relevant components in the ion transport. The model reproduces the observed hysteresis and can quantitatively account for the change in location and size of the hysteresis loop when an important chloride transporter is blocked or stimulated. The switching points in the hysteresis loop occur when inward rectifying potassium channels (IRKs) close or open. Adding isoprenaline opens other potassium channels and makes the IRK contribution negligible. After also neglecting the role of chloride, the fixed potassium permeability leads to a system that can be analytically solved. Expressions are derived for the position and the size of the hysteresis loop.
    [Show full text]
  • SLC6A19), a Potential Target to Induce Protein Restriction and to Treat Type 2 Diabetes
    Identification of Novel Inhibitors of the Amino Acid Transporter B0AT1 (SLC6A19), a Potential Target to Induce Protein Restriction and to Treat Type 2 Diabetes By QI CHENG A thesis submitted for the degree of Doctor of Philosophy of The Australian National University May, 2018 Copyright by Qi Cheng 2018 AUTHOR’S DECLARATION The results presented in this thesis are, except where explicitly acknowledged, the original work of the author. I certify that the substance of this thesis has not previously been, or is currently being submitted for any other degree or diploma. Qi Cheng (Author) Date ACKNOWLEDGEMENTS First and foremost, I would like to give my sincere thanks to my supervisor, Prof. Stefan Bröer, for his great support on my PhD research over the past four years. Stefan is always very kind to offer his help and provide his idea on my research plan, experimental design, and trouble shooting. I very much appreciate all the effort he has put into my PhD project and all the encouragements he has given to me. I would also like to thank my panels, A/Prof. Ben Corry and A/Prof. Kevin Saliba, for their helpful suggestions on my research proposals and plans. I really had a wonderful time with everyone in Broer’s Lab during my PhD. I would like to deeply thank Angelika Bröer, not only for her patience in guiding me in my experiments and teaching me those critical laboratory skills, but also for her huge support in my most difficult times. This compound screening project is based on a large-scale virtual screening done by Nishank Shah, who was co-authored with me to make our work published in a peer-reviewed journal.
    [Show full text]
  • The Auxin Transporter PIN1 and the Cytokinin Transporter AZG1 Interact to Regulate the Root Stress Response
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.350363; this version posted October 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The auxin transporter PIN1 and the cytokinin transporter AZG1 interact to regulate the root stress response Tessi TM1*, Shahriari M2*, Maurino VG3*, Meissner E4, Novak O5, Pasternak T2, Schumacher BS6, Flubacher NS2, Nautscher M2, Williams A2, Kazimierczak Z2, Strnad M5, Thumfart JO7‖, Palme K2,8,9, Desimone M1† and Teale WD2† Affiliations 1. Instituto Multidisciplinario de Biología Vegetal, Velez Sarsfield 249, 5000 Córdoba, Argentina. 2. Institute of Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany. 3. Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschalle 1, 53115 Bonn, Germany. 4. Division of Naturschutz, Department Biology, Philipps-Universität Marburg, Karl-von- Frisch-Straße 8, 35032 Marburg 5. Laboratory of Growth Regulators, Institute of Experimental Botany ASCR and Palacky 6. Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany. 7. Institute of Physiology II, Faculty of Medicine, University of Freiburg, Hermann-Herder- Strasse 7, 79104 Freiburg, Germany. 8. Centre of Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany. 9. BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. * These authors contributed equally to this work † Correspondence to: [email protected]; [email protected] freiburg.de ‖ Current address: Labormedizinisches Zentrum Ostschweiz, Lagerstrasse 30, 9470 Buchs SG, Switzerland. bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.350363; this version posted October 22, 2020.
    [Show full text]
  • Dynamic Internalization and Recycling of a Metal Ion Transporter: Cu Homeostasis and CTR1, the Human Cu+ Uptake System Rebecca J
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1711-1721 doi:10.1242/jcs.173351 RESEARCH ARTICLE Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu+ uptake system Rebecca J. Clifford, Edward B. Maryon and Jack H. Kaplan* ABSTRACT superoxide dismutase (SOD), as a co-factor for cytochrome c Cu ion (Cu) entry into human cells is mediated by CTR1 (also known oxidase, in neurons for neurotransmitter and brain peptide as SLC31A1), the high-affinity Cu transporter. When extracellular Cu biosynthesis, and in the extracellular matrix as a co-factor for lysyl is raised, the cell is protected against excess accumulation by rapid oxidase in collagen cross-linking (Iakovidis et al., 2011). However, internalization of the transporter. When Cu is lowered, the transporter because of its ready non-specific reaction with many amino acid side returns to the membrane. We show in HEK293 cells overexpressing chains and ability to undergo Fenton chemistry and generate reactive CTR1 that expression of either the C-terminal domain of AP180 oxygen species, Cu can be damaging at excessive levels. The cellular (also known as SNAP91), a clathrin-coat assembly protein that homeostasis of Cu is accomplished by a Cu proteome consisting of sequesters clathrin, or a dominant-negative mutant of dynamin, uptake transporter(s), specific metallochaperones, and glutathione decreases Cu-induced endocytosis of CTR1, as does a dynamin (GSH) that deliver cellular Cu to its target proteins and exporters that inhibitor and clathrin knockdown using siRNA. Utilizing imaging, protect against excess accumulation (Harrison et al., 2000; Maryon siRNA techniques and a new high-throughput assay for endocytosis et al., 2013b).
    [Show full text]
  • Role of ATP1A1 in Skeletal Muscle Growth and Metabolism
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2020 Role of ATP1A1 in Skeletal Muscle Growth and Metabolism Laura C. Kutz [email protected] Follow this and additional works at: https://mds.marshall.edu/etd Part of the Medical Biophysics Commons, Medical Physiology Commons, and the Musculoskeletal, Neural, and Ocular Physiology Commons Recommended Citation Kutz, Laura C., "Role of ATP1A1 in Skeletal Muscle Growth and Metabolism" (2020). Theses, Dissertations and Capstones. 1267. https://mds.marshall.edu/etd/1267 This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ROLE OF ATP1A1 IN SKELETAL MUSCLE GROWTH AND METABOLISM A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical Research by Laura C. Kutz Approved by Dr. Zijian Xie, Committee Chairperson Dr. Sandrine Pierre, Committee Co-Chairperson Dr. Nalini Santanam Dr. Joseph Shapiro Dr. Judith Heiny Marshall University May 2020 APPROVAL OF THESIS ii DEDICATION This dissertation is dedicated to my advisor and mentor, Dr. Zijian Xie, who passed away before it could be published. I am proud to have been mentored by such a brilliant researcher, and I hope to honor his legacy of hard work, compassionate mentoring, and innovative research as I build my own career on the principles I learned from him and applied to this body of work.
    [Show full text]