Original Article Genetic Analysis of Four Cases of Methylmalonic Aciduria and Homocystinuria, Cblc Type

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Genetic Analysis of Four Cases of Methylmalonic Aciduria and Homocystinuria, Cblc Type Int J Clin Exp Pathol 2015;8(8):9337-9341 www.ijcep.com /ISSN:1936-2625/IJCEP0010308 Original Article Genetic analysis of four cases of methylmalonic aciduria and homocystinuria, cblC type# Jun Wang1, Erzhen Li1, Liwen Wang1, Zhilong Wang2, Shenghai Yang1, Qiao Zhou2, Qian Chen1 1Department of Neurology, Capital Institute of Pediatrics, Beijing, PR China; 2Clinical Laboratory of Zhongke, Beijing, PR China Received May 17, 2015; Accepted June 27, 2015; Epub August 1, 2015; Published August 15, 2015 Abstract: Methylmalonic aciduria and homocystinuria, cblC type, is the most common disorder of intracellular vita- min B12 (cobalamin, cbl) metabolism, which results in impaired biosynthesis of methylcobalamin and adenosylco- balamin. The gene MMACHC responsible for the cblC type had been identified, which enables molecular diagnos- tics. Here, we report four cblC type cases, which were identified by the typical manifestations, and a new approach of next-generation sequencing platform in pediatrics for genetic diseases, further confirmed by Sanger sequencing of the whole MMACHC gene. The article will replenish the mutational information of related genes to the cblC type, which makes for detecting of cblC disease through the newborn screening. Keywords: Methylmalonic aciduria and homocystinuria, MMACHC, mutation, vitamin B12 (cobalamin, Cb1) Introduction disease through expanded newborn screening, and increases the possibility to improve the out- Combined methylmalonic aciduria and homo- come in patients with cblC disease. To date, the cystinuria, cblC type (MIM# 277400), is autoso- most prevalent mutation was c271dupA which mal recessive mode of inheritance. It is claimed account for the mutant alleles characterized in to be the most common inborn error of intracel- a crowd of cblC patients from around the world lular cobalamin metabolism, caused by muta- [1, 5, 6]. Here we report four cases with five tions in the MMACHC gene located in chromo- mutations, including one novel change, and one some region 1p34.1 with five exons [1]. case without any mutation in MMACHC gene. Individuals with cblC deficiency do not synthe- The full identification of mutations in the size AdoCbl and MeCbl, cofactors for the meth- MMACHC gene is benefit for the detection of ylmalonyl-CoA mutase and methionine syn- cblC disease. thase enzymes, and display methylmalonic aciduria and homocystinuria. The patients with Case reports cblC disease display a wide spectrum of clinical manifestations including feeding difficulties, Case 1 failure to thrive, hematologic, neurologic, meta- bolic (acidosis), ophthalmologic and dermato- A 4-month-old girl was admitted to hospital for logic abnormalities. The cblC disease can light cognitive impairment and not be amused develop severe complications despite treat- and vertical head instability. The patient pre- ment [2, 3]. The pathophysiology of cblC is not sented aware consciousness, normal myody- fully understood, but three important factors namia but higher muscle tone by clinical exami- contribute to the disease-related complica- nation. Pregnancy history described that it is tions. They are increased homocysteine con- the first child and first production. The new born centrations, impaired methyl group metabo- has not fetal distress and asphyxia history. lism, and oxidative stress [3, 4]; Characterization Related biochemical studies revealed that of the variation in the MMACHC gene can facili- Lactic acid 5.4 mmol/L↑ (reference 4 mmol/L), tate the prenatal and early diagnosis of cblC blood ammonia 50 µmol/L (reference 20-60 Genetic analysis of four cases of methylmalonic aciduria and homocystinuria Table 1. 48 genes related to organic acid Case 3 metabolic disease MUT MMAA MMAB MCEE A 9-month-old girl was admitted to hospital. She can’t sit alone, pronounce summation tone MMACHC MMADHC LMBRD1 PCCA and has poor eyesight. Cranial MRI enhance- PCCB MTHFR MTRR CBS ment scanning was cerebral dysplasia. EEG MTR PAH PTS GCH1 showed hypsarrhythmia. Blood screening test QDPR PCBD1 GLDC GCSH showed Lactic acid 5.4 mmol/L↑. Plasma homo- MAT1A HAL IVD HGD cysteine was 174.22 µmol/L. Urine screening PRODH ALDH4A1 MCCC1 MCCC2 test showed. Methylmalonic aciduria (MMA HIBCH HMGCL AUH L2HGDH 5066 times increased), and after 4 days of DNAJC19 MVK BTD HLCS injection Cobamamide, MMA 526.5 times dec- D2HGDH L2HGDH GCDH BCAT2 reased. ETFA FAH TAT HPD Case 4 ETFB ETFDH HMGCL UGT1A1 A 9-month and 19-days-old boy presented sit- ting instability, intermittent lethargy, somno- μmol/L). Cranial MRI enhancement scanning lence, and vomited for 9 months. The EGG displays the result of hydrocephalus. EEG video showed that slow background activity showed atypical hypsarrhythmia. Plasma amino with DQ41. The patient presented aware con- acids analysis by tandem mass spectrometry sciousness, weak myodynamia and muscle (MS/MS) showed higher homocysteine, citrul- tone of four limbs by clinical examination. ine/arginine, propionyl-L-carnitine, C3; propio- Plasma amino acid test showed higher C3, C3/ nyl-L-carnitine/free carnitine, C3/CO; propionyl- C16, and homocysteine of 27.13 μmol/L. L-carnitine/acetyl-carnitine, C3/C2; and octa- Methylmalonic aciduria increased to 15601.8 noyl-canitine/kawi-acyl-carnitine, C8/C12. Be- times of the normal level by urine organic acid sides, organic acid test of urine by MS/MS test. showed an excessive urinary excretion of meth- ylmalonic acid 18076 times of average level Genomic DNA analysis which supported methylmalonic aciduria (refer- ence range < 2 mmol/mol). Besides, plasma Since the publication of the first graft of the homocysteine was 260.64 µmol/L, higher than human genome sequence, the field of genom- the normal level (reference range 1-20 µmol/L ics has been changed dramatically; and with in blood). Combined the two characteristic bio- the development of high-throughput methods chemical parameters and clinical manifesta- that could be used to interrogate the wealth of tions, the patient was diagnosed as methylma- data available in the human genome. In the lonic aciduria and homocystinuria. present study, we used 48 genes related to organic acid metabolic disease (Table 1), Case 2 including: MUT, MMAA (cblA), MMAB (cblB), An 11-year-old boy was admitted to hospital MMACHC (cblC), MMADHC (cblD), LMBRD1 because of “intermittent headache, spasm, (cblF) and other genes. This technology com- somnolence, paralysis of facial features”. The bined the designed gene capture probe and patient is with aware consciousness. The skull customer DNA library. The gene fragments CT demonstrated that bilateral lateral ventricle were hybridized to the probe, and adsorbed to triangle choroid plexus slightly punctuated with the beads through biotin and streptavidin-bio- high density of shadow. Cranial MRI enhance- tin; and then the nonspecific binding DNA frag- ment scanning was normal. EEG showed slow ments were washed out. Finally the captured background activity. The results of plasma total target DNA fragment was identified by new-gen- homocysteine and urine organic acid analysis eration sequencing platform in pediatrics, are homocysteine of 396.84 µmol/L and meth- which can quickly distinguishe the targeted ylmalonic acidria of 2058 times of average gene (MMACHC) and determine its mutation level respectively, both elevated far more than locus. In order to avoid the false positive errors. the normal level. Plasma amino acids analysis The pathogenic mutation was further confirmed showed higher Hcy, C3/CO, C3/C2, C8/C2 and by Sanger direct sequencing the whole target C8/C12, similar to the status of case 1. gene. 9338 Int J Clin Exp Pathol 2015;8(8):9337-9341 Genetic analysis of four cases of methylmalonic aciduria and homocystinuria clearly. In these cases, low homocysteine level after treat- ment of B12 was observed which indicates that the patient is responded to B12, a charac- teristic of the cblC disease type of combined methylmalonic aci- duria and homocystinuria. However, the fourth case sho- wed no response to treatment of vitamin B12. His mum did not showed lack of Vitamin B12 dur- ing pregnancy. All gDNA samples of these four cases were checked for molecular diag- nostics. In the first case, two mutations c.609G>A p.W203Term (Figure 1A) and c.440_441del (Figure 1B) were identified in the MMACHC gene; the deletion mutation (c.440_441del) sited on the binding domain of cyano- cobalamine has not been report- Figure 1. MMACHC gene mutations of case 1. (point mutation is indenti- ed previously for resulting in fied by arrow and deletions and insertions are marked by black frame). cblC disease. In the second case, two mutations in gene MMACHC were identified, one Discussion insertion mutation c.567_568insT p.Ile190fs (Figure 2A) in exon 4 lead to the frame shift and Individuals with cblC disease caused by muta- early termination of its allele. The other muta- tions in MMACHC gene have aroused atten- tion is c.482G>A p.R161Q (Figure 2B) which tions from all over the world. While most muta- has been reported in previous cases disease tions are private, clear ethnic observations [1, 7]. In third case, one pair of homozygosis have been made for more common mutations. mutation was indentified, c.609G>A p. Clinical heterogeneity in cblC disease has been W203Term (Figure 3). Similar to the finding was clearly started by Morel et al [6]. The mutations reported by Lerner-Ellis et al. It is indicated that of MMACHC gene can lead to onset of cblC dis- this mutation c.609G>A p.W203Term is not ease at different age. ethnic. In the fourth case, we did not found any mutation of his MMACHC gene, but this patient Herein, we have applied a facility to distin- displays clinical manifestations of cblC type. guished mutated genes, which can carefully Therefore, we speculate that the mutation sequence the MMACHC gene in affected indi- might occur in the regulatory regions of viduals and has a greater than 95% chance of MMACHC gene. In order to illustrate the real definitively confirming the diagnosis of a sus- reason, we should evaluate the expression pected case of cblC disease.
Recommended publications
  • PDF Document Created by Pdffiller
    Patient: 1234567843314948-COtGx0053 CLIA ID#: 11D2066426 Larry Hung, MD, Laboratory Director GxTM Carrier Screen Testing Report Patient Information Provider Information Specimen Patient Name Haley Papevies Provider Harbin Clinic Women's Accession ID 1234567843314948 Center Cartersville Date of Birth Apr 16, 1998 Sample ID COtGx0053XX Provider ID 1124488556 Age 19 Specimen Type Saliva Physician Vicki Yates Sex female Collection Date Jul 20, 2017 Ethnicity Report Date Aug 5, 2017 Test Ordered CF Patient Results: Negative - No Pathogenic or Likely-Pathogenic Variant(s) Detected Additional Comments This report is based on the analysis of CFTR gene included in the Carrier Screen. No known pathogenic or likely pathogenic variant(s) detected in the coding sequences of CFTR gene. Followup Recommendations Follow up with physicians for updated carrier screen information. The sequencing for CFTR gene was carried out with the other genes included in the Carrier Screen Testing (listed below). The analysis of the other genes in the Carrier Screen could be ordered through your physicians. Genes Tested Targeted regions for “Carrier Screen Testing” includes the exonic regions of the following genes: ABCC8, ABCD1, ABCD4, ACAD8, ACADM, ACADS, ACADSB, ACADVL, ACAT1, ACSF3, ACTA2, ACTC1, ADA, ADAMTS2, AGXT, AHCY, APC, APOB, ARG1, ASL, ASPA, ASS1, ATP7B, AUH, BCKDHA, BBS2, BCKDHB, BLM, BTD, CBS, COL3A1, COL4A3, CD320, CFTR, CLRN1, CPT1A, CPT2, CYP1B1, CYP21A2, DBT, DHCR7, DHDDS, DLD, DMD, DNAJC19, DSC2, DSG2, DSP, DUOX2, ETFA, ETFB, ETFDH, FAH, FANCC, FBN1,
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Neurodevelopmental Signatures of Narcotic and Neuropsychiatric Risk Factors in 3D Human-Derived Forebrain Organoids
    Molecular Psychiatry www.nature.com/mp ARTICLE OPEN Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids 1 1 1 1 2 2 3 Michael Notaras , Aiman Lodhi , Estibaliz✉ Barrio-Alonso , Careen Foord , Tori Rodrick , Drew Jones , Haoyun Fang , David Greening 3,4 and Dilek Colak 1,5 © The Author(s) 2021 It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human- specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined “enviromimetic” compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass- spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin.
    [Show full text]
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Anti-MMAB Antibody (ARG55862)
    Product datasheet [email protected] ARG55862 Package: 100 μl anti-MMAB antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes MMAB Tested Reactivity Hu Predict Reactivity Ms Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name MMAB Antigen Species Human Immunogen KLH-conjugated synthetic peptide corresponding to aa. 50-81 (Center) of Human MMAB. Conjugation Un-conjugated Alternate Names ATR; cob; cblB; CFAP23; Cob(I)yrinic acid a,c-diamide adenosyltransferase, mitochondrial; EC 2.5.1.17; Cob(I)alamin adenosyltransferase; Methylmalonic aciduria type B protein Application Instructions Application table Application Dilution WB 1:1000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control HepG2 Calculated Mw 27 kDa Properties Form Liquid Purification Purification with Protein A and immunogen peptide. Buffer PBS and 0.09% (W/V) Sodium azide Preservative 0.09% (W/V) Sodium azide Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Database links GeneID: 326625 Human Swiss-port # Q96EY8 Human Gene Symbol MMAB Gene Full Name methylmalonic aciduria (cobalamin deficiency) cblB type Background This gene encodes a protein that catalyzes the final step in the conversion of vitamin B(12) into adenosylcobalamin (AdoCbl), a vitamin B12-containing coenzyme for methylmalonyl-CoA mutase.
    [Show full text]
  • Oral Presentations
    Journal of Inherited Metabolic Disease (2018) 41 (Suppl 1):S37–S219 https://doi.org/10.1007/s10545-018-0233-9 ABSTRACTS Oral Presentations PARALLEL SESSION 1A: Clycosylation and cardohydrate disorders O-002 Link between glycemia and hyperlipidemia in Glycogen Storage O-001 Disease type Ia Hoogerland J A1, Hijmans B S1, Peeks F1, Kooijman S3, 4, Bos T2, Fertility in classical galactosaemia, N-glycan, hormonal and inflam- Bleeker A1, Van Dijk T H2, Wolters H1, Havinga R1,PronkACM3, 4, matory gene expression interactions Rensen P C N3, 4,MithieuxG5, 6, Rajas F5, 6, Kuipers F1, 2,DerksTGJ1, Reijngoud D1,OosterveerMH1 Colhoun H O1,Rubio-GozalboME2,BoschAM3, Knerr I4,DawsonC5, Brady J J6,GalliganM8,StepienKM9, O'Flaherty R O7,MossC10, 1Dep Pediatrics, CLDM, Univ of Groningen, Groningen, Barker P11, Fitzgibbon M C6, Doran P8,TreacyEP1, 4, 9 Netherlands, 2Lab Med, CLDM, Univ of Groningen, Groningen, Netherlands, 3Dep of Med, Div of Endocrinology, LUMC, Leiden, 1Dept Paediatrics, Trinity College Dublin, Dublin, Ireland, 2Dept Paeds and Netherlands, 4Einthoven Lab Exp Vasc Med, LUMC, Leiden, Clin Genetics, UMC, Maastricht, Netherlands, 3Dept Paediatrics, AMC, Netherlands, 5Institut Nat Sante et Recherche Med, Lyon, Amsterdam, Netherlands, 4NCIMD, TSCUH, Dublin, Ireland, 5Dept France, 6Univ Lyon 1, Villeurbanne, France Endocrinology, NHS Foundation Trust, Birmingham, United Kingdom, 6Dept Clin Biochem, MMUH, Dublin, Ireland, 7NIBRT Glycoscience, Background: Glycogen Storage Disease type Ia (GSD Ia) is an NIBRT, Dublin, Ireland, 8UCDCRC,UCD,Dublin,Ireland,9NCIMD, inborn error of glucose metabolism characterized by fasting hypo- MMUH, Dublin, Ireland, 10Conway Institute, UCD, Dublin, Ireland, glycemia, hyperlipidemia and fatty liver disease. We have previ- 11CBAL, NHS Foundation, Cambridge, United Kingdom ously reported considerable heterogeneity in circulating triglycer- ide levels between individual GSD Ia patients, a phenomenon that Background: Classical Galactosaemia (CG) is caused by deficiency of is poorly understood.
    [Show full text]
  • Case Report Methylmalonic Acidemia with Novel MUT Gene Mutations
    Case Report Methylmalonic Acidemia with Novel MUT Gene Mutations Commented [A 1]: Important: 1.As per the journal, units of measurement should be Inusha Panigrahi, Savita Bhunwal, Harish Varma, and Simranjeet Singh presented simply and concisely using System International (SI) units; please ensure that units are Department of Pediatrics, Advanced Pediatric Centre, PGIMER, Chandigarh, India presented using the SI system at all instances. 2.References for some previously published data is Correspondence: Inusha Panigrahi; [email protected] missing. Please ensure that references are provided Methylmalonic acidemia (MMA) is a rare inherited metabolic disorder caused by deficiency wherever required. of the enzyme methylmalonyl-CoA mutase. The disease is presented in early infancy by 3.Informed consent from the patient is required and lethargy, vomiting, failure to thrive, encephalopathy and is deadly if left untreated. A 5-years should be mentioned in the manuscript. old boy presented with recurrent episodes of fever, feeding problems, lethargy, from the age of For more information, please refer to the guidelines at 11 months, and poor weight gain. He was admitted and evaluated for metabolic causes and https://www.hindawi.com/journals/crig/guidelines/. diagnosed as methylmalonic acidemia (MMA). He was treated with vit B12 and carnitine Commented [A 2]: As per the journal’s guidelines, supplements and has been on follow-up for the last 3 years. Mutation analysis by next please provide email addresses of all the authors. generation sequencing (NGS), supplemented with Sanger sequencing, revealed two novel Formatted: Right: 0 cm, Space Before: 0 pt, Line variants in the MUT gene responsible for MMA in exon 5 and exon 3.
    [Show full text]
  • Massive Parallel Sequencing As a New Diagnostic Approach For
    Chaiyasap et al. BMC Medical Genetics (2017) 18:102 DOI 10.1186/s12881-017-0464-x RESEARCH ARTICLE Open Access Massive parallel sequencing as a new diagnostic approach for phenylketonuria and tetrahydrobiopterin-deficiency in Thailand Pongsathorn Chaiyasap1, Chupong Ittiwut1,2, Chalurmpon Srichomthong1,2, Apiruk Sangsin3, Kanya Suphapeetiporn1,2,4* and Vorasuk Shotelersuk1,2 Abstract Background: Hyperphenylalaninemia (HPA) can be classified into phenylketonuria (PKU) which is caused by mutations in the phenylalanine hydroxylase (PAH) gene, and BH4 deficiency caused by alterations in genes involved in tetrahydrobiopterin (BH4) biosynthesis pathway. Dietary restriction of phenylalanine is considered to be the main treatment of PKU to prevent irreversible intellectual disability. However, the same dietary intervention in BH4 deficiency patients is not as effective, as BH4 is also a cofactor in many neurotransmitter syntheses. Method: We utilized next generation sequencing (NGS) technique to investigate four unrelated Thai patients with hyperphenylalaninemia. Result: We successfully identified all eight mutant alleles in PKU or BH4-deficiency associated genes including three novel mutations, one in PAH and two in PTS, thus giving a definite diagnosis to these patients. Appropriate management can then be provided. Conclusion: This study identified three novel mutations in either the PAH or PTS gene and supported the use of NGS as an alternative molecular genetic approach for definite diagnosis of hyperphenylalaninemia, thus leading to proper management of these patients in Thailand. Keywords: Next generation sequencing, Exome, Hyperphenylalaninemia, Phenylketonuria, Tetrahydrobiopterin deficiency, Newborn screening Background 120 μmol/l (2 mg/dl), the individual is considered to be Phenylketonuria (PKU) is an autosomal recessive metabolic hyperphenylalaninemia (HPA) and needs further diagnosis disorder, characterized by progressive intellectual disability, [4].
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • 2021 Code Changes Reference Guide
    Boston University Medical Group 2021 CPT Code Changes Reference Guide Page 1 of 51 Background Current Procedural Terminology (CPT) was created by the American Medical Association (AMA) in 1966. It is designed to be a means of effective and dependable communication among physicians, patients, and third-party payers. CPT provides a uniform coding scheme that accurately describes medical, surgical, and diagnostic services. CPT is used for public and private reimbursement systems; development of guidelines for medical care review; as a basis for local, regional, and national utilization comparisons; and medical education and research. CPT Category I codes describe procedures and services that are consistent with contemporary medical practice. Category I codes are five-digit numeric codes. CPT Category II codes facilitate data collection for certain services and test results that contribute to positive health outcomes and quality patient care. These codes are optional and used for performance management. They are alphanumeric five-digit codes with the alpha character F in the last position. CPT Category III codes represent emerging technologies. They are alphanumeric five-digit codes with the alpha character T in the last position. The CPT Editorial Panel, appointed by the AMA Board of Trustees, is responsible for maintaining and updating the CPT code set. Purpose The AMA makes annual updates to the CPT code set, effective January 1. These updates include deleted codes, revised codes, and new codes. It’s important for providers to understand the code changes and the impact those changes will have to systems, workflow, reimbursement, and RVUs. This document is meant to assist you with this by providing a summary of the changes; a detailed breakdown of this year’s CPT changes by specialty, and HCPCS Updates for your reference.
    [Show full text]
  • Upregulation of E3 Ubiquitin Ligase CBLC Enhances EGFR
    Published OnlineFirst June 26, 2018; DOI: 10.1158/0008-5472.CAN-17-3858 Cancer Tumor Biology and Immunology Research Upregulation of E3 Ubiquitin Ligase CBLC Enhances EGFR Dysregulation and Signaling in Lung Adenocarcinoma Shiao-Ya Hong1, Yu-Rung Kao1, Te-Chang Lee1, and Cheng-Wen Wu1,2,3,4 Abstract CBLC (CBL proto-oncogene c) belongs to the CBL protein ubiquitinated and positively regulated aEGFR stability family, which has E3 ubiquitin ligase activity toward activated through the conjugation of polyubiquitin by K6 and K11 receptor tyrosine kinases. CBLC is frequently upregulated in linkages. This CBLC-mediated polyubiquitination promoted non–small cell lung cancer (NSCLC), yet very little is known either preferential recycling of aEGFR back to the plasma about the functions of CBLC in tumorigenesis. Here we show membrane or trafficking to the cell nucleus. IHC analyses that CBLC is an epigenetically demethylated target and its revealed a positive correlation between phospho-EGFR and expression can be upregulated in NSCLC after treatment with CBLC in lung adenocarcinoma. In summary, we demonstrate a the DNA methylation inhibitor 50-azacytidine. Depletion novel mechanism by which aEGFR escapes lysosomal degra- of CBLC significantly inhibited cell viability and clonogenicity dation in a CBLC/ubiquitin-dependent manner to sustain its in vitro and reduced tumor growth in a xenograft model. CBLC activation. Our work identifies CBLC as a potential diagnostic silencing further sensitized EGFR-mutated NSCLC cells to biomarker and also points to its utilization as a novel thera- treatment with tyrosine kinase inhibitors. Conversely, ectopic peutic target for NSCLC therapy. expression of CBLC enhanced the activation of EGFR and downstream ERK1/2 signaling after ligand stimulation by Significance: This work demonstrates the role of CBLC expres- competing with CBL for EGFR binding.
    [Show full text]