X-Ray Linear Dichroic Ptychography

Total Page:16

File Type:pdf, Size:1020Kb

X-Ray Linear Dichroic Ptychography X-ray linear dichroic ptychography Yuan Hung Loa,b,c,d, Jihan Zhoua,b,c, Arjun Ranaa,b,c, Drew Morrillb,e,f, Christian Gentryb,e,f, Bjoern Endersg, Young-Sang Yuh, Chang-Yu Suni, David A. Shapiroh, Roger W. Falconeb,h,j, Henry C. Kapteynb,e,f, Margaret M. Murnaneb,e,f, Pupa U. P. A. Gilberti,k,l,m,n, and Jianwei Miaoa,b,c,1 aDepartment of Physics and Astronomy, University of California, Los Angeles, CA 90095; bSTROBE NSF Science and Technology Center, University of Colorado Boulder, Boulder, CO 80309; cCalifornia NanoSystems Institute, University of California, Los Angeles, CA 90095; dDepartment of Bioengineering, University of California, Los Angeles, CA 90095; eJILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, CO 80309; fDepartment of Physics, University of Colorado Boulder, Boulder, CO 80309; gNational Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 hAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; iDepartment of Physics, University of Wisconsin, Madison, WI 53706; jDepartment of Physics, University of California, Berkeley, CA, 94720; kDepartment of Chemistry, University of Wisconsin, Madison, WI 53706; lDepartment of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706; mDepartment of Geoscience, University of Wisconsin, Madison, WI 53706; and nChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved November 28, 2020 (received for review September 9, 2020) Biominerals such as seashells, coral skeletons, bone, and tooth polarimetry to study crystal orientation uniformity (12, 13). In enamel are optically anisotropic crystalline materials with unique the shorter-wavelength regime, X-ray absorption near-edge nanoscale and microscale organization that translates into excep- structure spectroscopy has been used to study the orientations tional macroscopic mechanical properties, providing inspiration for of various polymorphs of CaCO3 (14, 15), and polarization- engineering new and superior biomimetic structures. Using Seria- dependent imaging contrast (PIC) mapping using X-ray photo- topora aculeata coral skeleton as a model, here, we experimen- emission electron microscopy (X-PEEM) has been demonstrated tally demonstrate X-ray linear dichroic ptychography and map the to quantitatively map crystal orientations in CaCO3 (15–17,). c-axis orientations of the aragonite (CaCO3) crystals. Linear di- Currently, PIC mapping mostly uses X-PEEM in reflection ge- chroic phase imaging at the oxygen K-edge energy shows strong ometry to achieve tens-of-nanometer resolution. However, polarization-dependent contrast and reveals the presence of both PEEM’s limited achievable spatial resolution (∼20 nm) and the narrow (<35°) and wide (>35°) c-axis angular spread in the coral confinement to polished two-dimensional surfaces are insur- samples. These X-ray ptychography results are corroborated by mountable limits. Scanning transmission X-ray microscopy four-dimensional (4D) scanning transmission electron microscopy (STXM) has taken advantage of dichroic contrast to study APPLIED PHYSICAL SCIENCES (STEM) on the same samples. Evidence of co-oriented, but discon- polymer fibers (18) to resolve 30-nm features, but it is limited in nected, corallite subdomains indicates jagged crystal boundaries achievable spatial resolution by the focusing optics, which also consistent with formation by amorphous nanoparticle attachment. has a low efficiency and a short working-distance constraint. We expect that the combination of X-ray linear dichroic ptychog- Although macroscopic morphologies in biominerals have been raphy and 4D STEM could be an important multimodal tool to studied extensively, their nanoscopic structures are still not study nano-crystallites, interfaces, nucleation, and mineral growth studied routinely in a quantitative fashion, mostly due to the lack of optically anisotropic materials at multiple length scales. of a proper transmission microscope that offers bulk-sensitive information with spatial resolution down to the nanometer BIOPHYSICS AND COMPUTATIONAL BIOLOGY coherent diffractive imaging | ptychography | X-ray linear dichroism | scale. With the development of high-brilliance synchrotron biominerals | 4D scanning transmission electron microscopy Significance umans have been using biogenic materials as tools since the Hdawn of humanity. Biominerals such as bone, teeth, sea- Ptychography, a powerful scanning coherent diffractive imag- shells, and coral skeletons exhibit remarkable mechanical prop- ing method, has attracted considerable attention for its gen- erties and complex hierarchical organization (1). Due to these eral applicability. Here, we demonstrate X-ray linear dichroic unique characteristics, biominerals often outperform their geo- ptychography to study the crystal orientations of the calcium logic or synthetic inorganic counterparts, thus attracting signifi- carbonate in coral samples. In contrast to the absorption con- cant interest in understanding the mechanisms of the biologically trast commonly observed in linear dichroic imaging, dichroic controlled mineralization processes for modern nanotechnology ptychography at pre-oxygen K-edge shows significant and (2). Careful understanding of the three-dimensional (3D) ar- unique dichroic phase contrast, which has not been reported. rangement of biominerals has important engineering implica- The dichroic ptychography images reveal the presence of both tions and has led to bioinspired materials that outperform narrow and wide c-axis angular spread in the submicrometer nonbiomimetic, inorganic synthetic analogs (3). coral fragments, which are confirmed by 4D STEM. We expect One of the most common natural biominerals is calcium car- X-ray linear dichroic ptychography to be a high-resolution, dose-efficient tool to broadly study optically anisotropic ma- bonate (CaCO3), which occurs in bacteria, algae, marine or- terials such as tooth enamel, bone, seashells, brittlestars, ganisms, and humans (4). CaCO3 absorbs light anisotropically, such that the π-bonded p orbitals of O and C atoms parallel to and polymers. the crystal c axis exhibit maximum absorption when aligned Author contributions: J.M. directed the project; P.U.P.A.G. and J.M. designed research; parallel to linearly polarized light. The absorption intensity Y.H.L., J.Z., A.R., D.M., C.G., B.E., Y.-S.Y., C.-Y.S., D.A.S., R.W.F., H.C.K., M.M.M., P.U.P.A.G., 2 changes with a cos law with respect to the azimuthal orientation and J.M. performed research; Y.H.L., J.Z., P.U.P.A.G., and J.M. analyzed data; and Y.H.L., of the carbonate groups in the crystal. This information can re- P.U.P.A.G., and J.M. wrote the paper. veal structural and mechanical properties in CaCO3 biominerals Competing interest statement: H.K. is partially employed by KMLabs, Inc. (5). Coral biomineralization is a subject of intense studies, and This article is a PNAS Direct Submission. the mechanisms of crystal nucleation and growth in coral skel- Published under the PNAS license. etons are only beginning to be revealed (6–9). 1To whom correspondence may be addressed. Email: [email protected]. The optical anisotropy in CaCO3 has been leveraged in po- This article contains supporting information online at https://www.pnas.org/lookup/suppl/ larized visible light microscopy to study macroscopic biomineral doi:10.1073/pnas.2019068118/-/DCSupplemental. structure and formation mechanisms (10, 11) and with imaging Published January 12, 2021. PNAS 2021 Vol. 118 No. 3 e2019068118 https://doi.org/10.1073/pnas.2019068118 | 1of8 Downloaded by guest on September 28, 2021 radiation facilities worldwide, advancements in high-resolution the most efficient way for aragonite fill 3D space (6). Conse- imaging techniques, and the increasing availability of insertion- quently, this space-filling strategy may endow a unique evolu- device X-ray sources providing polarization control, such as el- tionary advantage to host organisms that adhere to the pattern liptically polarizing undulators (EPUs), new synchrotron-based by providing greater resilience to environmental stresses such as tools are now becoming available for probing nanoscale crystal ocean acidification (42). Therefore, the exact nanoscopic mecha- orientation in CaCO3 minerals and biominerals. By taking ad- nisms of biomineral growth along various crystal axes are of sig- vantage of brilliant X-ray sources, coherent diffractive imaging nificant scientific interest in understanding the macroscopic (CDI) can directly achieve high-resolution structural information structural changes in coral species around the world. of noncrystalline samples and nanocrystals from their diffraction We imaged several coral-skeleton samples on and off the O – patterns (19 28). In particular, ptychography, a scanning CDI K-edge π* peak and observed significant contrast differences technique (28), has attracted considerable attention for its gen- between absorption and phase images. Using three linear di- – eral applicability (29 32). Ptychography measures a series of chroic ptychography images, we performed PIC mapping to diffraction patterns from spatially overlapping illumination quantitatively determine crystal c-axis orientations in the coral probes on a sample, where phase-retrieval algorithms are used to with 35-nm spatial resolution. Our dichroic ptychography results
Recommended publications
  • Optical Ptychographic Phase Tomography
    University College London Final year project Optical Ptychographic Phase Tomography Supervisors: Author: Prof. Ian Robinson Qiaoen Luo Dr. Fucai Zhang March 20, 2013 Abstract The possibility of combining ptychographic iterative phase retrieval and computerised tomography using optical waves was investigated in this report. The theoretical background and historic developments of ptychographic phase retrieval was reviewed in the first part of the report. A simple review of the principles behind computerised tomography was given with 2D and 3D simulations in the following chapters. The sample used in the experiment is a glass tube with its outer wall glued with glass microspheres. The tube has a diameter of approx- imately 1 mm and the microspheres have a diameter of 30 µm. The experiment demonstrated the successful recovery of features of the sam- ple with limited resolution. The results could be improved in future attempts. In addition, phase unwrapping techniques were compared and evaluated in the report. This technique could retrieve the three dimensional refractive index distribution of an optical component (ideally a cylindrical object) such as an opitcal fibre. As it is relatively an inexpensive and readily available set-up compared to X-ray phase tomography, the technique can have a promising future for application at large scale. Contents List of Figures i 1 Introduction 1 2 Theory 3 2.1 Phase Retrieval . .3 2.1.1 Phase Problem . .3 2.1.2 The Importance of Phase . .5 2.1.3 Phase Retrieval Iterative Algorithms . .7 2.2 Ptychography . .9 2.2.1 Ptychography Principle . .9 2.2.2 Ptychographic Iterative Engine .
    [Show full text]
  • Wide-Field, High-Resolution Fourier Ptychographic Microscopy
    Wide-field, high-resolution Fourier ptychographic microscopy Guoan Zheng*, Roarke Horstmeyer, and Changhuei Yang Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA *Correspondence should be addressed to: [email protected] Keywords: Ptychography; high-throughput imaging; digital wavefront correction; digital pathology Manuscript information: 11 text pages, 4 figures Supporting materials: 2 text pages, 8 figures, 1 video Abstract: In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of approximately 120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel color images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high- resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation. The throughput of an imaging platform is fundamentally limited by its optical system’s space- bandwidth product (SBP)1, defined as the number of degrees of freedom it can extract from an optical signal. The SBP of a conventional microscope platform is typically in megapixels, regardless of its employed magnification factor or numerical aperture (NA).
    [Show full text]
  • Electron Ptychography Achieves Atomic-Resolution Limits Set by Lattice Vibrations
    Electron ptychography achieves atomic-resolution limits set by lattice vibrations Zhen Chen1*, Yi Jiang2, Yu-Tsun Shao1, Megan E. Holtz3, Michal Odstrčil4†, Manuel Guizar- Sicairos4, Isabelle Hanke5, Steffen Ganschow5, Darrell G. Schlom3,5,6, David A. Muller1,6* 1School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 2Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA 3Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA 4Paul Scherrer Institut, 5232 Villigen PSI, Switzerland 5Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin, Germany 6Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA * Correspondence to: [email protected] (Z.C.); [email protected] (D.A.M.) †Present address: Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447 Oberkochen, Germany Abstract: Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. Unfortunately, due to imperfections in the imaging lenses and multiple scattering of electrons in the sample, the image resolution reached is 3 to 10 times worse. Here, by inversely solving the multiple scattering problem and overcoming the aberrations of the electron probe using electron ptychography to recover a linear phase response in thick samples, we demonstrate an instrumental blurring of under 20 picometers. The widths of atomic columns in the measured electrostatic potential are now no longer limited by the imaging system, but instead by the thermal fluctuations of the atoms. We also demonstrate that electron ptychography can potentially reach a sub-nanometer depth resolution and locate embedded atomic dopants in all three dimensions with only a single projection measurement.
    [Show full text]
  • Near-Field Fourier Ptychography: Super- Resolution Phase Retrieval Via Speckle Illumination
    Near-field Fourier ptychography: super- resolution phase retrieval via speckle illumination HE ZHANG,1,4,6 SHAOWEI JIANG,1,6 JUN LIAO,1 JUNJING DENG,3 JIAN LIU,4 YONGBING ZHANG,5 AND GUOAN ZHENG1,2,* 1Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA 2Electrical and Computer Engineering, University of Connecticut, Storrs, CT, 06269, USA 3Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA. 4Ultra-Precision Optoelectronic Instrument Engineering Center, Harbin Institute of Technology, Harbin 150001, China 5Shenzhen Key Lab of Broadband Network and Multimedia, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China 6These authors contributed equally to this work *[email protected] Abstract: Achieving high spatial resolution is the goal of many imaging systems. Designing a high-resolution lens with diffraction-limited performance over a large field of view remains a difficult task in imaging system design. On the other hand, creating a complex speckle pattern with wavelength-limited spatial features is effortless and can be implemented via a simple random diffuser. With this observation and inspired by the concept of near-field ptychography, we report a new imaging modality, termed near-field Fourier ptychography, for tackling high- resolution imaging challenges in both microscopic and macroscopic imaging settings. The meaning of ‘near-field’ is referred to placing the object at a short defocus distance with a large Fresnel number. In our implementations, we project a speckle pattern with fine spatial features on the object instead of directly resolving the spatial features via a high-resolution lens. We then translate the object (or speckle) to different positions and acquire the corresponding images using a low-resolution lens.
    [Show full text]
  • Coherent Diffraction Imaging
    Coherent Diffraction Imaging Ian Robinson London Centre for Nanotechnology Felisa Berenguer Diamond Light Source Ross Harder Richard Bean Structural Biology Moyu Watari Oxford University March 2009 I. K. Robinson, STRUBI Mar 2009 1 Outline • Imaging with X-rays • Coherence based imaging • Nanocrystal structures • Extension to phase objects • Exploration of crystal strain • Biological imaging by CXD I. K. Robinson, STRUBI Mar 2009 2 Types of Full-Field Microscopy (Y. Chu) X-ray Topography Projection Imaging, Tomography, PCI Miao et al (1999) Coherent X-ray Diffraction Coherent Diffraction imaging Transmission Full-Field MicroscopyI. K. Robinson, STRUBI Mar 2009 3 Full-Field Diffraction Microscopy Lensless X-ray “Microscope” APS ξHOR= 20µm, focus to 1µm NSLS-II ξHOR= 500µm, focus to 0.05µm I. K. Robinson, STRUBI Mar 2009 4 Longitudinal Coherence Als-Nielsen and McMorrow (2001) I. K. Robinson, STRUBI Mar 2009 5 Lateral (Transverse) Coherence Als-Nielsen and McMorrow (2001) I. K. Robinson, STRUBI Mar 2009 6 Smallest Beam using Slits (9keV) 10 Beam 100mm away size (micron) 50mm away 20mm away 10mm away 0 0 10 Slit size (micron) I. K. Robinson, STRUBI Mar 2009 7 Fresnel Diffraction when d2~λD X-ray beam defined by RB slits Visible Fresnel diffraction from Hecht “Optics” I. K. Robinson, STRUBI Mar 2009 8 Diffuse Scattering acquires fine structure with a Coherent Beam I. K. Robinson, STRUBI Mar 2009 9 Coherent Diffraction from Crystals k Fourier Transform h I. K. Robinson, STRUBI Mar 2009 10 I. K. Robinson, STRUBI Mar 2009 11 Chemical Synthesis of Nanocrystals • Reactants introduced rapidly • High temperature solvent • Surfactant/organic capping agent • Square superlattice (200nm scale) C.
    [Show full text]
  • Coherent Diffraction Imaging
    Coherent Diffraction Imaging Ross Harder aka “The Imposter” Acknowledgments: Prof. Ian Robinson (BNL) 34-ID-C Dr. Xiaojing Huang (BNL) Advanced Photon Source Dr. Jesse Clark (PULSE institute, SLAC Amazon) Prof. Oleg Shpyrko (UCSD) Dr. Andrew Ulvestad (ANL – MSDTesla) https://tinyurl.com/y2qtrz7c Dr. Ian McNulty (ANL – CNM MaxIV) Dr. Junjing Deng (ANL – APS) Non-compact samples (Ptychography) Compact Objects (CDI) research papers implies an effective degree of transverse coherence at the oftenCOHERENCE associated with interference phenomena, where the source, as totally incoherent sources radiate into all directions mutual coherence function (MCF)1 (Goodman, 1985). À r ; r ; E à r ; t E r ; t 2 The transverse coherence area ÁxÁy of a synchrotron ð 1 2 Þ¼ ð 1 Þ ð 2 þ Þ ð Þ source can be estimated from Heisenberg’s uncertainty prin- plays the main role. It describes the correlations between two ciple (Mandel & Wolf, 1995), ÁxÁy h- 2=4Áp Áp , where x y complex values of the electric field E à r1; t and E r2; t at Áx; Áy and Áp ; Áp are the uncertainties in the position and ð Þ ð þ Þ x y different points r1 and r2 and different times t and t .The momentum in the horizontal and vertical direction, respec- brackets denote the time average. þ tively. Due to the de Broglie relation p = h- k,wherek =2=, Whenh weÁÁÁ consideri propagation of the correlation function the uncertainty in the momentum Áp can be associated with of the field in free space, it is convenient to introduce the the source divergence Á, Áp = h- kÁ,andthecoherencearea cross-spectral density function (CSD), W r1; r2; ! , which is in the source plane is given by defined as the Fourier transform of the MCFð (MandelÞ & Wolf, 1995), 2 1 ÁxÁy : 1 4 Á Á ð Þ W r1; r2; ! À r1; r2; exp i! d; 3 x y ð Þ¼ ð Þ ðÀ Þ ð Þ where ! Visibilityis the frequency of fringes is of a the direct radiation.
    [Show full text]
  • Research on the Application of Vortex Beam in Ptychography
    Research on the Application of Vortex Beam in Ptychography CHEN JIE MSc (by research) University of York Physics October 2020 Abstract Ptychography is a coherent diffraction technology, which is not limited by sam- ple size and has the advantages of high imaging quality, strong portability, and low stability requirements for optical platform. It has been experimen- tally confirmed in the visible light domain, X-ray and other different frequency bands. The ptychography system has a wide application prospect in the fields of microimaging, three-dimensional morphology measurement and information security. However, many researches on ptychography are still in the prelimi- nary theoretical stage and there is none research on its combination with vortex beam, and the key parameters affecting the imaging performance are still not to be studied. This thesis first briefly introduces the research background, sig- nificance, the basic concepts, development and application of ptychography and vortex beam. Then, it introduces the theoretical basis supporting its use, in- cluding computer-generated hologram (CGH), beam steering and the computing algorithm of ptychography. On this basis, this thesis presents the following in- novative research: An optical ptychography set-up, with a spatial light modulator as the core de- vice, is designed to facilitate the flexible production of different types of optical probe, such as the generation of conventional beams and vortex beams; flexible adjustment of the order and defocus of vortex beams, etc., so as to realize their experimental exploration. Experiments show that vortex beams have a higher imaging quality in ptychography, and the topological charge number and defo- cus of vortices also affect the reconstruction quality of the samples to a certain extent.
    [Show full text]
  • This Is a Repository Copy of Ptychography. White Rose
    This is a repository copy of Ptychography. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127795/ Version: Accepted Version Book Section: Rodenburg, J.M. orcid.org/0000-0002-1059-8179 and Maiden, A.M. (2019) Ptychography. In: Hawkes, P.W. and Spence, J.C.H., (eds.) Springer Handbook of Microscopy. Springer Handbooks . Springer . ISBN 9783030000684 https://doi.org/10.1007/978-3-030-00069-1_17 This is a post-peer-review, pre-copyedit version of a chapter published in Hawkes P.W., Spence J.C.H. (eds) Springer Handbook of Microscopy. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-00069-1_17. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Ptychography John Rodenburg and Andy Maiden Abstract: Ptychography is a computational imaging technique. A detector records an extensive data set consisting of many inference patterns obtained as an object is displaced to various positions relative to an illumination field.
    [Show full text]
  • X-Ray Ptychography Performed for First Time at Small-Scale Laboratory 12 May 2021
    X-ray ptychography performed for first time at small-scale laboratory 12 May 2021 The team from Diamond Light Source, Ghent University, University of Sheffield, and University College London conducted an experiment with a compact liquid metal-jet (LMJ) X-ray source. Laboratory X-ray sources have significantly lower levels of brilliance but currently provide the X-ray synchrotron user community with access to micro- CT, where they can gain a great deal of experience and produce preliminary data, at their home institutions. Until now, no such equivalent has existed for nano-scale imaging through coherent diffraction imaging and ptychography. The team's paper outlines such an experiment and the first proof of concept for far field X-ray ptychography performed using an X-ray laboratory source. Diamond science group leader, Paul Quinn comments "We have been leading developments in ptychography to open this technique to new science areas and communities. It builds on the The SMALL laboratory at the University of Sheffield work we've done over many years and, longer term being prepared for the ptychographic imaging this approach in particular has real potential to experiment with the installation of the portable end provide higher resolution imaging to lab source station designed at I13-1 of Diamond Light Source and facilities." the SLcam hyperspectral detector from Ghent University. Credit: Dr Parnell, University of Sheffield In recent years, X-ray ptychography has revolutionized nanoscale phase contrast imaging at large-scale synchrotron sources. The technique produces quantitative phase images with the highest possible spatial resolutions (10's nm) – going well beyond the conventional limitations of the available X-ray optics—and has wide reaching applications across the physical and life sciences.
    [Show full text]
  • Wavefront Imaging Sensor with High Resolution and Depth Ranging
    WISHED: Wavefront imaging sensor with high resolution and depth ranging Yicheng Wu∗, Fengqiang Li∗, Florian Willomitzer, Ashok Veeraraghavan, Oliver Cossairt Abstract—Phase-retrieval based wavefront sensors have been shown to reconstruct the complex field from an object with a high spatial resolution. Although the reconstructed complex field encodes the depth information of the object, it is impractical to be used as a depth sensor for macroscopic objects, since the unambiguous depth imaging range is limited by the optical wavelength. To improve the depth range of imaging and handle depth discontinuities, we propose a novel three-dimensional sensor by leveraging wavelength diversity and wavefront sensing. Complex fields at two optical wavelengths are recorded, and a synthetic wavelength can be generated by correlating those wavefronts. The proposed system achieves high lateral and depth resolutions. Our experimental prototype shows an unambiguous range of more than 1,000× larger compared with the optical wavelengths, while the depth precision is up to 9µm for smooth objects and up to 69µm for rough objects. We experimentally demonstrate 3D reconstructions for transparent, translucent, and opaque objects with smooth and rough surfaces. Index Terms—3D imaging, Wavelength diversity, Wavefront sensing, Phase retrieval F 1 INTRODUCTION Ptical fields from an object contain information about for any WFS technique so that none can be used as a general O both albedo and depth. However, intensity-based purpose. CCD/CMOS sensors can only record the amplitude of a The goal of this work is to develop a wavefront sensor complex optical field. capable of measuring the depth of objects with large surface In order to reconstruct a complex-valued optical field variations (orders of magnitude larger than optical wave- that contains both amplitude and phase information, wave- lengths) and objects with rough surfaces.
    [Show full text]
  • Deep Sub-Εngstrom Imaging of 2D Materials with a High Dynamic
    Deep sub-Ångstrom imaging of 2D materials with a high dynamic range detector Yi Jiang*1, Zhen Chen*2, Yimo Han2, Pratiti Deb1,2, Hui Gao3,4, Saien Xie2,3, Prafull Purohit1, Mark W. Tate1, Jiwoong Park3, Sol M. Gruner1,5, Veit Elser1, David A. Muller2,5 1. Department of Physics, Cornell University, Ithaca, NY 14853, USA 2. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA 3. Department of Chemistry, Institute for Molecular Engineering, and James Franck Institute, University of Chicago, Chicago, IL 60637, USA 4. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA 5. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA ABSTRACT Aberration-corrected optics have made electron microscopy at atomic-resolution a widespread and often essential tool for nanocharacterization. Image resolution is dominated by beam energy and the numerical aperture of the lens (α), with state-of-the-art reaching ~0.47 Å at 300 keV. Two-dimensional materials are imaged at lower beam energies to avoid knock-on damage, limiting spatial resolution to ~1 Å. Here, by combining a new electron microscope pixel array detector with the dynamic range to record the complete distribution of transmitted electrons and full-field ptychography to recover phase information from the full phase space, we increased the spatial resolution well beyond the traditional lens limitations. At 80 keV beam energy, our ptychographic reconstructions significantly improved image contrast of single-atom defects in MoS2, reaching an information limit close to 5α, corresponding to a 0.39 Å Abbe resolution, at the same dose and imaging conditions where conventional imaging modes reach only 0.98 Å.
    [Show full text]
  • Algorithms for Coherent Diffractive Imaging with X-Ray Lasers
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1589 Algorithms for Coherent Diffractive Imaging with X-ray Lasers BENEDIKT J. DAURER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0129-7 UPPSALA urn:nbn:se:uu:diva-329012 2017 Dissertation presented at Uppsala University to be publicly examined in Room B7:101a, Biomedicinska Centrum (BMC), Husargatan 3, Uppsala, Friday, 15 December 2017 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Richard Neutze (University of Gothenburg). Abstract Daurer, B. J. 2017. Algorithms for Coherent Diffractive Imaging with X-ray Lasers. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1589. 64 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0129-7. Coherent diffractive imaging (CDI) has become a very popular technique over the past two decades. CDI is a "lensless" imaging method which replaces the objective lens of a conventional microscope by a computational image reconstruction procedure. Its increase in popularity came together with the development of X-ray free-electron lasers (XFELs) which produce extremely bright and coherent X-rays. By facilitating these unique properties, CDI enables structure determination of non-crystalline samples at nanometre resolution and has many applications in structural biology, material science and X-ray optics among others. This work focuses on two specific CDI techniques, flash X-ray diffractive imaging (FXI) on biological samples and X- ray ptychography. While the first FXI demonstrations using soft X-rays have been quite promising, they also revealed remaining technical challenges.
    [Show full text]