Peneplains and Related Land Forms

Total Page:16

File Type:pdf, Size:1020Kb

Peneplains and Related Land Forms No. 3622, APRIL 1, 1939 NATURE 569 while they are attending classes ! The corridor floors Dr. Lowery again, "it is our desire that the College are covered with grey mottled rubber to render the shall become one great educational and recreational movement of students as silent as possible, and community centre where men and women may meet supplementary to the main staircases, passenger lifts in their leisure time for the purpose of engaging in have been installed. matters of common interest, thereby securing the It was John Ruskin who wrote, many years ago, fullest opportunity for self-expression". "The entire object of true education is to make The material building of this huge college has been people not merely do the right things but enjoy the very efficiently carried out by the general contractors, right things". Yet, the pioneers of technical educa­ Messrs. F. R. Hipperson and Son, Ltd., of London, tion were mainly concerned with providing a training to the plans of Mr. J. Stuart, the architect, but an which was severely utilitarian. But, as Dr. H. even greater work will now be undertaken by the Lowery, the principal of the College, aptly points out, principal and his large staff in laying the foundations "A new problem . has arisen-it becomes of another edifice which will undoubtedly reveal necessary to provide training for leisure as well as itself in the trained mind, skilled craftsmanship, for vocation". Here then is a new function implying cultured recreation and, what is most important of heavy responsibilities for the modern college. It is all, trustworthiness and reliability of character. As essential to recognize and to cater for the proper use R. W. Dale once wrote : "The immediately possible of leisure, and here, in this magnificent new institution, is hardly worth living for. It is the ideal that kindles ample opportunities are afforded for developing the enthusiasm and gives inspiration and vigour to all true recreational and communal spirit. To quote human effort". F. G. W. B. Peneplains and Related Land Forms T is now nearly fifty years since W. M. Davis such rank because they are enclosed by highland I introduced the term 'peneplain' for the surface areas. of low relief which might be expected to mark the Most other contributors to the discussion expressed end-stages of a long period of sub-aerial erosion agreement with Dr. Dixey, and Mr. J. M. Edmonds under stable conditions. The term was received with described somewhat comparable conditions in the a certain suspicion and lack of cordiality among Anglo-Egyptian Sudan. Dr. K. C. Dunham, however, British workers and it has been used comparatively noted that the Rio Grande and the Gila River are little in their writings. Geographers and geomorpho­ flanked by erosion surfaces, up to 80 miles long and logists will therefore note with interest that the 30 miles wide, produced by lateral corrasion. These Geological Society recently discussed some of the would apparently rank as local peneplains in Dixey's questions at issue. scheme, but he thought this constituted an extension In introducing the subject, Dr. F. Dixey's main of the term peneplain and one unlikely to prove contention was that the term 'peneplain' is properly acceptable to American workers. applicable to local areas which, though extensive, The discussion ranged widely over other cognate are far from being of continental dimensions. The matters and several points of view were represented. common presentation of a cycle of erosion as running Prof. 0. T. Jones deplored the lack of any agreed its course in a region of homogeneous rocks and definition of the features of a peneplain. He main­ resulting ultimately in the base-levelling of a whole tained that, in one sense, the whole of England and land mass leads, in his view, to an unwarrantable most of Wales is a peneplain rising gently from sea­ attempt to limit the application of the term pene­ level to more than 2,000 ft., and truncating all plain. He directed attention to the "two-peneplain formations from the Pre-Cambrian to the Pliocene. topography" described by A. D. Coombe in Uganda, Despite the considerable relief of parts of this surface, and common indeed throughout Africa, and he such relief can scarcely amount to 10 per cent of the showed that such conditions must inevitably arise thickness of strata removed by erosion. He also where weak and resistant rock-masses are juxtaposed. emphasized the probable importance of wind erosion The lower surface opened out in weaker rocks, such, in producing extensive surfaces of low relief. for example, as infaulted strips of Karroo sediments, Other speakers were, by implication at least, may have the characteristics of a true peneplain, unwilling to accept so wide and general a connotation even though locally interrupted by residual masses for the term 'peneplain'. Dr. Hollingworth pointed and abutting elsewhere against steep slopes. Thus out that Davis's conception of a single peneplain in there arose veritable flights of peneplains as between the Appalachian region is now challenged by several the northern end of the Nyasa rift and the Luangwa alternative and mutually inconsistent interpretations, valley. Here the following erosion surfaces are dis­ most of which agree, at least, in representing the tinguishable: a late Jurassic surface at about surface as complex and composite. Similarly, Mr. 7,000 ft., a late Cretaceous or Early Tertiary surface J. F. N. Green expressed the belief that many sur· at 5,000 ft., a Miocene surface at 4,000 ft., and a faces in the south of England which might be regarded late Tertiary surface developed at about 3,000 ft. as peneplains on general inspection have proved on friable Cretaceous rocks in local troughs. Further, susceptible of dissection into distinct terrace-like a sub-Cretaceous surface has been exhumed locally features, separated by bluffs. Mr. A. A. Miller and by erosion and stands at about 2,000 ft. This surface Dr. S. W. Wooldridge raised a further issue in and the late Tertiary surface rank as local peneplains pointing out that many of the 'high-level platforms' in Dr. Dixey's sense, thou.gh others have denied them of Britain, as well as most of the 'fossil' surfaces, © 1939 Nature Publishing Group 570 NATURE APRIL 1, 1939, VoL. 143 that is, exhumed planes of unconformity, have been benches by lateral corrasion which may fairly be finished, if not formed, by marine agency. In many grouped with Crickmay's 'panplains' and the such cases it is clear that the drainage pattern has American examples adduced by Dr. Dunham. not been inherited from a previous cycle, as must The discussion gave a clear indication, if such be inevitably be the case with a true peneplain. Thus, needed, that the findings of geomorphology in the closely spaced wind-gaps in the Old Red Sandstone field of erosion surfaces now challenge the close ridges of southern Ireland indicate a consequent attention of the stratigraphical geologist and the drainage initiated upon the surface which bevelled geophysicist. Erosion surfaces, some trimmed by the structures. Similarly, the transection of anticlinal marine erosion and others demonstrably of sub-aerial lines by rivers in southern England indicates that origin, have been proved to have a wide extension over wide areas the drainage originated upon the and to maintain essentially unwarped attitudes over emergent floor of a Pliocene sea. Nevertheless, the great distances. As such, they constitute an important whole of the region was not submerged ; in parts of record of the later geological history of the continents, the Chalk areas of Wessex and the central Wealden supplementing th!'l sometimes scanty evidence of area the reconstructed hill-top plane reveals the deposition. Further, their existence cannot be characteristics of a true peneplain and the drainage ignored by those who seek to understand the nature was adjusted accordingly. It seems, moreover, that and extent of isostatic adjustment in the lithosphere. the Thames in earlier stages of its history cut wide S. W. WooLDRIDGE. Physics 1n the Textile Industries ESEARCH physicists working in industry con­ ment showing the swelling of a wool fibre with R tinue to increase in number, and the Institute increase of water content, using as a micrometer the of Physics, by holding conferences on industrial capacity of a condenser in a heterodyne circuit. physics, does much to bring them together to discuss Thursday morning's programme was completed by their mutual problems. But the conferences are open a lecture from Dr. Ezer Griffiths, of the National to all interested, and the physicist has opportunities Physical Laboratory, on "Industrial Humidity Con­ of making contacts with those of other professions trol and Measurement". He illustrated with many whose problems are essentially physical. slides the requirements of humidifying plant and The third conference, held in Leeds during March 23- humidity controls, and described the various ways 25, was devoted to "Physics in the Textile Industries". of measuring relative humidity, indicating the mei;hod The textile industries have been built up by many most convenient to each industrial process where years of experimenting coupled with notable inven­ this is important. tions, and it has behind it a wealth of knowledge The afternoon of March 23 was devoted to a visit which must be learnt by the physicist if his work is to the Department of Textile Industries in the to be of utmost advantage to the industry. Meetings University, followed by Dr. C. C. Paterson's presi­ such as that held in Leeds are thus of great value dential address to the Institute of Physics. He chose in enabling the physicist to discuss problems not only as his subject "Colour and Colour Rendering".
Recommended publications
  • Process-Form Models
    11 Process-form Models The interaction of process and landform is central to geomorphic investigations and a series of concepts have been associated with the models of landscape development suggested over the last century. Process investigations were enhanced by considering the way in which specific landscape features are related to processes, as illustrated by grade, characteristic angles, drainage density and river channel capacity. Technique developments, especially of cos- mogenic dating, have revitalised some earlier models. The complex response concept affords the reconciliation of alternative landscape histories, and a panoply of models is now becoming available offering opportunities to realize the objectives of the original qualitative approaches. Exogenic processes Microclimate and Local climate Regional climate Climatic zones meteorological events Short-term climatic change Medium-term climatic Long-term climatic Animal and plant activities Local vegetation change change (e.g. glacial– change (e.g. icehouse interglacial cycles) and hothouse states) Regional vegtation change Biological evolution Microscale landforms Mesoscale landforms Macroscale landforms Megascale landforms Area: <0.25 km2 Area: 0.25–100 km2 Area: 100–1,000,000 km2 Area: >1,000,000 km2 Lifespan: 10 years Lifespan: 1,000 years Lifespan: 10 million years Lifespan: >10 million years Exogenic examples: Fluvial Pools and riffles Meanders Large river floodplains Major drainage basins Glacial Small cirques Valley glaciers Ice caps Ice sheets and inland Aeolian Ripples
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Erosional Cycles in the Front Range of Colorado and Their Correlation 1
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA W VOL. 36. PP. 498-512 SEPTEMBER 30. 1925 EROSIONAL CYCLES IN THE FRONT RANGE OF COLORADO AND THEIR CORRELATION 1 BY HOJIKR P. LITTLE (P resented in abstract before the Society December 29, J02J,1) CONTENTS Puice Introduction................................................. ......................................................................... 495 Peneplains of the Front Range................................................................................. 497 General statement...................................................................................................... 497 The Flattop peneplain............................................................................................... 498 The Rocky Mountain peneplain............................................................................. 500 The Park stage............................................................................................................. 504 The Fountain Creek stage....................................................................................... 507 The Canyon-cutting stage........................................................................................ 509 Age and correlation of erosion cycles..................................................... ............... 509 Discussion......................................................: ....................................................................... 510 Bibliography.........................................................................................................................
    [Show full text]
  • Origin of the High Elevated Pyrenean Peneplain Julien Babault, Jean Van Den Driessche, Stéphane Bonnet, Sébastien Castelltort, Alain Crave
    Origin of the high elevated Pyrenean peneplain Julien Babault, Jean van den Driessche, Stéphane Bonnet, Sébastien Castelltort, Alain Crave To cite this version: Julien Babault, Jean van den Driessche, Stéphane Bonnet, Sébastien Castelltort, Alain Crave. Origin of the high elevated Pyrenean peneplain. Tectonics, American Geophysical Union (AGU), 2005, 24 (2), art. no. TC2010, 19 p. 10.1029/2004TC001697. hal-00077900 HAL Id: hal-00077900 https://hal.archives-ouvertes.fr/hal-00077900 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 24, TC2010, doi:10.1029/2004TC001697, 2005 Origin of the highly elevated Pyrenean peneplain Julien Babault, Jean Van Den Driessche, and Ste´phane Bonnet Ge´osciences Rennes, UMR CNRS 6118, Universite´ de Rennes 1, Rennes, France Se´bastien Castelltort Department of Earth Sciences, Eidgenossische Technische Hochschule-Zentrum, Zurich, Switzerland Alain Crave Ge´osciences Rennes, UMR CNRS 6118, Universite´ de Rennes 1, Rennes, France Received 9 June 2004; revised 5 December 2004; accepted 13 December 2004; published 19 April 2005. [1] Peneplanation of mountain ranges is generally base level in the penultimate stage of a humid, fluvial considered the result of long-term erosional processes geomorphic cycle.’’ They specify that ‘‘peneplain’’ also that smooth relief and lower elevation near sea level.
    [Show full text]
  • Etchplain, Rock Pediments, Glacises and Morphostructural Analysis of the Bohemian Massif (Czech Republic) Jaromir Demek [email protected] Rudka Č
    GeoMorfostrukturnímorfologický a sborník tektonické 2 problémy ČAG, ZČU v Plzni, 2003 Etchplain, rock pediments, glacises and morphostructural analysis of the Bohemian Massif (Czech Republic) Jaromir Demek [email protected] Rudka č. 66, Kunštát na Moravě CZ 679 72 The Bohemian Massif forms the western part of Czech Republic. The massif belongs to the Western European Platform, which basement was consolidated by Variscan folding. The Bohemian Massif is characterized by a typical platform regime during Mesozoic and Paleogene Periods, i.e. by low intensity of tectonic movements and slight relief differentiation. This regime was reflected in a structural compatibility and morphological uniformity of the Massif, with altitudes of its planated surface (mostly peneplain with thick regolith mantle) ranging from 0 to 200 m a.s.l. The present-day relief of the Bohemian Massif developed for the most part in the Neotectonic period (Upper Oligocene to Quaternary). The older idea that o the Bohemian Massif responded to stresses caused by neotectonic movements generally as a rigid unit (with some differences in individual regions) and o that in the Bohemian Massif preserved in very large extent old peneplain (KUNSKÝ, 1968, p. 27), seams to be abandoned now. Already in 1930 Ms. Julie Moschelesová proposed the hypothesis of neotectonic megaanticlinals and megasynclinals in the basement of the Bohemian Massif. At present the Bohemian Massif is understood as a complex mountain, which relief is composed of megaanticlinals and megasynclinals, horstes and grabens and volcanic mountains? Individual parts of the Bohemian Massif moved in different directions and with different intensity during Neotectonic Period. The determination of directions, intensity and type of Neotectonic deformations of the Earth’s crust is difficult due to lack of correlated deposits.
    [Show full text]
  • 2 Observation in Geomorphology
    2 Observation in Geomorphology Bruce L. Rhoads and Colin E. Thorn Department of Geography, University of Illinois at Urbana-Champaign ABSTRACT Observation traditionally has occupied a central position in geomorphologic research. The prevailing, tacit attitude of geomorphologists toward observation appears to be consistent with radical empiricism. This attitude stems from a strong historical emphasis on the value of fieldwork in geomorphology, which has cultivated an aesthetic for letting the data speak for themselves, and from cursory and exclusive exposure of many geomorphologists to empiricist philosophical doctrines, especially logical positivism. It is, by and large, also an unexamined point of view. This chapter provides a review of contemporary philosophical perspectives on scientific observation. This discussion is then used as a filter or lens through which to view the epistemic character and role of observation in geomorphology. Analysis reveals that whereas G.K. Gilbert's theory-laden approach to observation preserved scientific objectivity, the extreme theory-ladenness of W.M. Davis's observational procedures often resulted in considerable subjectivity. Contemporary approaches to observation in geomorphology are shown to conform broadly with the model provided by Gilbert. The hallmark of objectivity in geomorphology is the assurance of data reliability through the introduction of fixed rule-based procedures for obtaining information. INTRODUCTION Geomorphologists traditionally have assigned great virtue to observation. The venerated status of observation can be traced to the origin of geomorphology as a field science in the late 1800s. Exploration of sparsely vegetated landscapes in the American West by New- berry, Powell, Hayden, Gilbert, and others inspired perceptive insights about landscape dynamics that provided a foundation for the discipline (Baker and Twidale 1991).
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • Critical Review of the San Juan Peneplain Southwestern Color~ Do
    Critical Review of the San Juan Peneplain Southwestern Color~ do GEOLOGICAL SURVEY PROFESSIONAL PAPER 594-I Critical Review of the San Juan Peneplain Southwestern Colorado By THOMAS A. STEVEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL -PAPER 594-I The volcanic and geomorphic history of the San Juan Mountains indicates no peneplain cycle of erosion between the end of ma;·or volcanism and the present time UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Albstract ----------------------------------------­ I 1 Discussion of the San Juan peneplain-Continued Introduction -------------------------------------­ 1 3. The peneplain remnants -------------------- 18 Alcknowledgments --------------------------------- 2 4. Postpeneplain deformation -------------------- 9 General geology of the San Juan region ___________ _ 2 5. Postpeneplain alluviation and volcanism ______ _ 10 The peneplain concept ----------------------------­ 4 6. Postpeneplain development of drainage_------- 12 Discussion of the San Juan peneplain -------------- 6 Possible character of the late Tertiary landscape ___ _ 13 1. Subsidence of the prevolcanism erosion surface _ 6 Summary ----·------------------------------------ 14 2. Volcanism and volcano-tectonic deformation Catalog of peneplain remnants ----------------------
    [Show full text]
  • Geographical Cycle” at the Turn of the 1960S
    TWO RE-EVALUATIONS OF DAVIS’S “GEOGRAPHICAL CYCLE” AT THE TURN OF THE 1960S DUAS REAVALIAÇÕES DO “CICLO GEOGRÁFICO” DE DAVIS NA VIRADA DA DÉCADA DE 1960 DEUX RÉÉVALUATIONS DU «CYCLE GÉOGRAPHIQUE» DE DAVIS AU TOURNANT DES ANNÉES 1960 CHRISTIAN GIUSTI1 1 Faculté des Lettres, Sorbonne Université, Paris. Laboratoire de Géographie Physique, UMR 8591 CNRS, Meudon. E-mail: [email protected] ORCID: https://ORCID.0000-0002-6531-3572 Received 15/11/2020 Sent for correction: 30/11/2020 Accepted: 15/12/2020 To Marie-Hélène Auclair, Librarian in Sorbonne (1975-1985), a most helpful friend during my early years of research. ABSTRACT Many geomorphologists today refer to Davis and his ideas without really knowing what that implies. In the second half of the 20th century, two re-evaluations of the Davisian system were carried out, which the renewed popularity of the “peneplain” concept has led us to bring back to light and discuss. Key words: Davis, geographical cycle, peneplain, Chorley, Klein. RESUMO Muitos geomorfólogos hoje se referem a Davis e suas ideias sem realmente saber o que isso implica. Na segunda metade do século XX, foram realizadas duas reavaliações do sistema Davisiano, cuja renovada popularidade do conceito de “peneplanície” nos levou a trazer de volta à luz e discutir. Palavras-chave: Davis, ciclo geográfico, peneplanície, Chorley, Klein. RÉSUMÉ De nombreux géomorphologues font aujourd'hui référence à Davis et à ses idées sans vraiment savoir ce que cela implique. Dans la seconde moitié du XXe siècle, deux réévaluations du système davisien ont été effectuées, que la popularité renouvelée du concept de «pénéplaine» nous a amenées à remettre en lumière et à discuter.
    [Show full text]
  • Long-Term Landscape Evolution, Genesis, Distribution and Age
    GONDWANA PALEOLANDSCAPES: LONG-TERM LANDSCAPE EVOLUTION, GENESIS, DISTRIBUTION AND AGE Jorge RABASSA 1,2 (1) Laboratorio de Cuaternario y Geomorfología, CADIC-CONICET, Bernardo Houssay 200, 9410. Tierra del Fuego, Argentina. E-mail: [email protected] (2) Universidad Nacional de la Patagonia - San Juan Bosco, Sede Ushuaia. “Let the landscape teach me” Lester C. King, personal letter to Charles Higgins, 1958. “While the geologist may often be in error, the Earth is never wrong” Lester C. King, 1967. Introduction The Concepts of Gondwana Paleolandscapes and Long-Term Landscape Evolution: Previous Works Gondwana Paleolandscapes: Basic Scientific Concepts Related The Evolution of the Gondwana Cratonic Areas During the Mesozoic Mesozoic and Paleogene Climates Granite Deep Weathering Passive-Margin Geomorphology Duricrusts: Ferricretes, Silcretes, Calcretes A Brief and Preliminary Review of Gondwana Landscapes and Other Ancient Paleolandscapes in the Southern Hemisphere and Other Parts of the World Discussion and Conclusions Acknowledgements Bibliographic References ABSTRACT – The concept of “Gondwana Landscape” was defined by Fairbridge (1968) as an “ancestral landscape” composed of “series of once-planed remnants” that “record traces of older planation” episodes, during the “late Mesozoic (locally Jurassic or Cretaceous)”. This has been called the “Gondwana cyclic land surface” in the continents of the southern hemisphere, occurring extensively in Australia, Southern Africa and the cratonic areas of South America. Remnants of these surfaces are found also in India, in the northern hemisphere and it is assumed they have been preserved in Eastern Antarctica, underneath the Antarctic ice sheet which covers that region with an average thickness of 3,000 meters. These paleolandscapes were generated when the former Gondwana super-continent was still in place and similar tectonic conditions in its drifted fragments have allowed their preservation.
    [Show full text]
  • A Geographical Pilgrimage from Ireland to Italy Author(S): W
    A Geographical Pilgrimage from Ireland to Italy Author(s): W. M. Davis Source: Annals of the Association of American Geographers, Vol. 2 (1912), pp. 73-100 Published by: Taylor & Francis, Ltd. on behalf of the Association of American Geographers Stable URL: http://www.jstor.org/stable/2560643 Accessed: 27-06-2016 03:32 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Taylor & Francis, Ltd., Association of American Geographers are collaborating with JSTOR to digitize, preserve and extend access to Annals of the Association of American Geographers This content downloaded from 128.163.2.206 on Mon, 27 Jun 2016 03:32:37 UTC All use subject to http://about.jstor.org/terms ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS Volume II, pp. 73-100. A GEOGRAPHICAL PILGRIMAGE FROM IRELAND TO ITALY W. M. DAVIS CONTENTS Page The pilgrimage of 1911 and its members.. 73 Five days in Ireland ................................... 75 A concise description of southwestern Ireland ... 76 A week in Wales ................................... 78 The even upland at Lands End.80 Marine denurdation and subaerial degradation. 81 The sea cliffs of Cornwall ................................... 82 A round-about-explanation. 83 The uplands of Devonshire-Cornwall ................................. 84 The rarity of cliffs of decreasing height .................
    [Show full text]
  • The Basics of Geomorphology: Key Concepts
    THE BASICS OF GEOMORPHOLOGY: KEY CONCEPTS Supporting Website Material This website provides material to supplement the text and is organized by chapter with the complete reference list given at the end. Diagrams and tables that are essential for understanding the text are contained in the book. For each chapter the synopsis is given together with additional material, which includes figures and tables, compiled to amplify the dis- cussion in the text, relevant articles in Progress in Physical Geography, which is an excellent resource to pursue particular themes, and a list of the concepts given in bold from the index (together with the references cited in each chapter). The complete reference list is given at the end. 1 Introduction: Concepts and Geomorphology Any discipline has concepts that are key for its progress. For geomorphol- ogy these need to be explicitly stated and consistently understood for what they are. We set them within the evolving history of geomorphology and the changing techniques and understanding that have been involved. This demonstrates the fashioning surges that have characterized the discipline and which complicate identification of those concepts which endure and which remain basic to the present and future study of geomorphology. Figure 1.1 Grand Canyon (from near Powell Memorial) Table 1.1 Some developments in constructing geomorphology (years in italics refer to use of the word ‘geomorphology’) Year Contribution 1674 Pierre Perrault’s (1608–1680) published book on De l’origine des fontaines, showing precipitation sufficient to sustain the flow of rivers in the Seine basin: probably a foundation for understanding of the hydrological cycle.
    [Show full text]