AccurateClocksandTheirApplications November2011

JohnR.Vig Consultant. MuchofthisTutorialwaspreparedwhiletheauthorwasemployed bythe USArmyCommunicationsElectronicsResearch,Development&EngineeringCenter FortMonmouth,NJ,USA [email protected]

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. Rev.8.5.3.9 QuartzCrystalResonatorsand Oscillators ForFrequencyControlandTimingApplications ATutorial November2008

JohnR.Vig Consultant. MostofthisTutorialwaspreparedwhiletheauthorwasemployed bythe USArmyCommunicationsElectronicsResearch,Development&EngineeringCenter FortMonmouth,NJ,USA [email protected]

Approvedforpublicrelease. Distributionisunlimited

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. Applications

1

QuartzfortheNationalDefenseStockpile ,ReportoftheCommitteeonCulturedQuartzforthe NationalDefenseStockpile,NationalMaterialsAdvisoryBoardCommissiononEngineeringand TechnicalSystems,NationalResearchCouncil,NMAB424,NationalAcademyPress, Washington,D.C.,1985.

J.R.Vig,"MilitaryApplicationsofHighAccuracyFrequencyStandardsandClocks,"IEEE TransactionsonUltrasonics,Ferroelectrics,andFrequencyControl,Vol.40,pp.522527,1993.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. GlobalPositioningSystem(GPS) Navigation Timing

GPSNominalConstellation: 24satellitesin6orbitalplanes, 4satellitesineachplane, 20,200kmaltitude,55degreeinclinations 816

TheGlobalPositioningSystem(GPS)isthemostpreciseworldwidenavigationsystem available.Itisalsocapableofprovidingnanosecondleveltimingaccuracies,so,itisalsoone ofthemostaccuratetimesources. GPSisasatellitebasedradionavigationandpositioningsystemthatisdesignedto provideglobal,allweather,24hour,accuratenavigationtoanunlimitednumberofusers.Each ofthesatellitescontainatomicclocks.Thesatellitestransmit anavigationmessagethat providessatelliteposition,time,andatmosphericpropagationcorrectiondata.TheGPS receiver,whichcontainsaquartzcrystalclock,measuresthetransittimeofthesatellitesignal andmultipliesthattimebythespeedoflighttocomputerangetothesatellite.Thesatellite clocksaremoreaccuratethanthereceiverclocks.Therefore,althoughthreesatellitescan providelatitude,longitudeandaltitude,thesignalfromafourthsatelliteisusedtocorrectforthe navigationalerrorcausedbythereceiverclock'sinaccuracy,i.e.,thereceiverscalculatetheirx, y,z,andtfromreceivingeachoffoursatellites’ x,y,z,andt.Velocityisdeterminedfromthe Dopplershiftsofthethetransmittedcarrier.

A.J.VanDierendonckandM.Birnbaum,"TimeRequirementsinthe NAVSTARGlobal PositioningSystem(GPS),"Proc.30thAnnualSymposiumonFrequencyControl,pp.375383, 1976,AD046089.

F.E.Butterfield,"FrequencyControlandTimeInformationintheNAVSTAR/GlobalPositioning System,"Proc.30thAnnualSymposiumonFrequencyControl,pp.371374,1976,AD046089

MuchinformationisavailableontheInternet,e.g.,see“NavstarGPSInternetConnections” at http://gauss.gge.unb.ca/GPS.INTERNET.SERVICES.HTML,and “GlobalPositioningSystemOverview” byPeterH.Dana(fromwhichtheaboveillustrationwas “borrowed,” withpermissionfromPeterH.Dana,TheUniversityofTexasatAustin)at http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ElectronicsApplicationsofClocks

Military&Aerospace Industrial Consumer Communications Communications Watches&clocks Navigation Cellular&cordless IFF Mobile/cellular/portable phones,pagers Radar radio,telephone&pager Radio&hifiequipment Sensors Aviation TV&cableTV Guidancesystems Marine Personalcomputers Fuzes Navigation Digitalcameras Electronicwarfare Instrumentation Videocamera/recorder Sonobouys Computers CB&amateurradio Flashdrives Toys&games Research&Metrology Digitalsystems Pacemakers Atomicclocks CRTdisplays Othermedicaldevices Instruments Diskdrives Otherdigitaldevices Astronomy&geodesy Modems Automotive Spacetracking Tagging/identification Enginecontrol,stereo, Celestialnavigation Utilities clock,yawstability Sensors control,tripcomputer, GPS

11

QuartzfortheNationalDefenseStockpile ,ReportoftheCommitteeonCulturedQuartzforthe NationalDefenseStockpile,NationalMaterialsAdvisoryBoardCommissiononEngineeringand TechnicalSystems,NationalResearchCouncil,NMAB424,NationalAcademyPress, Washington,D.C.,1985.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ClockforVeryFastFrequencyHoppingRadio

Jammer Example J LetR1toR2=1km,R1to t 1 t2 J=5km,andJtoR2=5km. Then,sincepropagation delay=3.3 s/km, Radio Radio R1 R2 t =t =16.5 s, tR 1 2 tR =3.3 s,andt m <30 s. Todefeata“perfect” follower Allowedclockerror ≈ 0.2t m jammer,oneneedsahoprate ≈ 6 s. givenby: Fora4hourresynchinterval, t <(t +t ) t m 1 2 R clockaccuracyrequirementis: wheret m ≈ messageduration/hop 10 ≈ 1/hoprate 4X10

113

Withtheavailabilityoffastspectrumanalyzersandsynthesizers,itispossibletojam frequencyhoppingsystems.Ifajammerisfastenough,itcandetectthefrequencyof transmissionandtunethejammertothatfrequencywellbeforetheradiohopstothenext frequency.However,withagoodenoughclock,itispossibleto defeatsuch“follower” jamming. Asillustratedabove,evena"perfect"followerjammercanbedefeatedifagoodenoughclockis available.(Aperfectjammerisdefinedhereasonethatcanidentifythefrequencyofareceived signal,tuneasynthesizertothatfrequency,andtransmitthejammingsignalinzerotime.) Becauseradiowavestravelatthespeedoflight,theradiotojammertoradio(R1toJto R2)andradiotoradio(R1toR2)propagationdelaysare3.3sperkm.Therefore,ifthe hoppingrateisfastenoughforthepropagationdelaydifference tobegreaterthan1/hoprate, i.e.,iftheradioscanhoptothenextfrequencybeforethejammingsignalreachesthereceiver, thentheradiosarejammingproof(forfollowerjammers).Intheexampleabove,the

propagationdelayst 1,t 2,andt R implythatthemessagedurationt m belessthan30s.Since theclockaccuraciesrequiredbyfrequencyhoppingsystemsareusually10%to20%oft m, the allowedclockerrorisabout6s.Inamilitaryenvironment,suchaccuraciescanbemaintained forperiodsofhoursandlongeronlywithatomicclocks.

A.D.RobertsonandF.C.Painter,"TacticalJamming,"DefenseScienceandEngineering,pp. 2028,September1985.

J.R.Vig,"MilitaryApplicationsofHighAccuracyFrequencyStandardsandClocks,"IEEE TransactionsonUltrasonics,Ferroelectrics,andFrequencyControl,Vol.40,pp.522527,1993.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. IdentificationFriendOrFoe(IFF)

AirDefenseIFFApplications AWACS

FRIENDORFOE?

F16

FAAD

PATRIOT STINGER

115

Inamodernbattle,whentheskyisfilledwithfriendlyandenemyaircraft,andavarietyof advancedweaponsarereadytofirefrombothgroundandairborne platforms,positive identificationoffriendandfoeiscriticallyimportant.Forexamplefratricideduetoidentification errorshasbeenamajorprobleminall20thcenturywars. CurrentIFFsystemsuseaninterrogation/responsemethodwhichemploys cryptographicallyencodedspreadspectrumsignals.Theinterrogationsignalreceivedbya friendissupposedtoresultinthe"correct"codebeingautomaticallysentbackviaa transponderonthefriendlyplatform.The"correct"codemustchangefrequentlytopreventa foefromrecordingandtransmittingthatcode("repeatjamming"),therebyappearingasafriend. Thecodeischangedattheendofwhatiscalledthecodevalidityinterval(CVI). Thebettertheclockaccuracy,theshortercanbetheCVI,themoreresistantthesystem canbetorepeatjamming,andthelongercanbetheautonomyperiodforuserswhocannot resynchronizetheirclocksduringamission.

J.R.Vig,"MilitaryApplicationsofHighAccuracyFrequencyStandardsandClocks,"IEEE TransactionsonUltrasonics,Ferroelectrics,andFrequencyControl,Vol.40,pp.522527,1993.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. BistaticRadar

Conventional(i.e.,"monostatic")radar,inwhichthe Illuminator illuminatorandreceiverareonthesameplatform,isvulnerable toavarietyofcountermeasures.Bistaticradar,inwhichthe illuminatorandreceiverarewidelyseparated,cangreatly reducethevulnerabilitytocountermeasuressuchasjamming andantiradiationweapons,andcanincreaseslowmoving targetdetectionandidentificationcapabilityvia"cluttertuning” Receiver (receivermaneuverssothatitsmotioncompensatesforthe motionoftheilluminator;createszeroDopplershiftforthearea beingsearched).Thetransmittercanremainfarfromthebattle area,ina"sanctuary."Thereceivercanremain"quiet.” Thetimingandphasecoherenceproblemscanbeorders ofmagnitudemoresevereinbistaticthaninmonostatic radar,especiallywhentheplatformsaremoving.The Target referenceoscillatorsmustremainsynchronizedandsyntonized duringamissionsothatthereceiverknowswhenthetransmitter emitseachpulse,andthephase variationswillbesmallenoughtoallowasatisfactoryimageto beformed.Lownoisecrystal oscillatorsarerequiredforshorttermstability;atomicfrequencystandardsareoftenrequiredfor longtermstability.

117

Similarrequirementsexistinelectronicwarfareapplications.Theabilitytolocateradioand radaremittersisimportantinmodernwarfare.Onemethodoflocatingemittersistomeasure thetimedifferenceofarrivalofthesamesignalatwidelyseparatedlocations.Emitterlocation bymeansofthismethoddependsontheavailabilityofhighlyaccurateclocks,andonhighly accuratemethodsofsynchronizingclocksthatarewidelyseparated.Sinceelectromagnetic wavestravelatthespeedoflight,30cmpernanosecond,theclocksofemitterlocatingsystems mustbekeptsynchronizedtowithinnanosecondsinordertolocateemitterswithhighaccuracy. (Multipathandthegeometricalarrangementofemitterlocatorsusuallyresultsinadilutionof precision.)Withoutresynchronization,eventhebestavailablemilitarizedatomicclockscan maintainsuchaccuraciesforperiodsofonlyafewhours.WiththeavailabilityofGPSandusing the"GPScommonview"methodoftimetransfer,widelyseparatedclockscanbesynchronized tobetterthan10ns(assumingthatGPSisnotjammed).Aneven moreaccuratemethodof synchronizationis"twowaytimetransferviacommunicationsatellites,"which,bymeans of verysmallapertureterminals(VSATs)andpseudonoisemodems,canattainsubnanosecond timetransferaccuracies. AnotherimportantapplicationforlownoisefrequencysourcesistheELINT(ELectronic INTelligence)receiver.Thesereceiversareusedtosearchabroadrangeoffrequenciesfor signalsthatmaybeemittedbyapotentialadversary.Thefrequencysourcemustbeasnoise freeaspossiblesoasnottoobscureweakincomingsignals.Thefrequencysourcemustalso beextremelystableandaccurateinordertoallowaccuratemeasurementoftheincoming signal'scharacteristics.

N.J.Willis,"BistaticRadar,"inRadarHandbook ,M.I.Skolnik,editor,Chapter25,McGrawHill PublishingCo.,1990.

W.LewandowskiandC.Thomas,"GPSTimeTransfer," Proc. IEEE ,Vol.79,pp.9911000,July 1991.

G.LippermeierandR.Vernon,"IFFN:SolvingtheIdentificationRiddle," Defense Electronics , “QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplicationspp.8388,1988. ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. RelativisticTimeEffects

• Transporting"perfect"clocksslowlyaroundthesurfaceoftheearthalong theequatoryields t=207nseastwardand t=+207nswestward (portableclockislateeastward).Theeffectisduetotheearth'srotation.

• Atlatitude40 o,forexample,therateofaclockwillchangeby1.091x10 13 perkilometerabovesealevel. Movingaclockfromsealevelto1km elevationmakesitgain9.4nsec/dayatthatlatitude.

• In1971,atomicclocksflowneastwardthenwestwardaroundtheworldin airlinesdemonstratedrelativistictimeeffects;eastward t=59ns, westward t=+273ns;bothvaluesagreedwithpredictiontowithinthe experimentaluncertainties.

• SpacecraftExamples :

• Foraspaceshuttleina325kmorbit, t=t space tground =25 sec/day • ForGPSsatellites(12hrperiodcircularorbits),t=+38.5 sec/day

• Inprecisetimeandfrequencycomparisons,relativisticeffectsmustbe includedinthecomparisonprocedures.

822

N.Ashby&M.Weiss,“GlobalPositioningSystemReceiversandRelativity,” NISTTechnical Note1385,March1999.

C.Alley,"RelativityandClocks,"Proc.33rdAnnualSymposiumonFrequencyControl,pp.4 39,1979.

G.M.R.Winkler,“SynchronizationandRelativity,” Proc.IEEE,vol.79,pp.10291039,1991

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. UnitsofMeasurementHavingSpecialNames intheInternationalSystemofUnits(SI)

SIBaseUnits Electric Luminous Amountof Mass Length Time Temperature Current Intensity Substance kilogram meter kelvin ampere candela mole kg m s A K cd mol

S K cdsr CoordinatedTime Celsius LuminousFlux internationalatomictime Temperature SIDerivedUnits 0Celsius lumen TAI 0 lm s1 C kgms 2 Frequency Force newton Hz N m2cdsr 2 kgm 2s2 kgm1s SA Illuminance Pressure lux Energy Electriccharge lx joule pascal coulomb J Pa C 3 2 3 2 kgms 2 3 1 kgm s A Non-SI units Power kgm s A Resistance sr: thesteradianisthesupplementary ElectricPotential recognized volt ohm SIunitofsolidangle(dimensionless) W for use with SI s1 V rad: theradianisthesupplementary 1 2 4 2 2 2 1 Activity kg m s A kgm s A SIunitofplaneangle(dimensionless) day:1d=86400s becquerel Capacitance MagneticFlux hour:1h=3600s Bq farad weber m2s1 F Wb :1min=60s kg 1 m2s3 A2 kgm 2s2A2 3 3 AbsorbedDose liter:1l=10 m gray Conductance Inductance ton:1t=10 3 kg Gy siemens henry 2 2 H 0 m s S degree:1 =( π/180)rad DoseEquivalent kgs 2 A1 minute:1’ =( π/10800)rad sievert Conductance Sv second:1” =( π/648000)rad siemens Electromagnetic 19 Healthrelated S measurementunits electronvolt:1eV ≈ 1.602177x10 J measurementunits unifiedatomicmassunit:1u ≈ 1.660540x10 27 kg

831

Timeinterval(frequency)isthequantitythatcanbedetermined withthehighestaccuracy. Itcanbemeasuredwithanaccuracygreaterthan1partin10 13 .Withthehelpofsatellites,itis possibletocomparethetimescaleskeptbythenationallaboratories,worldwide,toanaccuracy of~1ns.Time,therefore,playsacentralroleinmetrologyandinthedefinitionsofSIunits. TheSIconsistsofsevenbaseunitsandanumberofderivedunits,asshownabove. ShownonthenextpagearetheunitsthatdoNOTdependontheunitoftime. R.J.Douglas,et.al,"FrequencyStandards,Timekeeping,andTraceableServicesatthe NationalResearchCouncilofCanada,"Proc.28thAnn.PreciseTime&TimeInterval(PTTI) Applications&PlanningMeeting,pp.6580,1996.

Thechartabove,andtheoneonthenextpage,wereprovidedbyR.J.Douglas,National ResearchCouncilCanada,1997.

E.R.Cohen&B.N.Taylor,“TheFundamentalPhysicalConstants,” PhysicsToday,pp.BG7 BG14,August1997.

B.W.Petley,"TimeandFrequencyFundamentalMetrology,"Proceedingsofthe IEEE,vol.79,pp.10701076,1991.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. UnitsofMeasurementHavingSpecialNamesintheSIUnits, NOTNeedingStandardUncertaintyinSIAverageFrequency

SIBaseUnits

Mass Temperature Amountof kelvin Substance kilogram mole kg K mol

K SIDerivedUnits Celsius Temperature 0Celsius 0C

NonSIunits recognized foruse with SI

ton:1t=10 3 kg degree:1 0 =( π/180)rad minute:1’ =( π/10800)rad second:1” =( π/648000)rad unifiedatomicmassunit:1u ≈ 1.660540x10 27 kg

832

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. Clocks

1

QuartzfortheNationalDefenseStockpile ,ReportoftheCommitteeonCulturedQuartzforthe NationalDefenseStockpile,NationalMaterialsAdvisoryBoardCommissiononEngineeringand TechnicalSystems,NationalResearchCouncil,NMAB424,NationalAcademyPress, Washington,D.C.,1985.

J.R.Vig,"MilitaryApplicationsofHighAccuracyFrequencyStandardsandClocks,"IEEE TransactionsonUltrasonics,Ferroelectrics,andFrequencyControl,Vol.40,pp.522527,1993.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. TypicalClock

Counting Mechanism Frequency Setting Displayor Source Mechanism Timecode Synchronization Mechanism

t=t 0 + Στ

Wheretisthetimeoutput,t 0 istheinitialsetting, and τ isthetimeintervalbeingcounted.

85

Aclockmayormaynothaveadisplay.Inmanyconsumerapplications,clocksdisplay thetimeofday.Inmanyotherapplications,clocksareusedinternallyonly;theiroutputis typicallyaonepulsepersecond(1pps)oratimecodesignalwhichareusedforsequencingor timetaggingevents(see“OnePulsePerSecondTimingSignal” and“BCDTimeCode” laterin thischapter.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. ProgressinTimekeeping

TimePeriod Clock/Milestone AccuracyPerDay

4thmillenniumB.C. Sumariansdividedday&nightinto12equalhours Upto1280A.D. Sundials,waterclocks(clepsydrae) ~1h ~1280A.D. Mechanicalclockinvented assemblytimeforprayer ~30to60min wasfirstregularuse 14thcentury Inventionoftheescapement;clockmakingbecomes ~15to30min amajorindustry ~1345 Hourdividedintoand 15thcentury Clocktimeusedtoregulatepeople’slives(workhours) ~2min 16thcentury Time’simpactonsciencebecomessignificant ~1min (Galileotimesphysicalevents,e.g.,freefall) 1656 Firstpendulumclock(Huygens) ~100s 18thcentury Temperaturecompensatedpendulumclocks 1to10s 19thcentury Electricallydrivenfreependulumclocks 10 2 to10 1 s ~1910to1920 Wristwatchesbecomewidelyavailable 1920to1934 Electricallydriventuningforks 10 3 to10 2 s 1921topresent Quartzcrystalclocks(andwatches.Since~1971) 10 5 to10 1 s 1949topresent Atomicclocks 10 10 to10 4 s

87

Humanbeings’ useofclocksisarelativelyrecentphenomenonintermsofhumanhistory. Modernhumans( Homo sapiens )arebelievedtohaveoriginatedsomewherearound200,000 yearsago.http://en.wikipedia.org/wiki/History_of_the_Earth#2_Ma:_Human_evolution Sumariansdividednight&dayinto12equalhourseach,whoselengthvariedasthedaylight hoursdid.Exceptforastronomicalpurposes,equalhourswereuselessbecausepeoplelived bythesununtiltheinventionofmechanicalclocks.

H.Tait,ClocksandWatches ,BritishMuseumPublications,1983

W.A.Marrison,“TheEvolutionoftheQuartzCrystalClock,” TheBellSystemTechnical Journal,Vol.XXVII,pp.510588,1948.Reprintedat

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. FrequencyControlDeviceMarket (estimates,asof~2006)

Technology Units Unitprice, Worldwide peryear typical market,$/year

QuartzCrystalResonators& ~3x10 9 ~$1 ~$4B Oscillators ($0.1to3,000) AtomicFrequencyStandards (seechapter6) Hydrogenmaser ~20 $100,000 $2M Cesiumbeam ~500 $50,000 $25M frequencystandard Rubidiumcell ~50,000 $2,000 $100M frequencystandard

12

Theestimatesarebasedonoccasionalinformalsurveysofindustryleaders.The numbersareprobablyaccuratetoafactoroftwo.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ResonatorVibrationAmplitudeDistribution

Metallic electrodes

Resonator platesubstrate (the“blank”)

u

Conventionalresonatorgeometry andamplitudedistribution,u

35

Inanidealresonator,theamplitudeofvibrationfallsoffapproximatelyexponentiallyoutside theelectrodes.Inaproperlydesignedresonator,anegligibleamountofenergyislosttothe mountingandbondingstructure,i.e.,theedgesmustbeinactive inorderfortheresonatortobe abletopossessahighQ.Thedisplacementofapointontheresonatorsurfaceisproportionalto thedrivecurrent.Atthetypicaldrivecurrentsusedin(e.g., 10MHz)thicknessshearresonators, thepeakdisplacementisafewatomicspacings. Thepeakaccelerationofapointonthesurfaceisoftenmorethanamillion‘g’s.Toshow 2 2 2 this,ifthedisplacementu=u o sin ωt,then,theacceleration=d u/dt = ω uo sin ωt,andthe 2 9 peakacceleration= ω uo.Ifweassumethatu o =twolatticespacings~1x10 m,then,at10 2 7 2 9 6 MHz, ω uo =(2 π x10 ) (10 )~10 g.

B.Capelle,J.Detaint,A.Zarka,Y.ZhengandJ.Schwartzel,“ModeShapeAnalysisTechniques UsingSynchrotronXrayTopography,” Proc.44thAnn.Symp.OnFrequencyControl,pp.416 423,1990.

J.S.YangandH.F.Tiersten,“AnAnalysisofContouredQuartzResonatorswithBeveled CylindricalEdges,” Proc.1995Int’lFrequencyControlSymp.,pp.727739,1995.

H.F.TierstenandD.S.Stevens,“TheEvaluationoftheCoefficientsofNonlinearResonancefor SCcutQuartzResonators,” Proc.39thAnnualSymposiumonFrequencyControl,pp.325332, 1985,IEEECatalogNo.85CH21865.

V.E.Bottom,IntroductiontoQuartzCrystalUnitDesign ,VanNostrandReinholdCompany, 1982.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ModesofMotion (Clickonthemodenamestoseeanimation.)

FlexureMode ExtensionalMode FaceShearMode

ThicknessShear FundamentalMode ThirdOvertone Mode ThicknessShear ThicknessShear

34

Shownabovearethebulkacousticwave(BAW)modesofmotion.Forexample,ATcut andSCcutresonatorsvibrateinthethicknessshearmode.Above100MHz,overtoneunits thatoperateataselectedharmonicmodeofvibrationareoftenused(e.g.,thirdovertoneor5th overtone).Higherthan100MHzfundamentalmodeunitscanbemanufacturedby,e.g., chemicalpolishing(diffusioncontrolledwetetching),plasmaetching,andionmillingtechniques. Below1MHz,tuningforks,XYandNTbars(flexuremode),+5° Xcuts(extensionalmode),or CTcutandDTcutunits(faceshearmode)canbeused.Tuningforkshavebecomethe dominanttypeoflowfrequencyunitsduetotheirsmallsizeandlowcost(see“Quartz ResonatorsforWristwatches” andthefollowingpageslaterinthischapter).

Thevelocitiesofacousticwavesinsolidsaretypically~3,000m/s(~10 5 timesthevelocity oflight). FortheshearwavesinATcutquartz,forexample,thevelocityofpropagationinthe thicknessdirectionis3,320m/s;thefundamentalmodefrequency ~v/2h,wherevisthe acousticwavevelocityandhistheplatethickness. (Thethicknessoftheplateisonehalfthe .)

AnimationsarecourtesyofRaymondL.Filler

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. CrystalOscillator

Tuning Voltage

Crystal resonator

Output Frequency Amplifier

21

Aboveisasimplifiedcircuitdiagramthatshowsthebasicelementsofacrystaloscillator (XO).TheamplifierofanXOconsistsofatleastoneactivedevice,thenecessarybiasing networks,andmayincludeotherelementsforbandlimiting,impedancematching,andgain control.Thefeedbacknetworkconsistsofthecrystalresonator,andmaycontainother elements,suchasavariablecapacitorfortuning.

W.L.Smith,"PrecisionOscillators,"inE.A.GerberandA.Ballato,PrecisionFrequency Control ,Vol.2,pp.4598,AcademicPress,1985.

B.Parzen,DesignofCrystalandOtherHarmonicOscillators ,JohnWileyandSons,Inc.,1983.

M.E.Frerking,"TemperatureControlandCompensation,"inE.A. GerberandA.Ballato, PrecisionFrequencyControl ,Vol.2,pp.99111,AcademicPress,1985.

M.E.Frerking,CrystalOscillatorDesignandTemperatureCompensation ,VanNostrand ReinholdCompany,1978.

"FundamentalsofQuartzOscillators,"HewlettPackardapplicationnoteAN2002,Hewlett PackardCompany,

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. Oscillation

• Atthefrequencyofoscillation,theclosedloopphaseshift =2n π. • Wheninitiallyenergized,theonlysignalinthecircuitis noise.Thatcomponentofnoise,thefrequencyofwhich satisfiesthephaseconditionforoscillation,ispropagated aroundtheloopwithincreasingamplitude.Therateof increasedependsontheexcess;i.e.,smallsignal,loop gainandontheBWofthecrystalinthenetwork. • Theamplitudecontinuestoincreaseuntiltheamplifiergain isreducedeitherbynonlinearitiesoftheactiveelements ("selflimiting")orbysomeautomaticlevelcontrol. • Atsteadystate,theclosedloopgain=1.

22

See“DecayTime,Linewidth,andQ” inchapter3forfurtherinformationonoscillator startuptime. Inadditiontonoise,switchingontheDCpowersupplyisanotheroscillationtrigger.

W.L.Smith,"PrecisionOscillators,"inE.A.GerberandA.Ballato,PrecisionFrequency Control ,Vol.2,pp.4598,AcademicPress,1985.

M.TokiandY.Tsuzuki,“AnalysisofStartupCharacteristicsofCMOSCrystalOscillators,” Proc.1992IEEEFrequencyControlSymposium,pp.448452,1992.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. CrystalOscillatorCategories f Voltage f +10ppm Tune 25 0C 45 0C +100 0C Output T

• CrystalOscillator(XO) 10ppm f Temperature Temperature CompensationCompensation Sensor Networkor 0 f +1ppm Sensor Networkor 45 C 0 ComputerComputer +100 C T XOXO 1ppm • TemperatureCompensated(TCXO)

Oven XO f XO 8 OvenOven f +1x10 control 45 0C +100 0C control TemperatureTemperature T SensorSensor 1x10 8 • OvenControlled(OCXO)

27

AwidetemperaturerangeXOhasatypicalfvs.Tstabilityof~10to50ppm.ATCXO canreducethatto~1ppm.AnOCXOcanreducethatstabilityto 1x10 8 orbetter(butatthe costofmuchhigherpowerconsumption).Highend(SCcut)OCXOscanstaywithin1x10 10 overawidetemperaturerange.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. HierarchyofOscillators

OscillatorType * Accuracy ** TypicalApplications • Crystaloscillator(XO) 10 5 to10 4 Computertiming • Temperaturecompensated 10 6 Frequencycontrolintactical crystaloscillator(TCXO) radios

• Microcomputercompensated 10 8 to10 7 Spreadspectrumsystemclock crystaloscillator(MCXO) Navigationsystemclock& • Ovencontrolledcrystal 10 8 (with10 10 oscillator(OCXO) pergoption) frequencystandard,MTIradar • Smallatomicfrequency 10 9 C3 satelliteterminals,bistatic, standard(Rb,RbXO) &multistaticradar • Highperformanceatomic 10 12 to10 11 StrategicC 3,EW standard(Cs)

*Sizesrangefrom<5cm 3 forclockoscillatorsto>30litersforCsstandards Costsrangefrom<$5forclockoscillatorsto>$50,000forCsstandards. **Includingenvironmentaleffects(e.g.,40 oCto+75 oC)andoneyearof aging.

28

Seealsochapter7formoredetailedcomparisonsofvariousoscillators.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. WhyQuartz?

Quartzistheonlymaterialknownthatpossessesthefollowing combinationofproperties:

• Piezoelectric("pressureelectric";piezein=topress,inGreek)

• Zerotemperaturecoefficientcutsexist

• Stresscompensatedcutexists

• Lowloss(i.e.,highQ)

• Easytoprocess;lowsolubilityineverything,under"normal"conditions, exceptthefluorideandhotalkalietchants;hardbutnotbrittle

• Abundantinnature;easytogrowinlargequantities,atlowcost,and withrelativelyhighpurityandperfection.Ofthemangrownsingle crystals,quartz,at~3,000tonsperyear,issecondonlytosiliconin quantitygrown(3to4timesasmuchSiisgrownannually,asof1997).

31

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. HydrothermalGrowthofQuartz

• Theautoclaveisfilledtosome Cover predeterminedfactorwithwaterplus mineralizer(NaOHorNa 2CO 3).

Closure • Thebafflelocalizesthetemperaturegradient area sothateachzoneisnearlyisothermal.

Theseedsarethinslicesof(usually) Autoclave • Growth Zcutsinglecrystals. zone,T 1 Seeds • Thenutrientconsistsofsmall(~2½ to4cm) piecesofsinglecrystalquartz(“lascas”). Baffle • Thetemperaturesandpressuresare Nutrient typicallyabout350 0Cand800to2,000 Solute dissolving atmospheres;T T istypically4 0Cto10 0C. nutrient 2 1 zone,T 2 • Thenutrientdissolvesslowly(30to260days Nutrient perrun),diffusestothegrowthzone,and depositsontotheseeds. T2 >T 1

51

Priorto~1956,thematerialusedforquartzresonatorswasnaturalquartz,i.e.,mined quartz.Today,itis“culturedquartz,” i.e.,quartzgrowninfactories.Althoughthisquartzis oftenreferredtoas“syntheticquartz,” nobodyhasyetfoundawaytosynthesizesinglecrystal quartzdirectlyfromsiliconandoxygen.Largequartzbars(typically~15cmlong)ofuniform sizeandshapearegrownfromsmall,irregularlyshapedpiecesofquartz(called“lascas” bythe culturingprocessdescribedabove.So,strictlyspeaking,thequartzis“culturedquartz”. Quartzisacommonmaterialintheearth’scrust(e.g.,sandismostlyquartz),however, thehighpuritycrystalsneededforquartzgrowingarenotsocommon.Mostofthenutrient materialsusedbyquartzgrowersareminedinBrazilandtheUSA (nearJessieville,Arkansas). Theautoclaveisalong,thickwalled~25to100cminnerdiametersteeltubethatcan withstandthehightemperaturesandpressuresofthegrowthprocess. Theanisotropyofquartzisdiscussedonthenextpage,andinchapter3,whereitis pointedoutthatthehighestetchingratedirectionistheZdirection.Similarly,duringquartz growing,theZdirectionisthefastestdirectionofgrowth.

R.A.LaudiseandR.L.Barns,“PerfectionofQuartzandItsConnectiontoCrystalGrowth,” IEEETransactionsonUltrasonics,Ferroelectrics,andFrequencyControl,Vol.35,No.3,pp. 277287,May1988,IEEECatalog88CH25882.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. DeeplyDissolvedQuartzSphere AnisotropicEtching

Z Y +X +X

LookingalongYaxis LookingalongZaxis

52

Polishedquartzspheres,whendeeplyetchedinconcentratedHF,dissolveinahighly anisotropicmanner.Thepartiallydissolvedspheresbecome“triangular,lenticular,” asshown above theshapeistriangularwhenobservedalongtheZaxis,andlenticularwhenobserved alongtheYaxis.Theetchingratealongthefastestetchingdirection,the Zdirection,isnearly 1000timesfasterthantheratealongtheslowestdirection,the Xdirection.

AgoodreviewoftheearlyetchingstudiescanbefoundinC.Frondel,TheSystemof Mineralogy ,Vol.III,“SilicaMinerals”,JohnWileyandSons,Inc.,NewYork,1962.

R.W.Ward,“EtchingofQuartzCrystalSpheres,” Proc.1993IEEEInt’lFrequencyControl Symposium,pp.390396,1993.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. ZeroTemperatureCoefficientQuartzCutsZeroTemperatureCoefficientQuartzCuts

90 o 60 o AT FC IT 30 o LC SC θ 0 z 30 o SBTC BT 60 o 90 o 90 0o 10 o 20 o 30 o θ 0 10 φ 20 30

TheAT,FC,IT,SC,BT,andSBTCcutsaresomeTheAT,FC,IT,SC,BT,andSBTCcutsaresome llyy Do ngg dd ub Siin ttee blly θ ofthecutsonthelocusofzerotemperatureofthecutsonthelocusofzerotemperature S ttaa Ro y Ro ottaa coefficientcuts.TheLCisa“linearcoefficient” R tt tteed coefficientcuts.TheLCisa“linearcoefficient” Cuu CCu d y C utt y cutthathasbeenusedinaquartzthermometer.

φ Ycut: ≈ +90ppm/ 0C (thicknessshearmode) l x xl 0 x x Xcut: ≈ 20ppm/ 0C (extensionalmode)

313

Thelocusofzerotemperaturecoefficientcutsinquartzisshownabove.Thecutsusuallyhave two A.Ballato,“Doublyrotatedthicknessmodeplateviletternames,wherethe"T"inthenameindicatesatemperaturecompensatedcut;forinstance,theATbrators,” inPhysicalAcoustics,Vol.cut XIII,pp.115181,AcademicPress,1977.wasthefirsttemperaturecompensatedcutdiscovered.TheFC,IT,BT,andSBTCcutsareothercuts alongthezerotemperaturecoefficientlocus.Thesecutswerestudiedinthepast(beforethediscoveryof theSCcut)forsomespecialproperties,butarerarelyusedtoday.Thehigheststabilitycrystaloscillators employSCcutcrystalunits.TheX,Y,andZdirectionshavebeenchosentomakethedescriptionof propertiesassimpleaspossible.TheZaxisisanaxisofthreefoldsymmetryinquartz;inotherwords, the physicalpropertiesrepeatevery120° asthecrystalisrotatedabouttheZaxis. A.Ballato,"DoublyRotatedThicknessModePlateVibrators,"inPhysicalAcoustics ,Vol.XIII,W.P.Mason andR.N.Thurston,Eds.,pp.115181,AcademicPress,NewYork,1977.

J.P.Buchanan,HandbookofPiezoelectricCrystalsforRadioEquipmentDesigners ,WADCTechnical Report56156,October1956(692pages),availablefromNTIS,AD110448.

D.L.Hammond,C.A.AdamsandP.Schmidt,"ALinear,QuartzCrystal,TemperatureSensingElement," ISATransactions ,vol.4,pp.349354,1965.

M.Valdois,B.K.Sinha,andJ.J.Boy,“ExperimentalVerificationofStressCompensationintheSBTC Cut,” IEEETrans.onUltrasonics,FerroelectricsandFrequencyControl,vol.36,pp.643651,1989.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. CrystalOscillatorfvs.TCompensation Uncompensated frequency

T Frequency/Voltage

Compensating Compensated voltage frequency onvaractorC L ofTCXO

323

Whentheloadcapacitorisconnectedinserieswiththecrystal, thefrequencyof operationoftheoscillatorisincreasedbya f',where f'isgivenbytheequationonthe previouspage.Whenaninductorisconnectedinserieswiththe crystal,thefrequencyof operationisdecreased.Theabilitytochangethefrequencyofoperationbyaddingorchanging areactanceallowsforcompensationofthefrequencyversustemperaturevariationsofcrystal unitsinTCXOs,andfortuningtheoutputfrequencyofvoltagecontrolledcrystaloscillators (VCXO).Inboth,thefrequencycanbechanged,e.g.,bychangingthevoltageonavaractor. Othermeansoftemperaturecompensationincludetheuseofatemperaturesensitive reactanceelementsuchthatthevariationsofthereactancewith temperaturecompensatefor thefvs.Tvariationsoftheresonator,andtheusedigitalcompensationtechniques.The microcomputercompensatedcrystaloscillator(MCXO),whichusesahighaccuracydigital compensationtechnique,isdiscussedinchapter2.

M.E.Frerking,“TemperatureControlandCompensation,” inE.A.GerberandA.Ballato, PrecisionFrequencyControl ,Vol.2,pp.144,AcademicPress,1985.

M.E.Frerking,CrystalOscillatorDesignandTemperatureCompensation ,VanNostrand ReinholdCompany,1978.

S.Okano,T.Mitsuoka&T.Ohshima,“DirecttemperatureCompensatedCrystalOscillatorfor AdvancedVHF/UHFRadioCommunicationSystems,” Proc.34thAnn.FrequencyControl Symposium,pp.488497,1980.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. SiliconResonator&Oscillator

www.SiTime.com Resonator (Si):0.2x0.2x0.01mm 3 5MHz;fvs.T:30ppm/ oC Oscillator (CMOS) :2.0x2.5x0.85mm 3 • ±50ppm,±100ppm;45to+85 oC (±5ppmdemoed,w.carefulcalibration) • 1to125MHz • <2ppm/yaging;<2ppmhysteresis • ±200pspeaktopeakjitter,20125MHz

217

Theresonator,includingitshermeticallysealedenclosure,ismadeofsinglecrystalsilicon. Theresonatoris~200umonasideby~10umthick. Thetrenchgapisnominally 0.4um. Resonantfrequencyis~5MHz. Qis~75katroomtemperature. Theresonatoris integratedintostandardsiliconCMOSchips.Theoscillatoris,therefore,inexpensiveto produce. Alloscillatorfrequenciesarederivedfromthesame5MHzresonator.Theoscillatoris compensatedbymeasuringthetemperaturewithabandgapthermometerontheCMOSdie andadjustingadeltasigmafractionalPLL. Theresolutionis~0.05C,givingafrequency resolutionof~1.5ppm. Thespecis+/ 100ppmand+/50ppmdependingonthe grade. Carefullycalibratedovertemperature,afvs.Tofabout+/ 5ppmcanbeobtained(with acubicresidue).Withasimpleronetemperaturecalibration,typically+/30ppmfvs.Tis obtained. Becauseeachpartiscalibratedafterpackaging,theinitialfrequencyoffsetissmall, forexampleunderabout5ppm. Theresonatorisdrivenwithfivelines. Theelectrodesaredopedsilicon.Atthecenterthereis abiascontacttotheresonatorelementattheanchorthatisusedtobiasit,presentlyat5V,the eightelectrostaticdriveandsenseelectrodesaroundthequadaredrivenatDCofzero. The fourdriveelectrodesaredividedintopairsofdriveminus(ontheinsideofthequad)anddrive plus(ontheoutsideofthequad. Twoelectrodesineachpairarewiredinparallel. Thesense electrodesarewiredinasimilarway(infactthedriveandsenseareinterchangeable). The pairsareorganizedonadjacentsidessothatthereisminimalnetdriveandsenseforthe wineglassmode. Asubstrategroundconnectionistiedtothecoverandthesubstrate.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. WhatisQandWhyisitImportant?

Energystoredduring a cycle Q ≡ 2 π Energydissipatedpercycle

Qisproportionaltothedecaytime,andisinversely proportionaltothelinewidthofresonance(seenextpage).

• ThehighertheQ,thehigherthefrequencystabilityand accuracy capability ofaresonator(i.e.,highQisa necessarybutnotasufficientcondition).If,e.g.,Q=10 6, then10 10 accuracyrequiresabilitytodeterminecenterof resonancecurveto0.01%ofthelinewidth,andstability(for someaveragingtime)of10 12 requiresabilitytostaynear peakofresonancecurveto10 6 oflinewidth.

• Phasenoiseclosetothecarrierhasanespeciallystrong dependenceonQ(L(f) ∝ 1/Q 4 forquartzoscillators).

326

SeethenextpageforotherdefinitionsofQ,andseechapter5foradditionalinformation abouttheQofquartzresonators.Whenthesignalisdecaying,asshownonthenextpage,the energiesinthedefinitionaboveareaveragedoverthecycle.Closetothecarrier,afactorof twodifferenceinQresultsinafactorof16differenceinphasenoise.

IEEEStd1001996,TheIEEEStandardDictionaryofElectricalandElectronics Terms, http://shop.ieee.org/store/

H.Hellwig,"FrequencyStandardsandClocks:ATutorialIntroduction,"NBSTechnicalNote 616,1977,TimeandFrequencyDivision,NIST,Boulder,CO80303.

V.B.Braginsky,V.P.Mitrofanov&V.I.Panov, SystemswithSmallDissipation ,The UniversityofChicagoPress,1985.

E.I.Green,"TheStoryofQ,"AmericanScientist,pp.584595,1955.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. PrecisionFrequencyStandards

• Quartzcrystalresonatorbased (f~5MHz,Q~10 6) • Atomicresonatorbased

7 Rubidiumcell(f 0 =6.8GHz,Q~10 ) 8 Cesiumbeam(f 0 =9.2GHz,Q~10 ) 9 Hydrogenmaser(f 0 =1.4GHz,Q~10 ) 11 Cesiumfountain(f 0 =9.2GHz,Q~5x10 ) 11 Trappedions(f 0 >10GHz,Q>10 )

61

AhighQisnecessary(butnotsufficient)forhighfrequencystability seeChapter3fora discussionofQ.ThehighertheQ,thehigherthefrequencystabilityandaccuracy capability of aresonator.If,e.g.,Q=10 6,then10 10 accuracyrequirestheabilitytodeterminethecenterof theresonancecurveto0.01%ofthelinewidth,andstability(forsomeaveragingtime)of10 12 requirestheabilitytostaynearthepeakoftheresonancecurveto10 6 oflinewidth. AhighQisnotsufficientforhighstabilitybecauseahighQresonatormay,forexample, haveapoortemperaturestability.Sapphireresonators,forexample,canhaveaveryhighQ, buttheirpoortemperaturestabilitypreventstheiruseinclocks. TheQ,orlinewidthofanatomictransitionisdeterminedbytheobservationtime.The atomicresonanceQslistedabovearetypicalvalues.Lasercoolingofatomscansignificantly extendtheobservationtimeandQ(see“LaserCoolingofAtoms” laterinthischapter.Laser coolingisnecessarytoachieveaCsfountain).

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. AtomicFrequencyStandardBasicConcepts

Whenanatomicsystemchangesenergyfromanexitedstatetoa lowerenergystate,aphotonisemitted.Thephotonfrequency ν isgiven by Planck’slaw E 2 − E 1 ν = h whereE 2 andE 1 aretheenergiesoftheupperandlowerstates, respectively,andhisPlanck’sconstant.Anatomicfrequencystandard producesanoutputsignalthefrequencyofwhichisdeterminedbythis intrinsicfrequencyratherthanbythepropertiesofasolidobjectandhowit isfabricated(asitisinquartzoscillators). Thepropertiesofisolatedatomsatrest,andinfreespace,wouldnot changewithspaceandtime.Therefore,thefrequencyofanidealatomic standardwouldnotchangewithtimeorwithchangesintheenvironment. Unfortunately,inrealatomicfrequencystandards:1)theatomsare movingatthermalvelocities,2)theatomsarenotisolatedbutexperience collisionsandelectricandmagneticfields,and3)someofthecomponents neededforproducingandobservingtheatomictransitionscontributeto instabilities.

62

Atomicfrequencystandardsmustbeunderstoodintermsoftheconceptsofquantum mechanics.Thepropertiesofsimpleatomicsystemscannotassumearbitraryvalues.For example,theenergiesoftheboundstatesofanatomicsystemareconstrainedtodiscrete valuescalled energy levels .Whenanatomicsystemchangesenergyfromanexcitedstateto a statewithlowerenergy,itemitsaquantityofelectromagneticenergycalleda photon ,the frequencyofwhichisdeterminedbytheenergydifferencebetweenthetwostates,in accordancewithPlanck’slaw,shownabove. Atomicsystemscanbeisolatedfromunwantedperturbations,whichresultinsmall sensitivitiestotemperature,pressure,andotherenvironmentalconditions.Thelowlevelof interactionalsoresultsinextremelysharpresonancefeatures,andreduceserrorsdueto imperfectionsintheelectronics.Allatomsofanelementareidentical,andatomicproperties aretimeinvariant,whichmakesitpossibletobuildverystable devices. Atomicfrequencystandardsarecategorizedinseveralways;most often,theyare referredtobythetypeofatom:hydrogen,rubidium,orcesium. Actually,thesethreedevices arebasedonthesametypeofatomicinteraction,buttherearegreatpracticaldifferencesin theirimplementation.Someatomicfrequencystandards,calledoscillators,areactive,inwhich casetheoutputsignalisderivedfromtheradiationemittedbytheatom.Othersarepassive; theatomsarethenemployedasadiscriminatortomeasureandcontrolthefrequencyofan electronicoscillator,suchasaquartzoscillator.Thethirdclassificationfollowsthemethodof interaction.Inatomicbeams,theatomsareobserved"onthefly";theypassthroughthe interactionregionandarenotusedagain.Incontrast,storage devicescontainsometypeof cellthatholdstheatomstobeobservedindefinitely(ideally).

S.R.SteinandJ.R.Vig,"FrequencyStandardsforCommunications,"U.S.ArmyLaboratory CommandResearchandDevelopmentTechnicalReportSLCETTR912(Rev.1),October 1991,ADA243211.Thisreportisareprintofachapter,"Communications Frequency Standards,"inTheFroehlich/KentEncyclopediaofTelecommunications ,Vol.3,pp.445500, MarcelDekker,Inc.,1992.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. AtomicFrequencyStandard* BlockDiagram

MultiplierMultiplier QuartzQuartz AtomicAtomic CrystalCrystal ResonatorResonator FeedbackFeedback OscillatorOscillator

5MHz Output

*Passivemicrowaveatomicstandard(e.g.,commercialRbandCsstandards)

64

Atomicresonatorsareinherentlynoisyduetothediscreetnatureofatomictransitions.

Theshorttermstabilities, σy(τ)vs. τ,varyasthesquarerootofthemeasurementinterval,i.e., 1/2 as τ , forshortintervals.Thisisduetothestatisticsofcounting atomictransitions; σy(τ) varies asthesquarerootofthenumberoftransitions.Crystaloscillatorsareless noisyatsmall τ. Therefore,inallcommercialatomicstandards,theatomicresonatorfrequencyisgenerated fromthecrystaloscillator’sfrequency(byfrequencymultiplicationorfrequencysynthesis),and thecrystaloscillatorfrequencyislockedtothefrequencyoftheatomicresonatorwithaservo looptimeconstantthatisselectedtoprovideoptimumperformancefortheintendedapplication. Ofthemanyatomictransitionsavailable,theonesselectedarethosewhichareleastsensitive toenvironmentaleffectsandwhichcanbeconvenientlylockedto theVCXO. Theatomicstandardbehavesasthecrystaloscillatorformeasurementtimesshorterthan thetimeconstant(which,forexample,istypically100msto500msforaRbstandard,longerin Csstandards),anditbehavesasanatomicoscillatorformeasurementtimeslongerthanthe timeconstant. Sinceallatomicfrequencystandardsderivetheiroutputsignalfromquartzoscillators,the performanceoftheatomicstandardsissignificantlyaffectedby thecapabilitiesofthecrystal oscillators.Inparticular,theshorttermfrequencystability,thevibrationsensitivity,theradiation pulsesensitivity,andthesensitivitytothermaltransientsdependontheperformanceofthe crystaloscillator.Theatomicresonator’ssuperiorlongtermstabilityandlowersensitivityto environmentalchangesisusedto“servoout” thecrystaloscillator’sagingandsomeofthe crystaloscillator’senvironmentalsensitivities. L.L.Lewis,“AnIntroductiontoFrequencyStandards,” Proc.IEEE,vol.79,pp.927935, 1991. H.Hellwig,"FrequencyStandardsandClocks:ATutorialIntroduction,"NBSTechnical Note616,1977,TimeandFrequencyDivision,NIST,325Broadway, Boulder,Colorado,80303. H.Hellwig,"MicrowaveFrequencyandTimeStandards,"inE.A.GerberandA.Ballato, PrecisionFrequencyControl ,Vol.2,pp.113176,AcademicPress,1985.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ChipScaleAtomicClock(CSAC)

120mWpowerconsumption 16cm 3 volume(1.6” x1.39” x0.45”) 35gweight ±5.0E11accuracyatshipment σy<5x1012atτ =1hourshorttermstability(AllanDeviation) <3.0E10/monthagingrate

41

http://www.symmetricom.com/products/frequencyreferences/chipscaleatomicclock csac/

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. LaserCoolingofAtoms

1 Directionofmotion

Light Light

Atom

2 3 4 Direction offorce

614

Lasercoolingofatomscancreateatomsthatmoveveryslowly(equivalentto temperaturesofmicrokelvins).Thisallowslongobservationtimes.Theslowspeedvirtually eliminatesDopplershifts,andthelongobservationtimesallowhighaccuracydeterminationsof atomictransitionfrequencies,pertheHeisenberguncertaintyprinciple,i.e., Et~handE= hν,so ν ~1/ t.Lasercoolingpromisesfrequencyaccuraciesofpartsin10 16 .The explanationoflasercoolingisasfollows.Thenumberscorrespondtothenumbersinthe illustrationabove: 1.Considertworaysoflightthatbombardanatom.Oneraytravelsinthesamedirectionas theatom,;theothermovesintheoppositedirection.Thefrequencyofthelightisslightlylower thanthefrequencythattheatomreadilyabsorbs. 2.Fromtheatom’sperspective,theraymovinginthesamedirectionastheatomisshifted downinfrequency;theotherrayisshiftedupinfrequency. 3.Theatomislikelytoabsorbthehighfrequencylightbutnotthelow.Itisthereforepushedin adirectionoppositeitsmotionandslowsdown. 4.Theemissionoftheabsorbedlightpushestheatominsomerandomdirection,butifthe processisrepeatedmanytimes,theemissionexertsnonetforce.

Chu,Steven,”LaserTrappingofNeutralParticles,"ScientificAmerican ,February1992,pp.71 76.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. CesiumFountain

Clickhereforanimation

• Accuracy~1x10 15 or 1secondin30millionyears • 1x10 16 isachievable

615

Afountainclock,suchasNISTF1shownabove,usesafountainlikemovementofatomstomeasure frequencyandtimeinterval.First,agasofcesiumatomsisintroducedintotheclock'svacuumchamber. Sixinfraredlaserbeamsthenaredirectedatrightanglestoeachotheratthecenterofthechamber.The lasersgentlypushthecesiumatomstogetherintoaball.Inthe processofcreatingthisball,thelasersslow downthemovementoftheatomsandcoolthemtotemperaturesnearabsolutezero. Twoverticallasersareusedtogentlytosstheballupward(the "fountain"action),andthenallofthelasers areturnedoff.Thislittlepushisjustenoughtolofttheball aboutameterhighthroughamicrowavefilled cavity.Undertheinfluenceofgravity,theballthenfallsback downthroughthemicrowavecavity. Theroundtripupanddownthroughthemicrowavecavitylastsforabout1second.Duringthetrip,the atomicstatesoftheatomsmightormightnotbealteredasthey interactwiththemicrowavesignal.When theirtripisfinished,anotherlaserispointedattheatoms.Thoseatomswhoseatomicstatewerealteredby themicrowavesignalemitlight(astateknownasfluorescence). Thephotons,orthetinypacketsoflight thattheyemit,aremeasuredbyadetector. Thisprocessisrepeatedmanytimeswhilethemicrowavesignalinthecavityistunedtodifferent frequencies.Eventually,amicrowavefrequencyisfoundthataltersthestatesofmostofthecesiumatoms andmaximizestheirfluorescence.Thisfrequencyisthenaturalresonancefrequencyofthecesiumatom (9,192,631,770Hz),orthefrequencyusedtodefinethesecond. ThecombinationoflasercoolingandthefountaindesignallowsNISTF1toobservecesiumatomsfor longerperiods,andthusachieveitsunprecedentedaccuracy.Traditionalcesiumclocksmeasureroom temperatureatomsmovingatseveralhundredmeterspersecond.Sincetheatomsaremovingsofast,the observationtimeislimitedtoafew.NISTF1usesadifferentapproach.Lasercoolingdrops thetemperatureoftheatomstoafewmillionthsofadegreeaboveabsolutezero,andreducestheir thermalvelocitytoafewcentimeterspersecond.Thelasercooledatomsarelaunchedverticallyandpass twicethroughamicrowavecavity,onceonthewayupandonceon thewaydown.Theresultisan observationtimeofaboutonesecond,whichislimitedonlybytheforceofgravitypullingtheatomstothe ground. Asyoumightguess,thelongerobservationtimesmakeiteasiertotunethemicrowavefrequency.The improvedtuningofthemicrowavefrequencyleadstoabetterrealizationandcontroloftheresonance frequencyofcesium.Andofcourse,theimprovedfrequencycontrolleadstowhatisoneoftheworld's mostaccurateclocks. Credits NISTF1wasdevelopedbySteveJeffertsandDawnMeekhofoftheTimeandFrequencyDivisionof NIST'sPhysicsLaboratoryinBoulder,Colorado.Itwasconstructedandtestedinlessthanfouryears. Theabovefigure,textandanimationwerecopiedfromtheNISTTime&FrequencyDivisionwebsite, http://www.boulder.nist.gov/timefreq/cesium/fountain.htm,withthepermissionofSteveJefferts.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. TheUnitsofStabilityinPerspective

• Whatisonepartin10 10 ?(Asin1x10 10 /dayaging.) • ~1/2cmoutofthecircumferenceoftheearth. • ~1/4secondperhumanlifetime(of~80years). • PowerreceivedonearthfromaGPSsatellite,160dBW,is as“bright” asaflashlightinLosAngeleswouldlookinNew YorkCity,~5000kmaway(neglectingearth’scurvature). • Whatis170dB?(Asin170dBc/Hzphasenoise.) • 170dB=1partin10 17 ≈ thicknessofasheet ofpaperoutofthetotaldistancetraveledbyall thecarsintheworldinaday.

41

Thehumanmindislimitedinitsabilitytounderstandverysmallandverylargenumbers. Aboveisanattempttomakethesmallnumbersusedinthefrequencyandtimefieldabitmore understandable.

GPSanalogyiscourtesyofRaymondFiller,March2004.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. Accuracy,Precision,andStability

Precisebut Notaccurateand Accuratebut Accurateand notaccurate notprecise notprecise precise f f f f

0

Time Time Time Time Accurate Stablebut Notstableand Stableand (ontheaverage) notaccurate notaccurate accurate butnotstable

42

Thetermsaccuracy,stability,andprecisionareoftenusedindescribinganoscillator's quality.Aboveisanillustrationofthemeaningsofthesetermsforamarksmanandfora frequencysource.(Forthemarksman,eachbullethole'sdistancetothecenterofthetargetis the"measurement.") Accuracy istheextenttowhichagivenmeasurement,ortheaverageof asetofmeasurementsforonesample,agreeswiththedefinition ofthequantitybeing measured.Itisthedegreeof"correctness"ofaquantity. Reproducibility istheabilityofa singlefrequencystandardtoproducethesamefrequency,without adjustment,eachtimeitis putintooperation.Fromtheuser'spointofview,onceafrequencystandardiscalibrated, reproducibilityconfersthesameadvantagesasaccuracy. Stability describestheamount somethingchangesasafunctionofparameterssuchastime,temperature,shock,andthelike. Precision istheextenttowhichagivensetofmeasurementsofonesampleagreeswiththe meanoftheset.(Arelatedmeaningofthetermisusedasadescriptorofthequalityofan instrument,asina"precisioninstrument."Inthatcontext,themeaningisusuallydefinedas accurateandprecise,althoughaprecisioninstrumentcanalsobeinaccurateandprecise,in whichcasetheinstrumentneedstobecalibrated.) Themilitaryspecificationforcrystaloscillators,MILPRF55310D*,defines“Overall FrequencyAccuracy” as“6.4.33Overallfrequencyaccuracy.Themaximumpermissible frequencydeviationoftheoscillatorfrequencyfromtheassignednominalvalueduetoall combinationsofspecifiedoperatingandnonoperatingparameterswithinaspecifiedperiodof time.Inthegeneralcase,overallaccuracyofanoscillatoristhesumoftheabsolutevalues assignedtothefollowing: a.Theinitialfrequencytemperatureaccuracy(see6.4.24). b.Frequencytolerancesduetosupplyvoltagechanges(see6.4.17)andotherenvironmental effects (see6.4.12). Totalfrequencychangefromaninitialvalueduetofrequencyaging(see6.4.11)ataspecified temperature.” TheInternationalSystem(SI)ofunitsfortimeandfrequency(thesecondandHz, respectively)areobtainedinlaboratoriesusingveryaccuratefrequencystandardscalled primarystandards.AprimarystandardoperatesatafrequencycalculableintermsoftheSI “QUARTZCRYSTALRESONATORSANDOSCILLATORSdefinitionofthesecond**:"thedurationof9,192,631,770periodsoftheradiation ForFrequencyControlandTimingApplicationscorrespondingtothetransitionbetweenthetwohyp ATUTORIAL” erfinelevels ofthegroundstateofthe Rev.8.5.3.6,byJohnR.Vig,January2007.cesiumatom133”. InfluencesonOscillatorFrequency

 Time • Shortterm(noise) • Intermediateterm(e.g.,duetoovenfluctuations) • Longterm(aging)  Temperature • Staticfrequencyvs.temperature • Dynamicfrequencyvs.temperature(warmup,thermalshock) • Thermalhistory("hysteresis,""retrace")  Acceleration • Gravity(2gtipover) • Acousticnoise • Vibration • Shock  Ionizingradiation • Steadystate • Photons(Xrays, γrays) • Pulsed • Particles(neutrons,protons,electrons)  Other • Powersupplyvoltage • Humidity • Magneticfield • Atmosphericpressure(altitude) • Loadimpedance

43

Manyfactorsinfluencethefrequencystabilityofanoscillator. Changesinthe environmentcancauseespeciallylargeinstabilities.Forexample,ordersofmagnitude(tensof dBs)changescanbeobservedwhenthephasenoiseofanoscillatorismeasuredinaquiet laboratoryenvironment,andinavibratingenvironment,suchasamovingvehicle.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. IdealizedFrequencyTimeInfluenceBehavior

f X 108 Oscillator f TurnOff Temperature Vibration Shock 2g Radiation 3 & Tipover Step TurnOn Off 2

g 1 Agin

0

1 On

2 ShortTerm Instability 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 Time

44

Shownabovearethemajortypesofoscillatorfrequencyinstabilities.Thepagesthat followshoweachofthechanges,andsomeothers,inmoredetail.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. AgingandShortTermStability

Shortterminstability (Noise)

30 25

20

15 f/f(ppm) 10

5 10 15 20 25 Time(days)

45

Thedifferencebetweenagingandshortterminstability,i.e.,noise,isillustratedabove. Oneisasystematiceffectthatisobservedoverlongperiodsof time(daystoyears),whereas theotherisrandom,observedoverperiodsthataretypicallymeasuredinfractionsofasecond tominutes.Overperiodsofhours,acombinationofsystematicandrandomeffectsareusually observed.Thefrequencyvs.timecharacteristicsoversuchperiodsoftenappeartoberandom walk(atleastsomeofwhichisusuallyenvironmentallycaused). "Aging"and"drift"haveoccasionallybeenusedinterchangeablyinthefrequencycontrol literature.However,in1990,recognizingthe"needforcommonterminologyforthe unambiguousspecificationanddescriptionoffrequencyandtimestandardsystems,"theCCIR adoptedaglossaryoftermsanddefinitions.Accordingtothisglossary,agingis"thesystematic changeinfrequencywithtimeduetointernalchangesintheoscillator."Addedtothedefinition is:"Note Itisthefrequencychangewithtimewhenfactorsexternaltotheoscillator (environment,powersupply,etc.)arekeptconstant."Driftisdefinedas"thesystematicchange infrequencywithtimeofanoscillator."Driftisduetoacombinationoffactors,i.e.,itdueto agingpluschangesintheenvironmentandotherfactorsexternal totheoscillator.Agingis whatonespecifiesandwhatonemeasuresduringoscillatorevaluation.Driftiswhatone observesinanapplication.Forexample,thedriftofanoscillatorinaspacecraftisdueto(the algebraicsumof)agingandfrequencychangesduetoradiation,temperaturechangesinthe spacecraft,andpowersupplychanges.

CCIRRecommendationNo.686,“[TF.6861]Glossary,” CCIR17thPlenaryAssembly,Vol.VII, "StandardFrequencyandTimeSignals(StudyGroup7),"1990.ConsultativeCommitteeon InternationalRadio(CCIR);copiesavailablefrom:InternationalTelecommunicationsUnion, GeneralSecretariat SalesSection,PlacedesNations,CH1211Geneva,Switzerland. http://www.itu.int/itudoc/itur/rec/tf/

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. FrequencyNoiseand σy(τ)

3X10 11 0.1saveragingtime

f 0 f

3X10 11 100s

3X10 11 1.0saveragingtime f 0 f 100s

3X10 11

10 σy(τ) 10

10 11

10 12 0.01 0.1 1 10 100 Averagingtime, τ,s

424

“Thenoise” isafunctionoftheaveragingtime(alsocalled“measurementtime” or“tau”), asisillustratedabove.Forthesameoscillator,thefluctuationsinthefrequencyvs.timeplot measuredwitha0.1secondaveragingtimearelargerthanwhenmeasuredwitha1second averagingtime.AlsoshownarethecorrespondingAllandeviations. Atshortaveragingtimes,thelongertheaveragingtime,thelowerthenoise,uptothe “flickerfloor,” i.e.,forcertainnoiseprocesses(seethenextfourpages),thehillsandvalleysin thefrequencyvs.timedataaverageout.Longeraveragingdoesnothelpwhenthedominant noiseprocessisflickeroffrequency.Attheflickerfloor,theAllandeviationisindependentof averagingtime.Atlongeraveragingtimes,theAllandeviationincreasesbecausethedominant noiseprocessisrandomwalkoffrequency,forwhichthelongertheaveragingtime,thelarger theAllandeviation.

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. ClockAccuracyvs.PowerRequirement* (GoalofR&Distomovetechnologiestowardtheupperleft)

10 12 CsCs 1s/day 1ms/year 10 10 RbRb

y

c

a 8 r 10 1ms/day

u 1s/year c OCXOOCXO

c

A 10 6 TCXOTCXO 1s/day

10 4 XO

0.001 0.01 0.1 1 10 100 Power(W) *Accuracyvs.,size,andaccuracyvs.costhavesimilarrelationships

72

Commerciallyavailablefrequencysourcescoveranaccuracyrange ofseveralordersof magnitude fromthesimpleXOtothecesiumbeamfrequencystandard.Astheaccuracy increases,sodoesthepowerrequirement,size,andcost.Shown aboveistherelationship betweenaccuracyandpowerrequirement.(Notethatitisaloglogscale.)Accuracyversus costwouldbeasimilarrelationship,rangingfromabout$1forasimpleXOtoabout$40,000for acesiumstandard(1997prices).

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.6,byJohnR.Vig,January2007. YourHeadisOlderThanYourFeet

• Einstein:timepassesfasterathigherelevations;moving clockrunsslower

• Superprecise,1x10 17 ,atomicclocks(e.g.,trappedAlion opticalclocks)canmeasure“timedilation” effectsona “tabletop:”

o WhenoneoftwoclocksatNISTwasraised33cm,itran fasterthantheother,aspredictedbyEinstein

o When,e.g.,aclockismovingat10km/h,itrunsfaster thanastationaryclock,aspredictedbyEinstein

o Headsagefasterthanfeetby~0.5 sperhumanlifetime

823

C.W.Chou,D.B.Hume,T.RosenbandandD.J.Wineland.Opticalclocksandrelativity. Science .Sept.24,2010.

http://www.nist.gov/pml/div688/clocks_092810.cfm

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. IEEEElectronicLibrary

TheIEEEElectronicLibrary(IEL)containsmorethan 3milliondocuments;almostathirdoftheworld's literatureinelectricalengineering,computerscience, andrelatedsciencesandtechnologies.Itfeatureshigh qualitycontentfromtheIEEEandotherpublishers. Fulltextaccessisprovidedtojournals,magazines, transactionsandconferenceproceedingsaswellas IEEEstandards.IELincludesrobustsearchtools poweredbytheintuitive IEEE Xplore interface.

www.ieee.org/ieeexplore

107

FREE TO ALL: Browse tables of contents and access Abstract records of IEEE transactions, journals, magazines, conference proceedings and standards. IEEE MEMBERS: Browse or search to access any complete Abstract record as well as articles from IEEE Spectrum Magazine. Access your personal online subscriptions using your active IEEE Web Account. If you do not have one, go to "Establish IEEE Web Account" to set up an account. CORPORATE, GOVERNMENT AND UNIVERSITY SUBSCRIBERS: Search and access complete Abstract records and full- text documents of the IEEE online publications to which your institution subscribes.

Forsubscriptionoptions,see http://www.ieee.org/products/onlinepubs/info/comparefeatures.html Toorder:[email protected]

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008. Thank you - Questions

44 Thankyou.

1

“QUARTZCRYSTALRESONATORSANDOSCILLATORS ForFrequencyControlandTimingApplications ATUTORIAL” Rev.8.5.3.9,byJohnR.Vig,November2008.