Attack of the Killer Microseconds

Total Page:16

File Type:pdf, Size:1020Kb

Attack of the Killer Microseconds contributed articles DOI:10.1145/3015146 block a thread’s execution, with the Microsecond-scale I/O means tension program appearing to resume after the load completes. A host of complex mi- between performance and productivity croarchitectural techniques make high that will need new latency-mitigating ideas, performance possible while supporting including in hardware. this intuitive programming model. Tech- niques include prefetching, out-of-order execution, and branch prediction. Since BY LUIZ BARROSO, MIKE MARTY, DAVID PATTERSON, AND nanosecond-scale devices are so fast, PARTHASARATHY RANGANATHAN low-level interactions are performed pri- marily by hardware. At the other end of the latency-mit- igating spectrum, computer scientists have worked on a number of tech- Attack of niques—typically software based—to deal with the millisecond time scale. Operating system context switching is a notable example. For instance, when the Killer a read() system call to a disk is made, the operating system kicks off the low- level I/O operation but also performs a software context switch to a different Microseconds thread to make use of the processor during the disk operation. The original thread resumes execution sometime af- ter the I/O completes. The long overhead of making a disk access (milliseconds) easily outweighs the cost of two context switches (microseconds). Millisecond- THE COMPUTER SYSTEMS we use today make it easy scale devices are slow enough that the cost of these software-based mecha- for programmers to mitigate event latencies in the nisms can be amortized (see Table 1). nanosecond and millisecond time scales (such as These synchronous models for in- teracting with nanosecond- and milli- DRAM accesses at tens or hundreds of nanoseconds second-scale devices are easier than the and disk I/Os at a few milliseconds) but significantly alternative of asynchronous models. In lack support for microsecond (µs)-scale events. This an asynchronous programming model, the program sends a request to a device oversight is quickly becoming a serious problem for and continue processing other work programming warehouse-scale computers, where efficient handling of microsecond-scale events is key insights becoming paramount for a new breed of low-latency ˽ A new breed of low-latency I/O devices, ranging from faster datacenter networking I/O devices ranging from datacenter networking to to emerging non-volatile memories and accelerators, motivates greater interest in emerging memories (see the first sidebar “Is the microsecond-scale latencies. Microsecond Getting Enough Respect?”). ˽ Existing system optimizations targeting nanosecond- and millisecond-scale Processor designers have developed multiple events are inadequate for events in the techniques to facilitate a deep memory hierarchy microsecond range. ˽ New techniques are needed to enable that works at the nanosecond scale by providing simple programs to achieve high a simple synchronous programming interface to performance when microsecond-scale latencies are involved, including new the memory system. A load operation will logically microarchitecture support. PETER CROWTHER ASSOCIATES BY ILLUSTRATION 48 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4 APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 49 contributed articles until the request has finished. To de- the codebase significantly improves work in neither the millisecond nor tect when the request has finished, the software-development productivity. As the nanosecond time scales. Consider program must either periodically poll one illustrative example of the overall datacenter networking. The trans- the status of the request or use an in- benefits of a synchronous programming mission time for a full-size packet at terrupt mechanism. Our experience model in Google, a rewrite of the Colos- 40Gbps is less than one microsecond at Google leads us to strongly prefer sus6 client library to use a synchronous (300ns). At the speed of light, the time a synchronous programming model. I/O model with lightweight threads to traverse the length of a typical data- Synchronous code is a lot simpler, gained a significant improvement in per- center (say, 200 meters to 300 meters) is hence easier to write, tune, and debug formance while making the code more approximately one microsecond. Fast (see the second sidebar “Synchronous/ compact and easier to understand. More datacenter networks are thus likely to Asynchronous Programming Models”). important, however, was that shifting have latencies of the order of microsec- The benefits of synchronous pro- the burden of managing asynchronous onds. Likewise, raw flash device latency gramming models are further ampli- events away from the programmer to the is on the order of tens of microseconds. fied at scale, when a typical end-to-end operating system or the thread library The latencies of emerging new non-vol- application can span multiple small makes the code significantly simpler. atile memory technologies (such as the closely interacting systems, often written This transfer is very important in ware- Intel-Micron Xpoint 3D memory9 and across several languages—C, C++, Java, house-scale environments where the co- Moneta3) are expected to be at the lower JavaScript, Go, and the like—where the debase is touched by thousands of devel- end of the microsecond regime as well. languages all have their own differing opers, with significant software releases In-memory systems (such as the Stan- and ever-changing idioms for asynchro- multiple times per week. ford RAMCloud14 project) have also es- nous programming.2,11 Having simple Recent trends point to a new breed timated latencies on the order of mi- and consistent APIs and idioms across of low-latency I/O devices that will croseconds. Fine-grain GPU offloads (and other accelerators) have similar Table 1. Events and their latencies showing emergence of a new breed of microsecond microsecond-scale latencies. events. Not only are microsecond-scale hard- ware devices becoming available, we also nanosecond events microsecond events millisecond events see a growing need to exploit lower laten- register file: 1ns–5ns datacenter networking: O(1µs) disk: O(10ms) cy storage and communication. One key cache accesses: 4ns–30ns new NVM memories: O(1µs) low-end flash: O(1ms) reason is the demise of Dennard scaling memory access: 100ns high-end flash: O(10µs) wide-area networking: O(10ms) and the slowing of Moore’s Law in 2003 GPU/accelerator: O(10µs) that ended the rapid improvement in microprocessor performance; today’s processors are approximately 20 times Figure 1. Cumulative software overheads, all in the range of microseconds can degrade slower than if they had continued to dou- performance a few orders of magnitude. ble in performance every 18 months.8 In 100 response, to enhance online services, cloud companies have increased the 75 number of computers they use in a cus- tomer query. For instance, single-user search query already turns into thou- 50 Latency (us) sands of remote procedure calls (RPCs), a number that will increase in the future. 25 Techniques optimized for nanosec- ond or millisecond time scales do not 0 RDMA Two-sided Thread Interrupts RPC TCP scale well for this microsecond regime. dispatch Superscalar out-of-order execution, Cumulative Overheads branch prediction, prefetching, simul- taneous multithreading, and other techniques for nanosecond time scales Table 2. Service times measuring number of instructions between I/O events for a do not scale well to the microsecond production-quality-tuned web search workload. The flash and DRAM data are measured for real production use; the bolded data for new memory/storage tiers is based on regime; system designers do not have detailed trace analysis. enough instruction-level parallelism or hardware-managed thread contexts to hide the longer latencies. Likewise, Task: data-intensive workload Service time (task length between I/Os) software techniques to tolerate milli- Flash 225K instructions = O(100 s) µ second-scale latencies (such as soft- Fast flash ~20K instructions = O(10µs) ware-directed context switching) scale New NVM memory ~2K instructions = O(1µs) poorly down to microseconds; the over- DRAM 500 instructions = O(100ns–1µs) heads in these techniques often equal or exceed the latency of the I/O device 50 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4 contributed articles Is the Microsecond Getting Enough Respect? A simple comparison, as in the figure here, of the occurrence of the terms “millisecond,” “microsecond,” and “nanosecond” in Google’s n-gram viewer (a tool that charts frequencies of words in a large corpus of books printed from 1800 to 2012, https://books.google.com/ngrams) points to the lack of adequate attention to the microsecond-level time scale. Microprocessors moved out of the microsecond scale toward nanoseconds, while networking and storage latencies have remained in the milliseconds. With the rise of a new breed of I/O devices in the datacenter, it is time for system designers to refocus on how to achieve high performance and ease of programming at the microsecond-scale. n-gram viewer of ms, µs, and ns. 0.0000500% 0.0000450% 0.0000400% millisecond 0.0000350% (All) 0.0000300% nanosecond (All) 0.0000250% 0.0000200% 0.0000150% microsecond (All) 0.0000100% 0.0000050% 0.0000000% 1920 1930 1940 1950 1960 1970 1980 1990 2000 itself. As we will see, it is quite easy to just remote hardware) adds several more and core hops) all add overheads, again take fast
Recommended publications
  • Time and Frequency Users' Manual
    ,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics
    [Show full text]
  • HOW FAST IS RF? by RON HRANAC
    Originally appeared in the September 2008 issue of Communications Technology. HOW FAST IS RF? By RON HRANAC Maybe a better question is, "What's the speed of an electromagnetic signal in a vacuum?" After all, what we call RF refers to signals in the lower frequency or longer wavelength part of the electromagnetic spectrum. Light is an electromagnetic signal, too, existing in the higher frequency or shorter wavelength part of the electromagnetic spectrum. One way to look at it is to assume that RF is nothing more than really, really low frequency light, or that light is really, really high frequency RF. As you might imagine, the numbers involved in describing RF and light can be very large or very small. For more on this, see my June 2007 CT column, "Big Numbers, Small Numbers" (www.cable360.net/ct/operations/techtalk/23783.html). According to the National Institute of Standards and Technology, the speed of light in a vacuum, c0, is 299,792,458 meters per second (http://physics.nist.gov/cgi-bin/cuu/Value?c). The designation c0 is one that NIST uses to reference the speed of light in a vacuum, while c is occasionally used to reference the speed of light in some other medium. Most of the time the subscript zero is dropped, with c being a generic designation for the speed of light. Let's put c0 in terms that may be more familiar. You probably recall from junior high or high school science class that the speed of light is 186,000 miles per second.
    [Show full text]
  • The Impact of the Speed of Light on Financial Markets and Their Regulation
    When Finance Meets Physics: The Impact of the Speed of Light on Financial Markets and their Regulation by James J. Angel, Ph.D., CFA Associate Professor of Finance McDonough School of Business Georgetown University 509 Hariri Building Washington DC 20057 USA 1.202.687.3765 [email protected] The Financial Review, Forthcoming, May 2014 · Volume 49 · No. 2 Abstract: Modern physics has demonstrated that matter behaves very differently as it approaches the speed of light. This paper explores the implications of modern physics to the operation and regulation of financial markets. Information cannot move faster than the speed of light. The geographic separation of market centers means that relativistic considerations need to be taken into account in the regulation of markets. Observers in different locations may simultaneously observe different “best” prices. Regulators may not be able to determine which transactions occurred first, leading to problems with best execution and trade- through rules. Catastrophic software glitches can quantum tunnel through seemingly impregnable quality control procedures. Keywords: Relativity, Financial Markets, Regulation, High frequency trading, Latency, Best execution JEL Classification: G180 The author is also on the board of directors of the Direct Edge stock exchanges (EDGX and EDGA). I wish to thank the editor and referee for extremely helpful comments and suggestions. I also wish to thank the U.K. Foresight Project, for providing financial support for an earlier version of this paper. All opinions are strictly my own and do not necessarily represent those of Georgetown University, Direct Edge, the U.K. Foresight Project, The Financial Review, or anyone else for that matter.
    [Show full text]
  • Using Microsecond Single-Molecule FRET to Determine the Assembly
    Using microsecond single-molecule FRET to determine PNAS PLUS the assembly pathways of T4 ssDNA binding protein onto model DNA replication forks Carey Phelpsa,b,1, Brett Israelsa,b, Davis Josea, Morgan C. Marsha,b, Peter H. von Hippela,2, and Andrew H. Marcusa,b,2 aDepartment of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403; and bDepartment of Chemistry and Biochemistry, Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, OR 97403 Edited by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved March 20, 2017 (received for review December 2, 2016) DNA replication is a core biological process that occurs in pro- complete coverage of the exposed ssDNA templates at the precisely karyotic cells at high speeds (∼1 nucleotide residue added per regulated concentration of protein that needs to be maintained in millisecond) and with high fidelity (fewer than one misincorpora- the infected Escherichia coli cell (8, 9). The gp32 protein has an tion event per 107 nucleotide additions). The ssDNA binding pro- N-terminal domain, a C-terminal domain, and a core domain. tein [gene product 32 (gp32)] of the T4 bacteriophage is a central The N-terminal domain is necessary for the cooperative binding integrating component of the replication complex that must con- of the gp32 protein through its interactions with the core domain of tinuously bind to and unbind from transiently exposed template an adjacent gp32 protein. To bind to ssDNA, the C-terminal domain strands during DNA synthesis. We here report microsecond single- of the gp32 protein must undergo a conformational change that molecule FRET (smFRET) measurements on Cy3/Cy5-labeled primer- exposes the positively charged region of its core domain, which in template (p/t) DNA constructs in the presence of gp32.
    [Show full text]
  • Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis (DRAFT)
    Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation IOCCG Protocol Series Volume 7.0, 2021 Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis (DRAFT) Report of a NASA-sponsored workshop with contributions (alphabetical) from: William M. Balch Bigelow Laboratory for Ocean Sciences, Maine, USA Magdalena M. Carranza Monterey Bay Aquarium Research Institute, California, USA Ivona Cetinic University Space Research Association, NASA Goddard Space Flight Center, Maryland, USA Joaquín E. Chaves Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Maryland, USA Solange Duhamel University of Arizona, Arizona, USA Zachary K. Erickson University Space Research Association, NASA Goddard Space Flight Center, Maryland, USA Andrea J. Fassbender NOAA Pacific Marine Environmental Laboratory, Washington, USA Ana Fernández-Carrera Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany Sara Ferrón University of Hawaii at Manoa, Hawaii, USA E. Elena García-Martín National Oceanography Centre, Southampton, UK Joaquim Goes Lamont Doherty Earth Observatory at Columbia University, New York, USA Helga do Rosario Gomes Lamont Doherty Earth Observatory at Columbia University, New York, USA Maxim Y. Gorbunov Department of Marine and Coastal Sciences, Rutgers University, New Jersey, USA Kjell Gundersen Plankton Research Group, Institute of Marine Research, Bergen, Norway Kimberly Halsey Department of Microbiology, Oregon State University, Oregon, USA Toru Hirawake
    [Show full text]
  • Nanosecond X-Ray Photon Correlation Spectroscopy Using Pulse Time
    research papers Nanosecond X-ray photon correlation spectroscopy IUCrJ using pulse time structure of a storage-ring source ISSN 2052-2525 NEUTRONjSYNCHROTRON Wonhyuk Jo,a Fabian Westermeier,a Rustam Rysov,a Olaf Leupold,a Florian Schulz,b,c Steffen Tober,b‡ Verena Markmann,a Michael Sprung,a Allesandro Ricci,a Torsten Laurus,a Allahgholi Aschkan,a Alexander Klyuev,a Ulrich Trunk,a Heinz Graafsma,a Gerhard Gru¨bela,c and Wojciech Rosekera* Received 25 September 2020 Accepted 2 December 2020 aDeutsches Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany, bInstitute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany, and cThe Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany. *Correspondence e-mail: [email protected] Edited by Dr T. Ishikawa, Coherent X-ray Optics Laboratory, Harima Institute, RIKEN, Japan X-ray photon correlation spectroscopy (XPCS) is a routine technique to study slow dynamics in complex systems at storage-ring sources. Achieving ‡ Current address: Deutsches Elektronen- Synchrotron (DESY), Notkestr. 85, 22607 nanosecond time resolution with the conventional XPCS technique is, however, Hamburg, Germany. still an experimentally challenging task requiring fast detectors and sufficient photon flux. Here, the result of a nanosecond XPCS study of fast colloidal Keywords: materials science; nanoscience; dynamics is shown by employing an adaptive gain integrating pixel detector SAXS; dynamical studies; time-resolved studies; (AGIPD) operated at frame rates of the intrinsic pulse structure of the storage X-ray photon correlation spectroscopy; adaptive ring. Correlation functions from single-pulse speckle patterns with the shortest gain integrating pixel detectors; storage rings; pulse structures.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Low Latency – How Low Can You Go?
    WHITE PAPER Low Latency – How Low Can You Go? Low latency has always been an important consideration in telecom networks for voice, video, and data, but recent changes in applications within many industry sectors have brought low latency right to the forefront of the industry. The finance industry and algorithmic trading in particular, or algo-trading as it is known, is a commonly quoted example. Here latency is critical, and to quote Information Week magazine, “A 1-millisecond advantage in trading applications can be worth $100 million a year to a major brokerage firm.” This drives a huge focus on all aspects of latency, including the communications systems between the brokerage firm and the exchange. However, while the finance industry is spending a lot of money on low- latency services between key locations such as New York and Chicago or London and Frankfurt, this is actually only a small part of the wider telecom industry. Many other industries are also now driving lower and lower latency in their networks, such as for cloud computing and video services. Also, as mobile operators start to roll out 5G services, latency in the xHaul mobile transport network, especially the demanding fronthaul domain, becomes more and more important in order to reach the stringent 5G requirements required for the new class of ultra-reliable low-latency services. This white paper will address the drivers behind the recent rush to low- latency solutions and networks and will consider how network operators can remove as much latency as possible from their networks as they also race to zero latency.
    [Show full text]
  • Timestamp Precision
    Timestamp Precision Kevin Bross 15 April 2016 15 April 2016 IEEE 1904 Access Networks Working Group, San Jose, CA USA 1 Timestamp Packets The orderInfo field can be used as a 32-bit timestamp, down to ¼ ns granularity: 1 s 30 bits of nanoseconds 2 ¼ ms µs ns ns Two main uses of timestamp: – Indicating start or end time of flow – Indicating presentation time of packets for flows with non-constant data rates s = second ms = millisecond µs = microsecond ns = nanosecond 15 April 2016 IEEE 1904 Access Networks Working Group, San Jose, CA USA 2 Presentation Time To reduce bandwidth during idle periods, some protocols will have variable rates – Fronthaul may be variable, even if rate to radio unit itself is a constant rate Presentation times allows RoE to handle variable data rates – Data may experience jitter in network – Egress buffer compensates for network jitter – Presentation time is when the data is to exit the RoE node • Jitter cleaners ensure data comes out cleanly, and on the right bit period 15 April 2016 IEEE 1904 Access Networks Working Group, San Jose, CA USA 3 Jitter vs. Synchronization Synchronization requirements for LTE are only down to ~±65 ns accuracy – Each RoE node may be off from TAI by up to 65 ns (or more in some circumstances) – Starting and ending a stream may be off by this amount …but jitter from packet to packet must be much tighter – RoE nodes should be able to output data at precise relative times if timestamp is used for a given packet – Relative bit time within a flow is important 15 April 2016 IEEE 1904 Access
    [Show full text]
  • Simulating Nucleic Acids from Nanoseconds to Microseconds
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Simulating Nucleic Acids from Nanoseconds to Microseconds Permalink https://escholarship.org/uc/item/6cj4n691 Author Bascom, Gavin Dennis Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Simulating Nucleic Acids from Nanoseconds to Microseconds DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry, with a specialization in Theoretical Chemistry by Gavin Dennis Bascom Dissertation Committee: Professor Ioan Andricioaei, Chair Professor Douglas Tobias Professor Craig Martens 2014 Appendix A c 2012 American Chemical Society All other materials c 2014 Gavin Dennis Bascom DEDICATION To my parents, my siblings, and to my love, Lauren. ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES x ACKNOWLEDGMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv 1 Introduction 1 1.1 Nucleic Acids in a Larger Context . 1 1.2 Nucleic Acid Structure . 5 1.2.1 DNA Structure/Motion Basics . 5 1.2.2 RNA Structure/Motion Basics . 8 1.2.3 Experimental Techniques for Nucleic Acid Structure Elucidation . 9 1.3 Simulating Trajectories by Molecular Dynamics . 11 1.3.1 Integrating Newtonian Equations of Motion and Force Fields . 12 1.3.2 Treating Non-bonded Interactions . 15 1.4 Defining Our Scope . 16 2 The Nanosecond 28 2.1 Introduction . 28 2.1.1 Biological Processes of Nucleic Acids at the Nanosecond Timescale . 29 2.1.2 DNA Motions on the Nanosecond Timescale . 32 2.1.3 RNA Motions on the Nanosecond Timescale .
    [Show full text]
  • Discovery of Frequency-Sweeping Millisecond Solar Radio Bursts Near 1400 Mhz with a Small Interferometer Physics Department Senior Honors Thesis 2006 Eric R
    Discovery of frequency-sweeping millisecond solar radio bursts near 1400 MHz with a small interferometer Physics Department Senior Honors Thesis 2006 Eric R. Evarts Brandeis University Abstract While testing the Small Radio Telescope Interferometer at Haystack Observatory, we noticed occasional strong fringes on the Sun. Upon closer study of this activity, I find that each significant burst corresponds to an X-ray solar flare and corresponds to data observed by RSTN. At very short integrations (512 µs), most bursts disappear in the noise, but a few still show very strong fringes. Studying these <25 events at 512 µs integration reveals 2 types of burst: one with frequency structure and one without. Bursts with frequency structure have a brightness temperature ~1013K, while bursts without frequency structure have a brightness temperature ~108K. These bursts are studied at higher frequency resolution than any previous solar study revealing a very distinct structure that is not currently understood. 1 Table of Contents Abstract ..........................................................................................................................1 Table of Contents...........................................................................................................3 Introduction ...................................................................................................................5 Interferometry Crash Course ........................................................................................5 The Small Radio Telescope
    [Show full text]
  • Microsecond and Millisecond Dynamics in the Photosynthetic
    Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy Toru Kondoa,1,2, Jesse B. Gordona, Alberta Pinnolab,c, Luca Dall’Ostob, Roberto Bassib, and Gabriela S. Schlau-Cohena,1 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Biotechnology, University of Verona, 37134 Verona, Italy; and cDepartment of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy Edited by Catherine J. Murphy, University of Illinois at Urbana–Champaign, Urbana, IL, and approved April 11, 2019 (received for review December 13, 2018) Biological systems are subjected to continuous environmental (5–9) or intensity correlation function analysis (10). CPF analysis fluctuations, and therefore, flexibility in the structure and func- bins the photon data, obscuring fast dynamics. In contrast, inten- tion of their protein building blocks is essential for survival. sity correlation function analysis characterizes fluctuations in the Protein dynamics are often local conformational changes, which photon arrival rate, accessing dynamics down to microseconds. allows multiple dynamical processes to occur simultaneously and However, the fluorescence lifetime is a powerful indicator of rapidly in individual proteins. Experiments often average over conformation for chromoproteins and for lifetime-based FRET these dynamics and their multiplicity, preventing identification measurements, yet it is ignored in intensity-based analyses. of the molecular origin and impact on biological function. Green 2D fluorescence lifetime correlation (2D-FLC) analysis was plants survive under high light by quenching excess energy, recently introduced as a method to both resolve fast dynam- and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the ics and use fluorescence lifetime information (11, 12).
    [Show full text]