Management of the Live Wrasse Fishery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Ecology of Infrastructure Decommissioning in the North Sea: What We Need to Know and How to Achieve It
Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsz143/5543459 by Pacific Northwest National Laboratory user on 13 September 2019 ICES Journal of Marine Science (2019), doi:10.1093/icesjms/fsz143 Contribution to the Themed Section: ‘Decommissioned offshore man-made installations’ Quo Vadimus The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it A. M. Fowler 1,2*, A.-M. Jørgensen3, J. W. P. Coolen 4,5, D. O. B. Jones6, J. C. Svendsen7, R. Brabant 8, B. Rumes8, and S. Degraer8 1Fish Ecology Laboratory, School of Life Sciences, University of Technology Sydney, NSW 2007, Australia 2School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia 3Eco-Effective Strategies, Galileiplantsoen 14, 1098 NA Amsterdam, The Netherlands 4Wageningen Marine Research (Formerly IMARES), PO Box 57, 1780 AB Den Helder, The Netherlands 5Aquatic Ecology and Water Quality Management Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PD Wageningen, The Netherlands 6National Oceanography Centre, European Way, Southampton SO14 3ZH, UK 7National Institute of Aquatic Resources (DTU Aqua), Technical University of Denmark, Building 201, 2800 Kgs. Lyngby, Denmark 8Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Natural Environment (ODNature), Marine Ecology and Management (MARECO), Vautierstraat 29, 1000 Brussels, Belgium *Corresponding author: tel: þ61 9 435 4652; e-mail: [email protected]. Fowler, A. M., Jørgensen, A.-M., Coolen, J. W. P., Jones, D. O. B., Svendsen, J. C., Brabant, R., Rumes, B., and Degraer, S. The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Cleaning Symbiosis As an Alternative to Chemical Control of Sea Lice Infestation of Atlantic Salmon
Bjordal Page 53 CLEANING SYMBIOSIS AS AN ALTERNATIVE TO CHEMICAL CONTROL OF SEA LICE INFESTATION OF ATLANTIC SALMON Asmund Bjordal ABSTRACT ta1 agencies, and proposals have been made to ban their use (Ross and Horsman 1988). There is therefore an urgent need for Different wrasse species (Labridae) from Norwegian waters alternative, less harmful solutions to the problem and different were identified as facultative cleaners of farmed Atlantic salmon approaches have been made; capturing lice in light traps or (Salmo salar) infested with sea lice (Lepeophtheirus salmonis). repelling lice by sound or electrical stimuli have been tried In sea cage experiments, goldsinny (Ctenolabrus rupestris) and without promising results. Huse et al. (1990) found that shading rock cook (Centrolabrus exoletus) were the most effective clean of sea cages gave slightly reduced lice infestation, and promising ers, while female cuckoo wrasse (Labrus ossifagus) showed a results were obtained in introductory trials with pyrethrum (an more moderate cleaning behavior. The corkwing wrasse organic insecticide) mixed in an oil layer on the water surface (Crenilabrus melops) also performed cleaning, but this species (Jakobsen and Holm 1990). However, utilization of cleaner-fish had high mortality. Full scale trials in commercial salmon is at present the most developed alternative method for lice farming indicate that the utilization of cleaner-fish is a realistic control, and this paper will focus on different aspects of wrasse alternative to chemical control of lice infestation in sea cage cleaning in salmon farming. culture of Atlantic salmon. BACKGROUND INTRODUCTION In cleaning symbiosis, one species (the cleaner) has special Mass infestation of ectoparasitic salmon lice (Lepeophtheirus ized in feeding on parasites from another species (the host or salmonis) is a serious problem in intensive sea cage rearing of client). -
The Reproductive Cycle of Female Ballan Wrasse Labrus Bergylta in High Latitude, Temperate Waters
Journal of Fish Biology (2010) doi:10.1111/j.1095-8649.2010.02691.x, available online at www.interscience.wiley.com The reproductive cycle of female Ballan wrasse Labrus bergylta in high latitude, temperate waters S. Muncaster*†‡§, E. Andersson*, O. S. Kjesbu*, G. L. Taranger*, A. B. Skiftesvik† and B. Norberg† *Institute of Marine Research, P.O. Box 187, Nordnes, N-5817 Bergen, Norway, †Institute of Marine Research, Austevoll Research Station, N-5392 Storebø, Norway and ‡Department of Biology, University of Bergen, N-5020 Bergen, Norway (Received 13 August 2009, Accepted 11 April 2010) This 2 year study examined the reproductive cycle of wild female Ballan wrasse Labrus bergylta in western Norway as a precursor to captive breeding trials. Light microscopy of ovarian histol- ogy was used to stage gonad maturity and enzyme-linked immuno-absorbent assay (ELISA) to measure plasma concentrations of the sex steroids testosterone (T) and 17β-oestradiol (E2). Ovar- ian recrudescence began in late autumn to early winter with the growth of previtellogenic oocytes and the formation of cortical alveoli. Vitellogenic oocytes developed from January to June and ovaries containing postovulatory follicles (POF) were present between May and June. These POF occurred simultaneously among other late maturity stage oocytes. Plasma steroid concentration and organo-somatic indices increased over winter and spring. Maximal (mean ± s.e.) values of −1 −1 plasma T (0·95 ± 0·26 ng ml ), E2 (1·75 ± 0·43 ng ml ) and gonado-somatic index (IG;10·71 ± 0·81) occurred in April and May and decreased greatly in July when only postspawned fish with atretic ovaries occurred. -
Kelp Harvesting in Bantry Bay: Monitoring to Meet Licensing Requirements Part 1: Pre-Harvest Survey, September 2016
Kelp harvesting in Bantry Bay: monitoring to meet licensing requirements Part 1: pre-harvest survey, September 2016 A report for BioAtlantis Aquamarine Ltd. by Dr. Tasman Crowe1, Dr. Paul Brooks2 and Dr. Louise Scally3 1. Associate Professor, School of Biology and Environmental Science, University College Dublin. 2. Postdoctoral Fellow, School of Biology and Environmental Science, University College Dublin. 3. Ecologist, MERC Consultants Ltd., Galway. Summary A survey was conducted in Bantry Bay as part of the conditions of a license to harvest Laminaria in five different Areas (A-E). Its objectives were to (a) characterise the biota in advance of harvesting as a baseline for future comparisons (b) determine whether there were differences between (i) licensed Areas (A – E) and (ii) tracts within each Area. Invertebrates, algae, fish and birds were sampled in a site in each of two tracts within each licensed Area between 5 and 15 September 2016. The methodology was based closely on that specified by BioAtlantis in a document agreed with the Department of the Environment. Minor adjustments were made to improve effectiveness and reduce risk. In licensed Areas A and B on the south side of Bantry Bay, kelp habitat characterized by Laminaria hyperborea, was apparently confined to a narrow band (approximately 40 m wide). On the north side of the bay, the area of kelp habitat was slightly wider, but did not extend further than 200 m from shore. The average density of L. hyperborea plants varied among sites from 6.7 to 16.5 per m2. Stipes were significantly longer in Area E (85 cm on average) and ranged from 50-70 cm on average in the other Areas. -
Eel Grass Ballan Wrasse Slipper Limpet Dogfish Pink Sea Fan Diver With
seasearch.qxd 03/06/04 11:08 Page 1 Algae Seaweeds are often overlooked Table 1: Species recorded per group and most common species found. whilst diving, although 25 species Phylum Common name Number of species Common species were recorded during the 2003 Algae Seaweeds 25 Kelp surveys. Many were simply Porifera Sponges 19 Boring sponge included as ’mixed reds’ or Golf ball sponge similar. Further training in Orange encrusting sponge seaweed identification may be Cnidaria Anemones, jellyfish 30 Snakelocks anemone required. hydroids, corals Jewel anemone Dead mens fingers Sponges Pink sea fan A variety of sponges were Annelida Worms 13 Keelworm Peacock worm recorded, however this group of Crevice tube worm animals is notoriously difficult to identify in situ so very few of the Crustacea Crabs, lobsters, 17 Edible crab prawns, barnacles Velvet swimming crab rarer or less well known species Spiny spider crab were reported. Mollusca Shells, sea slugs, 33 Topshell cuttlefish Limpet Anemones, Corals, Hydroids Sea lemon and Jellyfish Bryozoa Sea mats, sea firs 8 Sea mat 13 different anemones were Potato crisp bryozoan recorded, including the nationally Echinodermata Starfish, brittlestars, 16 Common starfish scarce yellow cluster anemone urchins, cucumbers Spiny starfish Parazoanthus axinellae that Edible urchin inhabits dark overhangs and Tunicates Seasquirts 13 Lightbulb seasquirt Baked bean seasquirt crevices. Jewel anemones were Pisces Fish 42 Cuckoo wrasse very common on the vertical Ballan wrasse rock faces of many of the dive Pollack sites. Bib Of the corals, pink sea fan was Total Species 218 found at a lot of sites, including some new records. Historic problems for the oyster ballan wrasse which were seen at large number of sites. -
2011 Biodiversity Snapshot. Isle of Man Appendices
UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. Isle of Man: Appendices. Author: Elizabeth Charter Principal Biodiversity Officer (Strategy and Advocacy). Department of Environment, Food and Agriculture, Isle of man. More information available at: www.gov.im/defa/ This section includes a series of appendices that provide additional information relating to that provided in the Isle of Man chapter of the publication: UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. All information relating to the Isle or Man is available at http://jncc.defra.gov.uk/page-5819 The entire publication is available for download at http://jncc.defra.gov.uk/page-5821 1 Table of Contents Appendix 1: Multilateral Environmental Agreements ..................................................................... 3 Appendix 2 National Wildife Legislation ......................................................................................... 5 Appendix 3: Protected Areas .......................................................................................................... 6 Appendix 4: Institutional Arrangements ........................................................................................ 10 Appendix 5: Research priorities .................................................................................................... 13 Appendix 6 Ecosystem/habitats ................................................................................................... 14 Appendix 7: Species .................................................................................................................... -
Mapping the Distribution of Scale-Rayed Wrasse Acantholabrus Palloni in Swedish Skagerrak Using Angling Records
Mapping the distribution of scale-rayed wrasse Acantholabrus palloni in Swedish Skagerrak using angling records Joacim Näslund1 and Markus Lundgren2 1 Department of Zoology, Stockholm University, Stockholm, Sweden 2 Swedish Anglers Association, Gothenburg, Sweden ABSTRACT In this paper, we map the distribution of scale-rayed wrasse Acantholabrus palloni in eastern Skagerrak based on a combination of verified and personally communicated angling records. Long thought to be occasional vagrants outside its known range in the eastern Atlantic Ocean and Mediterranean Sea, we ask if this rare and understudied labrid has expanded its range and become established in Swedish waters. A recent surge in verified angling records in the Swedish Anglers Association’s specimen database Storfiskregistret provides information to suggest that this species should no longer be considered an occasional guest, but rather a species established in the Swedish parts of Skagerrak. These records are supported by additional personal communications with anglers. The species is currently well spread geographically along the Swedish Skagerrak coast, with many locations providing repeated captures of adult fish over multiple years. The typical Swedish catch sites are rocky reefs located between the general 40- and 80-m depth curves, likely influenced by currents bringing higher-salinity water from the North Sea. The present study show that angling records can provide an important, but underutilized, resource for mapping the distribution of data-deficient fish species. Subjects -
Marine Science Advance Access Published November 21, 2014 ICES Journal of Marine Science
ICES Journal of Marine Science Advance Access published November 21, 2014 ICES Journal of Marine Science ICES Journal of Marine Science; doi:10.1093/icesjms/fsu211 Distribution and habitat preferences of five species of wrasse (Family Labridae) in a Norwegian fjord Downloaded from Anne Berit Skiftesvik*, Caroline M. F. Durif, Reidun M. Bjelland, and Howard I. Browman Institute of Marine Research, Austevoll, 5392 Storebø, Norway *Corresponding author: tel: +47 918 66 526; e-mail: [email protected] Skiftesvik, A. B., Durif, C. M. F., Bjelland, R. M., and Browman, H. I. Distribution and habitat preferences of five species of wrasse http://icesjms.oxfordjournals.org/ (Family Labridae) in a Norwegian fjord. – ICES Journal of Marine Science, doi: 10.1093/icesjms/fsu211. Received 14 July 2014; revised 30 October 2014; accepted 30 October 2014. Wrasse (Labridae) are used widely as cleaner fish to control sea lice infestation in commercial farming of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) in Norway. As a result, there is an intense fishery for wrasse along the Norwegian coast. Little is known of the popu- lation ecology of wrasse and, therefore, an evaluation of their distribution, demographics, and habitat preferences was required as a baseline from which to assess the impact of the fishery. We analysed experimental catch data from a 3-year survey carried out in 1997–1999 (before the fishery began) during and after the wrasse spawning season in a Norwegian fjord. Corkwing wrasse (Symphodus melops) was always the most abundant species, ranging from 52 to 68% of the catches. Goldsinny (Ctenolabrus rupestris) and rock cook (Centrolabrus exoletus) were the second most abun- by Howard Browman on November 22, 2014 dant species (up to 30%). -
APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous -
Marine Fishes from Galicia (NW Spain): an Updated Checklist
1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful. -
Checklist of the Marine Fishes from Metropolitan France
Checklist of the marine fishes from metropolitan France by Philippe BÉAREZ* (1, 8), Patrice PRUVOST (2), Éric FEUNTEUN (2, 3, 8), Samuel IGLÉSIAS (2, 4, 8), Patrice FRANCOUR (5), Romain CAUSSE (2, 8), Jeanne DE MAZIERES (6), Sandrine TERCERIE (6) & Nicolas BAILLY (7, 8) Abstract. – A list of the marine fish species occurring in the French EEZ was assembled from more than 200 references. No updated list has been published since the 19th century, although incomplete versions were avail- able in several biodiversity information systems. The list contains 729 species distributed in 185 families. It is a preliminary step for the Atlas of Marine Fishes of France that will be further elaborated within the INPN (the National Inventory of the Natural Heritage: https://inpn.mnhn.fr). Résumé. – Liste des poissons marins de France métropolitaine. Une liste des poissons marins se trouvant dans la Zone Économique Exclusive de France a été constituée à partir de plus de 200 références. Cette liste n’avait pas été mise à jour formellement depuis la fin du 19e siècle, © SFI bien que des versions incomplètes existent dans plusieurs systèmes d’information sur la biodiversité. La liste Received: 4 Jul. 2017 Accepted: 21 Nov. 2017 contient 729 espèces réparties dans 185 familles. C’est une étape préliminaire pour l’Atlas des Poissons marins Editor: G. Duhamel de France qui sera élaboré dans le cadre de l’INPN (Inventaire National du Patrimoine Naturel : https://inpn. mnhn.fr). Key words Marine fishes No recent faunistic work cov- (e.g. Quéro et al., 2003; Louisy, 2015), in which the entire Northeast Atlantic ers the fish species present only in Europe is considered (Atlantic only for the former).