PLESIOSAURS ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Paleontological Society of AusN ★ ★ ★ ★ ★ ★ ★ ★ ★ ★

Total Page:16

File Type:pdf, Size:1020Kb

PLESIOSAURS ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Paleontological Society of Aus�N ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ PLESIOSAURS ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Paleontological Society of Ausn ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ Plesiosaurs first appeared at the end of the Triassic Period, about 205 million years ago and became especially common during the jurassic Period, thriving un;l their disappearance due to the ex;nc;on event at the end of the Cretaceous. They had a worldwide oceanic Kronosaurus sp. 1 distribu;on, though based on where most of their fossils have been found, it appears that they preferred cooler waters found at higher latudes to those of warmer equatorial climates. In North America, they are found more olen in the Cretaceous deposits of Canada than in the central United States, and are relavely rare in Texas. Species from five genera are found here, including Kronosaurus, Elasmosaurus, Brachauchenius, Trinacromerum, and Polytychodon. Albertonectes sp. 2 Plesiosaurs had a broad flat body and a short tail. Their limbs evolved into four long flippers, which were powered by strong muscles. Recent studies of plesiosaur paddles have shown that, instead of being pulled back and forth like oars on a rowboat, they were 'flapped' up and down much like the wings of a bird or the paddles of a marine turtle. The plesiosaur, in effect, 'flew' through the water like a modern penguin. There were two types. Some species had long necks and small heads; these were relavely slow and caught small sea animals. Other species, Elasmosaurus sp. 3 some of them reaching a length of up to 55-60 feet, had a short neck and a large head; these were apex predators, fast hunters of large prey. Scien;sts olen find gastroliths or gizzard stones (egg-sized to pea-sized) in long-necked plesiosaurs - breaking up of hard shelled invertebrate food was aided by these stones found in the abdominal region. Whether or not this was their primary func;on or was secondarily related to buoyancy control remains a maer of debate. 9 EVOLUTION Paleontologists are s;ll uncertain what the ancestors of the first plesiosaurs looked like but it is probable that they came from small, primi;ve aquac rep;les called nothosaurs. Nothosaurs Trinacromerum sp. 4 were Triassic marine rep;les that may have lived like seals of Nothosaur 6 today, catching food in water but coming ashore on rocks and beaches. They averaged about 10 feet in length, with a long body and tail. The feet were paddle-like, and are known to have been webbed in life, to help power the animal when swimming. The neck was quite long, and the head was elongated and flaened, and relavely small in relaon to the body. The margins of the Brachauchenius sp. 5 long jaws were equipped with numerous sharp outward-poin;ng teeth, indicang a diet of fish and squid. PLESIOSAURS IN SHOAL CREEK! The fossilized skeleton of a 14 to 18 foot long Cretaceous plesiosaur (genus Polytychodon) was discovered in the bed of Shoal Creek in january, 1990. The fossil was found by Dr. bob McDonald, a local den;st, amateur paleontologist and member of the Paleontological Society of Aus;n. bob and his 5-year-old son were searching for shark teeth along the creek, something they did regularly. Knowing that the en;re Central Texas region was once underwater, bob olen spent ;me collec;ng the creek. but even he was surprised by this find. It took several weeks for the fossil to be properly excavated by faculty and students from ACC and the University of Texas. The specimen is fairly complete (except for the head) and dates to roughly 90 million years ago. It is now on display in the Texas Memorial Museum. 7 THE bACKWARDS PLESIOSAUR Elasmosaurus platyurus was described in March, 1868 by Edward Drinker Cope, one of the most famous early American paleontologists, from a fossil 8 discovered and collected by Dr. Theophilus Turner, a military doctor, in western Kansas. When Cope received the specimen in early March, 1868, he had a pre-conceived idea of what it should look like, and mistakenly placed the head on the wrong end (i.e. the tail). See the skeletal illustraon from his original publicaon above right. The early depic;on of Dryptosaurus confron;ng Elasmosaurus, with two Hadrosaurus in the background shows again this idea of a short neck and long serpent-like tail. In Cope's defense, he was an expert on lizards, which have a short neck and a long tail, and up to that ;me no one had seen a plesiosaur the size of Elasmosaurus. joseph Leidy pointed out the problem in his Remarks on Elasmosaurus platyurus address at the Academy of Natural Sciences of Philadelphia mee;ng on March 8, 1870. Plesiosaur Poster by the Paleontological Society of Aus;n, licensed under Creave Commons AAribu;on-ShareAlike 4.0 License. See individual restric;ons below. Created November 2015 by Michael K. Smith, msmith17@aus;n.rr.com The text and images above come primarily from Wikipedia. We cite the page, the date, and the license (if appropriate) with the original creator. Abbreviaons used - W = "hAps://en.wikipedia.org/wiki". WC = "hAps://commons.wikimedia.org/wiki/File:". 1. WC/Kronosaurus.jpg (2 Nov 2015). Public domain. ДиБгд. 2. WC/Albertonectes_vanderveldei.jpg (2 Nov 2015). CC bY-SA 3.0, Smokeybjb. 3. WC/ElasmosaurusDb15.jpg (25 Oct 2015). CC bY-SA 4.0, Dmitry bogdanov. 4. WC/Trinacromerum_BW.jpg (2 Nov 2015). CC-bY-SA-3.0, Nobu Tamura. 5. WC/brachauchenius_lucasi2Db.jpg (2 Nov 2015). CC bY 3.0, Dmitry bogdanov. 6. WC/Nothosaurus_BW.jpg (2 Nov 2015). CC-bY 3.0, Nobu Tamura. 7. WC/Cope_Elasmosaurus.jpg (2 Nov 2015). Public Domain. 8. WC/Lealaps-cope.jpg (2 Nov 2015). Public Domain. 9. W/Plesiosaur (23 Oct 2015). CC bY-SA 3.0 Unported. .
Recommended publications
  • A Large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest
    A large Rhomaleosaurid Pliosaur from the Upper Lias of Rutland Richard Forrest Abstract: The fragmentary remains of a very large rhomaleosaurid pliosaur were retrieved during building works at Barnsdale Hall, Rutland. The limited material prevents clear identification at specific level, though on the basis of similarities of ratios of dimensions it shows closer affinity to Rhomaleosaurus arcuatus and R.victor than to R.cramptoni. Although scaling up from such fragmentary material is unreliable, the estimated length of this animal at 7.5 to 8 metres makes it possibly the largest Rhomaleosaurid pliosaur described to date. The fossil material broken end the shaft is oval in section, 148 mm wide and 96 mm deep. The head is 153 mm broad and The bones were excavated in 1988 by Mr. Roy 160 mm deep. Orientation can be determined by Draycott during construction of a retaining wall at rugosities from ridges for muscle attachment on the Barnsdale Hall, east of Rutland Water, in the county posterior side and the ventral surface. A deep hole in of the same name. An outer whorl of the ammonite the posterior muscle attachment presumably marks Hildoceras bifrons was found in association with the where a ligament was connected to the bone. There bones. It can therefore be placed with confidence in is slight taphonomic crushing around the trochanter. the bifrons Zone of the Upper Lias (Lower Jurassic, The surface is encrusted in places with a pyritised Toarcian, Whitbian). It is probable that much more deposit, which shows traces of tracks left by extensive remains of the animal were present at the scavengers post-mortem.
    [Show full text]
  • On the Cranial Anatomy of the Polycotylid Plesiosaurs, Including New Material of Polycotylus Latipinnis, Cope, from Alabama F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2004 On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O’Keefe, F. R. 2004. On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama. Journal of Vertebrate Paleontology 24(2):326–340. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ON THE CRANIAL ANATOMY OF THE POLYCOTYLID PLESIOSAURS, INCLUDING NEW MATERIAL OF POLYCOTYLUS LATIPINNIS, COPE, FROM ALABAMA F. ROBIN O’KEEFE Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A., [email protected] ABSTRACT—The cranial anatomy of plesiosaurs in the family Polycotylidae (Reptilia: Sauropterygia) has received renewed attention recently because various skull characters are thought to indicate plesiosauroid, rather than plio- sauroid, affinities for this family. New data on the cranial anatomy of polycotylid plesiosaurs is presented, and is shown to compare closely to the structure of cryptocleidoid plesiosaurs. The morphology of known polycotylid taxa is reported and discussed, and a preliminary phylogenetic analysis is used to establish ingroup relationships of the Cryptocleidoidea.
    [Show full text]
  • Mosasaurs Continuing from Last Time…
    Pliosaurs and Mosasaurs Continuing From Last Time… • Pliosauridae: the big marine predators of the Jurassic Pliosauridae • Some of the largest marine predators of all time, these middle Jurassic sauropterygians include such giants as Kronosaurus, Liopleurodon, Macroplata, Peloneustes, Pliosaurus, and Brachauchenius Pliosaur Mophology • While the number of cervical vertebrae is less than in plesiosaurs, there is still variation: Macroplata (29) vs. Kronosaurus (13) Pliosaur Morphology • Larger pliosaurs adopted a more streamlined body shape, like modern whales, with a large skull and compact neck, and generally the hind limbs were larger than the front, while plesiosaurs had larger forelimbs Pliosaur Morphology • Powerful limb girdles and large (banana sized) conical teeth helped pliosaurs eat larger, quicker prey than the piscivorous plesiosaurs Liopleurodon • NOT 25 m long in general (average of 40 feet), though perhaps certain individuals could reach that size, making Liopleurodon ferox the largest carnivore to ever live • Recent skull studies indicate that Liopleurodon could sample water in stereo through nostrils, locating scents much as we locate sound Cretaceous Seas • Breakup of Gondwana causes large undersea mountain chains to form, raising sea levels everywhere • Shallow seas encourage growth of corals, which increases calcium abundance and chalk formation • Warm seas and a gentle thermal gradient yield a hospitable environment to rays, sharks, teleosts, and the first radiation of siliceous diatoms Kronosaurus • Early Cretaceous
    [Show full text]
  • Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
    Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M.
    [Show full text]
  • The First Record of Freshwater Plesiosaurian from the Middle
    Gao et al. Journal of Palaeogeography (2019) 8:27 https://doi.org/10.1186/s42501-019-0043-5 Journal of Palaeogeography ORIGINALARTICLE Open Access The first record of freshwater plesiosaurian from the Middle Jurassic of Gansu, NW China, with its implications to the local palaeobiogeography Ting Gao, Da-Qing Li* , Long-Feng Li and Jing-Tao Yang Abstract Plesiosaurs are one of the common groups of aquatic reptiles in the Mesozoic, which mainly lived in marine environments. Freshwater plesiosaurs are rare in the world, especially from the Jurassic. The present paper reports the first freshwater plesiosaur, represented by four isolated teeth from the Middle Jurassic fluviolacustrine strata of Qingtujing area, Jinchang City, Gansu Province, Northwest China. These teeth are considered to come from one individual. The comparative analysis of the corresponding relationship between the body and tooth sizes of the known freshwater plesiosaur shows that Jinchang teeth represent a small-sized plesiosaurian. Based on the adaptive radiation of plesiosaurs and the palaeobiogeographical context, we propose a scenario of a river leading to the Meso-Tethys in the Late Middle Jurassic in Jinchang area, which may have provided a channel for the seasonal migration of plesiosaurs. Keywords: Freshwater plesiosaur, Middle Jurassic, Jinchang, Gansu Province, Palaeobiogeography 1 Introduction Warren 1980;Satoetal.2003; Kear 2012). Up to now, Plesiosaurs are one of the most familiar groups of Mesozoic the taxonomic affinities of most freshwater plesio- marine reptiles, which mainly lived in marine environ- saurs have remained unclear; some of them are re- ments. The records of plesiosaurs in non-marine deposits ferred to Plesiosauroidea (Cruickshank and Fordyce are sparse in comparison to those from marine sediments.
    [Show full text]
  • A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 12-2001 A Cladistic Analysis and Taxonomic Revision of the Plesiosauria (Reptilia: Sauropterygia) F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Aquaculture and Fisheries Commons, and the Other Animal Sciences Commons Recommended Citation Frank Robin O’Keefe (2001). A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). ). Acta Zoologica Fennica 213: 1-63. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Acta Zool. Fennica 213: 1–63 ISBN 951-9481-58-3 ISSN 0001-7299 Helsinki 11 December 2001 © Finnish Zoological and Botanical Publishing Board 2001 A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia) Frank Robin O’Keefe Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A Received 13 February 2001, accepted 17 September 2001 O’Keefe F. R. 2001: A cladistic analysis and taxonomic revision of the Plesio- sauria (Reptilia: Sauropterygia). — Acta Zool. Fennica 213: 1–63. The Plesiosauria (Reptilia: Sauropterygia) is a group of Mesozoic marine reptiles known from abundant material, with specimens described from all continents. The group originated very near the Triassic–Jurassic boundary and persisted to the end- Cretaceous mass extinction. This study describes the results of a specimen-based cladistic study of the Plesiosauria, based on examination of 34 taxa scored for 166 morphological characters.
    [Show full text]
  • The Macroevolutionary Landscape of Short-Necked Plesiosaurians Collapsed to a Unimodal Distribution
    www.nature.com/scientificreports OPEN The macroevolutionary landscape of short‑necked plesiosaurians Valentin Fischer1*, Jamie A. MacLaren1, Laura C. Soul2, Rebecca F. Bennion1,3, Patrick S. Druckenmiller4 & Roger B. J. Benson5 Throughout their evolution, tetrapods have repeatedly colonised a series of ecological niches in marine ecosystems, producing textbook examples of convergent evolution. However, this evolutionary phenomenon has typically been assessed qualitatively and in broad‑brush frameworks that imply simplistic macroevolutionary landscapes. We establish a protocol to visualize the density of trait space occupancy and thoroughly test for the existence of macroevolutionary landscapes. We apply this protocol to a new phenotypic dataset describing the morphology of short‑necked plesiosaurians, a major component of the Mesozoic marine food webs (ca. 201 to 66 Mya). Plesiosaurians evolved this body plan multiple times during their 135-million-year history, making them an ideal test case for the existence of macroevolutionary landscapes. We fnd ample evidence for a bimodal craniodental macroevolutionary landscape separating latirostrines from longirostrine taxa, providing the frst phylogenetically-explicit quantitative assessment of trophic diversity in extinct marine reptiles. This bimodal pattern was established as early as the Middle Jurassic and was maintained in evolutionary patterns of short‑necked plesiosaurians until a Late Cretaceous (Turonian) collapse to a unimodal landscape comprising longirostrine forms with novel morphologies. This study highlights the potential of severe environmental perturbations to profoundly alter the macroevolutionary dynamics of animals occupying the top of food chains. Amniotes are ’land vertebrates’, but have nevertheless undergone at least 69 independent evolutionary transi- tions from land into aquatic environments 1. Sea-going (marine) amniotes are textbook examples of inter- and intraclade convergent evolution, with repeated acquisitions of short, hydrodynamic body plans 2–9.
    [Show full text]
  • A New Record of the Pliosaur Brachauchenius Lucasi Williston, 1903 (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) Age, Morocco
    Geol. Mag.: page 1 of 11 c Cambridge University Press 2015 1 doi:10.1017/S0016756815000321 A new record of the pliosaur Brachauchenius lucasi Williston, 1903 (Reptilia: Sauropterygia) of Turonian (Late Cretaceous) age, Morocco ∗ D. ANGST ‡† & N. BARDET‡ ∗ LSCE–CEA–CNRS UMR 8212 CE Saclay l’Orme des Merisiers, 91191 Gif-sur-Yvette, France ‡Sorbonne Universités CR2P CNRS-MNHN-UMPC Paris 6, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 8 rue Buffon, F-75005 Paris (Received 12 August 2014; accepted 1 May 2015) Abstract – The site of Goulmima (south Morocco) is well known for its rich marine fauna of Tur- onian age (Late Cretaceous). It has yielded a large variety of invertebrates but also of vertebrate taxa, represented by actinopterygians and marine reptiles including Plesiosauria (Sauropterygia) and Mosasauroidea (Squamata). The Plesiosauria are known so far by two major clades of Plesiosauroidea: the Elasmosauridae (Libonectes atlasense Buchy, 2005) and the Polycotylidae (Thililua longicollis, Bardet, Suberbiola & Jalil, 2003a; Manemergus angirostris Buchy, Metayer & Frey, 2005). Here we describe a new specimen of plesiosaur found in the same outcrop, differing from those previously cited and belonging to the other large plesiosaur clade, the Pliosauroidea. Comparison of this specimen with other Plesiosauria shows that it belongs to Brachauchenius lucasi Williston (1903), a species previously known only from the Cenomanian–Turonian stages of the Western Interior Seaway of North America and in the upper Barremian succession of northern South America (Colombia). The description of this species on a contemporaneous site of North Africa significantly expands its palaeobiogeographic dis- tribution. This discovery confirms the affinities between marine faunas of the Western Interior Seaway and those of North Africa at this time, and also permits a better understanding of the palaeobiology of the Goulmima outcrop.
    [Show full text]
  • (Late Cretaceous) Reptiles from Northwestern Russell County, Kansas
    PaleoBios 25(2):9–17,25(2):9–17, SeptemberSeptember 115,5, 2005 © 2005 University of California Museum of Paleontology Cenomanian (Late Cretaceous) reptiles from northwestern Russell County, Kansas GREGORY A. LIGGETT1, 5, KENSHU SHIMADA2, 5, S. CHRISTOPHER BENNETT 3, 5, and BRUCE A. SCHUMACHER 4, 5 1Northern California Natural History Museum, College of Natural Sciences, California State University, Chico, CA 95929-0555; [email protected]. 2Environmental Science Program and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614. 3Department of Biological Sciences, Fort Hays State University, Hays, KS 67601. 4USDA Forest Service, Comanche National Grassland, La Junta, CO 81050. 5Sternberg Museum of Natural History, Fort Hays State University, Hays, KS 67601 Several Late Cretaceous reptilian fossils were found at and immediately above the contact between the Graneros Shale and the Lincoln Limestone Member of the Greenhorn Limestone in northwestern Russell County, Kansas. The taxa recovered include: (1) an indeterminate plesiosaur taxon; (2) the rare pliosaurid plesiosaur Brachauchenius lucasi; (3)(3) a pteranodontoid pterosaur, which constitutes the earliest occurrence of a fl ying reptile in Kansas; and (4) the rare aquatic lizard Coniasaurus. Several morphologic characters of B. lucasi areare clarificlarifi ed:ed: anan apomorapomorphyphy inin tthehe paddlepaddle ofof B. lucasi where both the fourth and fi fth metapodials intrude on the mesopodial row is noted for the fi rst time; and striations of tooth enamel vary from the tooth crown to the root and from the front to the back of the tooth. Additionally, the stratigraphic occurrence of B. lucasi suggests that the minimal stratigraphic range for that species is from the late Cenomanian through middle Turonian.
    [Show full text]
  • Novel Anatomy of Cryptoclidid Plesiosaurs with Comments on Axial Locomotion
    NOVEL ANATOMY OF CRYPTOCLIDID PLESIOSAURS WITH COMMENTS ON AXIAL LOCOMOTION. A Thesis submitted to the Graduate College of Marshall University In partial fulfillment of The requirements for the degree of Master of Science In Biological Science by Benjamin C. Wilhelm Approved by Dr. F. Robin O’Keefe, Ph.D., Advisor, Committee Chairperson Dr. Brian L. Antonsen, Ph.D. Dr. Victor Fet, Ph.D. Dr. Suzanne G. Strait, Ph.D. Marshall University May 2010 Acknowledgements This thesis was greatly improved by the comments of my advisor Dr. F. R. O’Keefe and committee members Dr. B. Antonsen, Dr. V. Fet, and Dr. S. Strait. Description of the specimens presented in chapter 2 would not have been possible without the skilled preparation of J. P. Cavigelli. S. Chapman, H. Ketchum , and A. Milner arranged access to specimens at the BMNH. Chapter 2 was also improved by the comments of Dr. R. Schmeisser and an anonymous reviewer. This research was supported by a grant from the National Geographic Society (CRE 7627-04) and Marshall Foundation funds to Dr. F. R. O’Keefe and MURC student travel grants to B. C. Wilhelm. Many thanks are also due to A. Spriggs, my parents, George and Kris, and my brother Greg for all the love and support during the course of my Master’s studies. ii Table of Contents Acknowledgements…………………………………………………………………….……..ii Table of contents…………………………………………………………………………..iii-iv List of Figures, Tables, and Graphs………………………………………………………..v Abstract………………………………………………………………………………………...vi Chapter 1- Introduction to plesiosaurs………………………………………………...1-14
    [Show full text]
  • The Occurrence of Elasmosaurus and Polycotylus in Russian Deposits.*
    Yezregodneek Geologhee i Meeneraloghee Rossiee [Annuaire Geologique et Minéralogique de la Russie] Edited under the direction of N. Krishtofovich Vol. 14, Moscow, 1912 The occurrence of Elasmosaurus and Polycotylus in Russian deposits.* by N. N. Bogolyenboff [Bogolubow] (Moscow) translated by William Wist W.P.A. O.P. #465-03-3-631 Project #8877-A1 It has been known for a long time that the surface deposits of North America contain a rich and varied fauna of plesiosaurs. Through the works of Leidy, Cope, Marsh, and other American paleontologists, there are established 17 genera and more than 30 different species, most of which are found in the Upper Cretaceous Period. Because of the desultory unsystematic character of paleontological literature, and also because of the insufficiency of many of the findings, thus far it has been most difficult to render a judgment in the matter of the American plesiosauri. The works of American paleontologists have, for a long time, failed to find their merited esteem in Europe. For some time Williston has been doing work in re-examining and studying all remains of plesiosaurs found in North America. With the work of Williston(1) begins a new epoch in the study of Upper Cretaceous plesiosaurs, and there is opened up the possibility of comparing the American fauna with the European fauna. As one of his tasks, Williston sets * Original citation: Bogolyenboff [Bogolubow], N. N. 1912. Sur la présence de l’Elasmosaurus et du Polycotylus dans les dépots de la Russie. Yezregodneek Geologhee i Meeneraloghee Rossiee [Annuaire Geologique et Minéralogique de la Russie] 14:174-176.
    [Show full text]
  • A New Oxfordian Pliosaurid (Plesiosauria, Pliosauridae
    [Palaeontology, Vol. 52, Part 3, 2009, pp. 661–669] A NEW OXFORDIAN PLIOSAURID (PLESIOSAURIA, PLIOSAURIDAE) IN THE CARIBBEAN SEAWAY by ZULMA GASPARINI Departamento Paleontologı´a Vertebrados, Museo de La Plata, Paseo del Bosque s ⁄ n, 1900 La Plata, Argentina; e-mail: [email protected] Typescript recieved 2 January 2008; accepted in revised form 4 June 2008 Abstract: A new pliosaurid, Gallardosaurus iturraldei gen realms. Among vertebrates, bony fish and long-necked nov. et sp. nov., was found in the Vin˜ales area, western Cuba, plesiosaurs prevailed. However, marine pleurodiran turtles, in sediments of the Jagua Formation, middle–late Oxfordian. metriorhynchid crocodilians, ophthalmosaurian ichthyosaurs, This new taxon is characterized by: wide participation of the and pliosaurids (G. iturraldei gen. nov. et sp. nov.) have also premaxilla in the outer margin of the external naris; frontal been found, as well as at least two species of pterosaurs, and not participating in the orbital margin; postorbital in contact one camarasaurian dinosaur. Among these reptiles there were with the jugal and squamosal; presence of anterior pterygoid off-shore pelagic forms such as the ichthyosaurs and metrio- vacuity; cultriform process of parasphenoid convex and rhynchids, together with the pliosaurid G. iturraldei gen. nov. exposed in palatal view; pterygoid flanges high; jaw articula- et sp. nov.; other taxa were presumably less pelagic, such as tion low relative to tooth row; trihedral teeth in cross-section the pleurodiran turtles and the cryptoclidid plesiosauroids. and with smooth ridges at least in the labial face. A phylo- Gallardosaurus iturraldei gen. nov. et sp. nov. would have genetic analysis suggests that Gallardosaurus forms a clade played the role of an active predator taking advantage of with Peloneustes, the most common pliosaurid genus occur- nectonic fish recorded in the area.
    [Show full text]