Top-Line Summary of Selected Additional Data on Approved Oral Dmts for MS

Total Page:16

File Type:pdf, Size:1020Kb

Top-Line Summary of Selected Additional Data on Approved Oral Dmts for MS PRACTICE AID Top-Line Summary of Selected Additional Data on Approved Oral DMTs for MS This Practice Aid has been provided as a quick reference to help learners apply the information to their daily practice and care of patients. Agent Trial/Results • Results for the European cohort of the phase 4 Teri-PRO study showed Teriflunomide high levels of patient-reported treatment satisfaction with teriflunomide; these results are consistent with the overall Teri-PRO study population1 • A subgroup analysis of the PROTEC study showed DMF therapy was associated with lower 12-month ARRs and fatigue score, consistent with findings in the overall study population2 Dimethyl Fumarate • Interim results from the ESTEEM study showed DMF treatment in newly diagnosed, early MS, and interferon/glatiramer acetate switch patients was associated with significantly lower ARRs after 12 months3 • Among patients with RRMS enrolled in the active-comparator study TRANSFORMS and followed for up to 8 years, 35%-52% experienced confirmed improvements in their disability while on fingolimod4 • Data from the PREFERMS study showed that improvements in BVL, cGMVL, and cognition in the injectable DMT group at end of study Fingolimod were associated with a high proportion of switches to fingolimod5 • Results of the TRANSITION study showed fingolimod was effective in controlling clinical disease activity in patients switched from natalizumab; a treatment gap of ≤8 weeks resulted in the lowest risk of relapse; no new safety signals emerged, and AEs decreased with increasing treatment duration6 ARRs: annualized relapse rates; BVL: brain volume loss; cGMVL: cortical gray matter volume loss; DMF: dimethyl fumarate; RRMS: relapsing-remitting multiple sclerosis. 1. Vermersch P et al. 7th Joint European Committee for Treatment and Research in Multiple Sclerosis–Americas Committee for Treatment and Research in Multiple Sclerosis Meeting (MSParis2017). Abstract EP1650. 2. Brochet B et al. MSParis2017. Abstract P1135. 3. Giles K et al. MSParis2017. Abstract P1163. 4. Cree B et al. MSParis2017. Abstract P672. 5. Hunter SF et al. MSParis2017. Abstract P1165. 6. Butzkueven H et al. MSParis2017. Abstract P1213. Access the activity, “Potential Clinical Implications of the Latest Data on Approved and Emerging Disease-Modifying Therapies for Multiple Sclerosis: A Recap From Paris,” at www.peerview.com/SQK40. PRACTICE AID Top-Line Summary of Selected Additional Data on Approved Monoclonal Antibodies for MS This Practice Aid has been provided as a quick reference to help learners apply the information to their daily practice and care of patients. Antibody Trial/Results Data from the TOP registry indicated staying on natalizumab for >2 years yields better clinical outcomes than switching to oral or Natalizumab injectable therapies; for those discontinuing natalizumab, switching to an oral therapy yields better outcomes than switching to an injectable therapy1 6-year follow-up of CARE-MS I and CARE-MS II showed that in the Alemtuzumab absence of continuous treatment, a low proportion of alemtuzumab- treated patients progressed to SPMS2 SPMS: secondary progressive multiple sclerosis. 1. Butzkueven H et al. 7th Joint European Committee for Treatment and Research in Multiple Sclerosis–Americas Committee for Treatment and Research in Multiple Sclerosis Meeting (MSParis2017). Abstract P733. 2. Horakova D et al. MSParis2017. Abstract P1195. Access the activity, “Potential Clinical Implications of the Latest Data on Approved and Emerging Disease-Modifying Therapies for Multiple Sclerosis: A Recap From Paris,” at www.peerview.com/SQK40. PRACTICE AID Top-Line Summary of Additional Selected Data on Emerging Therapies for MS Management This Practice Aid has been provided as a quick reference to help learners apply the information to their daily practice and care of patients. Agent Trial/Results Pooled data from a phase 2 trial and its ongoing extension indicate that ponesimod 20 mg/day has better clinical and MRI Ponesimod outcomes with a similar safety profile compared with ponesimod 10 mg/day1 Results of the CONCERTO trial showed that although this study did not meet the primary endpoint of time to 3-month CDP, Laquinimod laquinimod 0.6 mg demonstrated a nominally significant effect on reducing BVL and clinical relapses, and was generally well tolerated in patients with RRMS2 SPRINT-MS study showed ibudilast significantly reduced Ibudilast BVL compared with placebo in patients with PPMS and was well tolerated3 BVL: brain volume loss; CDP: confirmed disability progression; PPMS: primary progressive multiple sclerosis; RRMS: relapsing-remitting multiple sclerosis. 1. Havrdova E et al. 7th Joint European Committee for Treatment and Research in Multiple Sclerosis–Americas Committee for Treatment and Research in Multiple Sclerosis Meeting (MSParis2017). Abstract P1151. 2. Comi G et al. MSParis2017. Abstract 233. 3. Fox RJ et al. MSParis2017. Abstract 278. Access the activity, “Potential Clinical Implications of the Latest Data on Approved and Emerging Disease-Modifying Therapies for Multiple Sclerosis: A Recap From Paris,” at www.peerview.com/SQK40..
Recommended publications
  • Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes
    Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes Sylvaine You1,2, Luca Piali3, Chantal Kuhn1,2, Beat Steiner3, Virginia Sauvaget1,2, Fabrice Valette1,2, Martine Clozel3, Jean-Franc¸ois Bach1,2, Lucienne Chatenoud1,2* 1 Universite´ Paris Descartes, Sorbonne Paris Cite´, Paris, France, 2 Institut National de la Sante´ et de la Recherche Me´dicale, Unite´ 1013, Paris, France, 3 Actelion Pharmaceuticals Ltd, Allschwil, Switzerland Abstract In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred.
    [Show full text]
  • Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: a Review Article
    biomedicines Review Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article Stanley Cohan, Elisabeth Lucassen, Kyle Smoot, Justine Brink and Chiayi Chen * Providence Multiple Sclerosis Center, Providence Brain and Spine Institute, Providence St, Vincent Medical Center, Portland, OR 97225, USA; [email protected] (S.C.); [email protected] (E.L.); [email protected] (K.S.); [email protected] (J.B.) * Correspondence: [email protected]; Tel.: +1-503-216-1012 Received: 27 May 2020; Accepted: 15 July 2020; Published: 18 July 2020 Abstract: Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy.
    [Show full text]
  • Oral MS Disease-Modifying Therapies C21142-A
    Drug and Biologic Coverage Criteria Effective Date: 05/01/2019 Last P&T Approval/Version: 07/28/2021 Next Review Due By: 08/2022 Policy Number: C21142-A Oral MS Disease-Modifying Therapies PRODUCTS AFFECTED Mayzent (siponimod), Aubagio (teriflunomide), Gilenya (fingolimod), Mavenclad (cladribine), Tecfidera (dimethyl fumarate), Vumerity (diroximel fumarate), Bafiertam (monomethyl fumarate),dimethyl fumarate, Zeposia (ozanimod), Ponvory (ponesimod) COVERAGE POLICY Coverage for services, procedures, medical devices, and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide Molina Healthcare complete medical rationale when requesting any exceptions to these guidelines Documentation Requirements: Molina Healthcare reserves the right to require that additional documentation be made available as part of its coverage determination; quality improvement; and fraud; waste and abuse prevention processes. Documentation required may include, but is not limited to, patient records, test results and credentials of the provider ordering or performing a drug or service. Molina Healthcare may deny reimbursement or take additional appropriate action if the documentation provided does not support the initial determination that the drugs or services were medically necessary, not investigational or experimental, and otherwise within the scope of benefits afforded to the member, and/or the documentation demonstrates a pattern of billing or other practice that is inappropriate or excessive DIAGNOSIS: Multiple Sclerosis REQUIRED MEDICAL INFORMATION: A.
    [Show full text]
  • Ozanimod for Treating Relapsing–Remitting Multiple Sclerosis [ID1294] ERG Report Copyright 2021 Queen's Printer and Controller of HMSO
    Confidential until published Fprofile REPORT REPORT ERG STA ERG STA Ozanimod for treating relapsing– remitting multiple sclerosis Confidential until published This report was commissioned by the NIHR HTA Programme as project number NIHR 17/156/08 Completed 21 January 2020 Updated 2 September 2020 CONFIDENTIAL DATA HAS BEEN REDACTED Copyright belongs to the Liverpool Reviews and Implementation Group Ozanimod for treating relapsing–remitting multiple sclerosis [ID1294] ERG Report Copyright 2021 Queen's Printer and Controller of HMSO. All rights reserved. Page 1 of 98 Confidential until published Title: Ozanimod for treating relapsing–remitting multiple sclerosis [ID1294] Produced by: Liverpool Reviews & Implementation Group (LRiG) Authors: Nigel Fleeman, Senior Research Fellow (Clinical Effectiveness), LRiG, University of Liverpool James Mahon, Director, Coldingham Analytical Services, Berwickshire Sarah Nevitt, Research Associate (Medical Statistician), LRiG, University of Liverpool Sophie Beale, Research Associate, LRiG, University of Liverpool Angela Boland, Director, LRiG, University of Liverpool Rui Duarte, Deputy Director, LRiG, University of Liverpool Rachel Houten, Health Economic Modeller, LRiG, University of Liverpool Joanne McEntee, Senior Medicines Information Pharmacist, North West Medicines Information Centre, Liverpool Ian Pomeroy, Honorary Lecturer, School of Medicine, University of Liverpool and Consultant Neurologist, The Walton Centre NHS Foundation Trust, Liverpool and Warrington Correspondence to: Nigel Fleeman, Research Fellow, Liverpool Reviews and Implementation Group, University of Liverpool, Whelan Building, The Quadrangle, Brownlow Hill, Liverpool L69 3GB Date completed: 21 January 2020 (Updated 2 September 2020) Source of funding: This report was commissioned by the NIHR Systematic Reviews Programme as project number 17/156/08 Acknowledgements: The authors would like to thank Siân Price, Consultant Neurologist at Sheffield Teaching Hospitals NHS Foundation Trust who provided feedback on a draft version of the report.
    [Show full text]
  • Risk Assessment and Risk Mitigation Review(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 213498Orig1s000 RISK ASSESSMENT and RISK MITIGATION REVIEW(S) Division of Risk Management (DRISK) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER) Application Type NOA Application Number 213498 POU FA Goal Date March 18, 2021 OSE RCM # 2020-534 Reviewer Name(s) Carlisha Gentles, PharmD, BCPS Team Leader Jacqueline Sheppard, PharmD Deputy Director Doris Auth, PharmD Review Completion Date March 2, 2021 Subject Eva luation of Need for a REMS Established Name Ponesimod Trade Name Ponvory Name of Applicant Janssen Pharmaceuticals Inc Therapeutic Class Sphingosine 1-phosphate (SlP) receptor modulator Formulation(s) Film-coated tablets: 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 20 mg Dosing Regimen Treatment init iation with a 14-day titration (see table), followed by a maintenance regimen of 20 mg orally once daily Treatment init iation titration: Titration Day Daily Dose Day 1 a nd 2 2mg Day 3 a nd 4 3mg Day 5 a nd 6 4mg Day7 Smg Dav8 6mg Day9 7mg Day10 8mg Day ll 9mg Day 12, 13, and 14 10mg 1 Reference ID 4755518 Table of Contents EXECUTIVE SUMMARY ......................................................................................................................................................... 3 1 Introduction ....................................................................................................................................................................
    [Show full text]
  • COMPARISON of the WHO ATC CLASSIFICATION & Ephmra/Intellus Worldwide ANATOMICAL CLASSIFICATION
    COMPARISON OF THE WHO ATC CLASSIFICATION & EphMRA/Intellus Worldwide ANATOMICAL CLASSIFICATION: VERSION June 2019 2 Comparison of the WHO ATC Classification and EphMRA / Intellus Worldwide Anatomical Classification The following booklet is designed to improve the understanding of the two classification systems. The development of the two systems had previously taken place separately. EphMRA and WHO are now working together to ensure that there is a convergence of the 2 systems rather than a divergence. In order to better understand the two classification systems, we should pay attention to the way in which substances/products are classified. WHO mainly classifies substances according to the therapeutic or pharmaceutical aspects and in one class only (particular formulations or strengths can be given separate codes, e.g. clonidine in C02A as antihypertensive agent, N02C as anti-migraine product and S01E as ophthalmic product). EphMRA classifies products, mainly according to their indications and use. Therefore, it is possible to find the same compound in several classes, depending on the product, e.g., NAPROXEN tablets can be classified in M1A (antirheumatic), N2B (analgesic) and G2C if indicated for gynaecological conditions only. The purposes of classification are also different: The main purpose of the WHO classification is for international drug utilisation research and for adverse drug reaction monitoring. This classification is recommended by the WHO for use in international drug utilisation research. The EphMRA/Intellus Worldwide classification has a primary objective to satisfy the marketing needs of the pharmaceutical companies. Therefore, a direct comparison is sometimes difficult due to the different nature and purpose of the two systems.
    [Show full text]
  • No Improvement in MS with Ginkgo Biloba, Simvastatin
    JUNE 2011 • WWW.CLINICALNEUROLOGYNEWS.COM MULTIPLE SCLEROSIS 11 MS Oral Options Warrant Cautious Optimism BY SHERRY BOSCHERT commented after the session that with the expected ap- Both doses showed significant improvements, com- provals of several oral agents over the next few years, pared with placebo, in brain disease activity on various EXPERT ANALYSIS FROM THE ANNUAL MEETING OF THE AMERICAN ACADEMY OF NEUROLOGY “I’m getting concerned that MRI tests, although some MRI there’s going to be a little bit of a Both teriflunomide measures of disease activity were HONOLULU – Oral therapies for relapsing-remitting free-for-all coming.” But he doses reduced the significantly better only in the multiple sclerosis that are in development have neu- added, “It’s good to have options. annualized high-dose group, compared with rologists feeling both excited and a bit apprehensive. We’re all thrilled.” relapse rate by placebo. “There are a whole slew of orals coming,” Dr. Mariko The only head-to-head com- approximately Results of the 2-year, random- Kita said in an interview at the meeting. “It’s really ex- parison of an oral therapy against 31%, compared ized, double-blind study of citing, but I think it will be challenging for the clinician” another active treatment for mul- with placebo. laquinimod that was presented because there will be inadequate guidance on which tiple sclerosis so far is a study of earlier at the meeting showed an drug or drugs to prioritize in treatment and how best fingolimod vs. interferon, he not- DR. MILLER annual relapse rate of 0.304 on to combine various therapies.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Neuroinflammation in Cortical and Meningeal Pathology in Multiple Sclerosis: Understanding from Animal Models
    Silva et al. Neuroimmunol Neuroinflammation 2021;8:174-84 Neuroimmunology DOI: 10.20517/2347-8659.2020.47 and Neuroinflammation Review Open Access Neuroinflammation in cortical and meningeal pathology in multiple sclerosis: understanding from animal models Berenice Anabel Silva1,2, Esteban Miglietta2, Carina Cintia Ferrari1,2 1Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET, Buenos Aires C1181ACH, Argentina. 2Leloir Institute Foundation, Institute for Biochemical Investigations, IIBBA- CONICET, Patricias Argentinas 435, Buenos Aires, C1405BWE, Argentina. Correspondence to: Dr. Carina Cintia Ferrari, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET, Potosi 4240, Buenos Aires C1181ACH, Argentina. E-mail: [email protected] How to cite this article: Silva BA, Miglietta E, Ferrari CC. Neuroinflammation in cortical and meningeal pathology in multiple sclerosis: understanding from animal models. Neuroimmunol Neuroinflammation 2021;8:174-84. http://dx.doi.org/10.20517/2347-8659.2020.47 Received: 19 Jun 2020 First Decision: 3 Aug 2020 Revised: 6 Sep 2020 Accepted: 16 Sep 2020 Available online: 21 Sep 2021 Academic Editor: Roberta Magliozzi Copy Editor: Cai-Hong Wang Production Editor: Jing Yu Abstract Multiple sclerosis (MS) is a neurodegenerative and inflammatory disease usually presenting with acute demyelinating events that can start as, or progress to, chronic damage. The development of animal experimental models, specific for each stage of MS will aid in the design of new drugs specific for the different forms of the disease. Animal models of experimental autoimmune encephalomyelitis successfully reflect the pathophysiological mechanisms of the early phases of MS. However, few models resemble the features of the progressive forms of MS such as cortical demyelination and meningeal inflammation.
    [Show full text]
  • Multiple Sclerosis
    © Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-2596 Drug Class Update with New Drug Evaluations: Multiple Sclerosis Date of Review: June 2021 Date of Last Review: August 2020 Dates of Literature Search: 02/03/2020 – 03/01/2021 Generic Name: Ofatumumab Ponesimod Brand Name (Manufacturer): Kesimpta (Novartis) Ponvory (Janssen) Dossier Received: yes, for ofatumumab Current Status of PDL Class: See Appendix 1. Purpose for Class Update: Evidence for the comparative effectiveness of disease modifying drugs (DMDs) for multiple sclerosis (MS) was last reviewed by the Oregon Pharmacy & Therapeutic Committee (P&T) in August 2020 as summarized in a Drug Effectiveness Review Project (DERP) report. This review examines new comparative evidence of DMDs for MS published since 2020 and summarizes the evidence for 2 new DMDs, ofatumumab and ponesimod, approved to treat relapsing forms of MS. Research Questions: 1. What is the comparative effectiveness and efficacy of DMDs for MS? 2. Do DMDs for MS differ in harms? 3. Are there subgroups of patients with MS based on demographics (age, racial or ethnic groups, and gender), socioeconomic status, concomitant medications, severity of disease, or co-morbidities for which one DMD is more effective or associated with fewer adverse events? 4. What is the evidence for efficacy and safety for use of ofatumumab in relapsing MS? 5. What is the evidence for efficacy and safety of ponesimod in relapsing MS ? Author: Deanna Moretz, PharmD, BCPS Conclusions: Multiple Sclerosis Disease-Modifying Drugs No new evidence of comparative efficacy or effectiveness of DMDs approved to treat MS has been published since the last MS class review.
    [Show full text]
  • Reduction in the Annualized Relapse Rate
    Future therapies Jerry S. Wolinsky, MD Bartels Family and Opal C. Rankin Professor of Neurology University of Texas Health Science Center at Houston Course of Relapsing MS SPMS atrophy Failure of Repair, disability Compensation and Concomitant Pathologies T2 burden Late RR black holes Inflammatory Phase Early RR CIS Subclinical (RIS) Gd Occurrence, or Severity Occurrence, Extent, Time Schoonheim et al. Neurology 74:1246, 2010 Current Disease Modifying Drugs: US Registration CDA po FTY po qd Annualized Relapse Rates: Proportional Treatment Effects 1.4 1992 – 2001 2002 - 2008 1.2 43.3% ▼ 57% ▼ 1.0 0.8 0.6 0.4 0.2 0.0 Annualized Relapse Rate Relapse Annualized Relative Risk: Current Disease Modifying Drugs MTZ NTZ FTY Warning – Not approved for CME semi-evidence based – with multipleIFN βcaveats GA hd IFNβ ld Increased Relative Efficacy Relapses Efficacy Relative Increased Increased Relative Safety Teriflunomide [Z]-2-cyano-3-hydroxy-but-2-enoic acid – [4’-trifluoromethyl-phenyl]-amide an inhibitor of pyrimidine synthesis primary metabolite of leflunomide Teriflunomide - MOA o Teriflunomide selectively and reversibly inhibits the mitochondrial enzyme DHO-DH, required for de novo pyrimidine synthesis o Teriflunomide blocks the activation and proliferation of stimulated lymphocytes which require de novo synthesis of pyrimidine to expand o Slowly dividing or resting cells which rely on the salvage pathway for pyrimidine synthesis are DHODH = dihydroorotate dehydrogenase relatively unaffected by teriflunomide Gold and Wolinsky, Acta Neurol Scand 124:75, 2011 Teriflunomide: Phase 3 - placebo controlled O’Connor et al. NEJM 365:1293, 2011 Teriflunomide: Phase 3 - placebo controlled O’Connor et al. NEJM 365:1293, 2011 Teriflunomide: Phase 2 – adjunct trials 6 month Safety Pilot Freedman et al.
    [Show full text]
  • Tysabri® (Natalizumab)
    UnitedHealthcare® Commercial Medical Benefit Drug Policy Tysabri® (Natalizumab) Policy Number: 2021D0026M Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Community Plan Policy Coverage Rationale ....................................................................... 1 • Tysabri® (Natalizumab) Applicable Codes .......................................................................... 2 Background.................................................................................... 3 Benefit Considerations .................................................................. 3 Clinical Evidence ........................................................................... 4 U.S. Food and Drug Administration ............................................. 6 References ..................................................................................... 7 Policy History/Revision Information ............................................. 8 Instructions for Use ....................................................................... 8 Coverage Rationale See Benefit Considerations Tysabri (natalizumab) is proven for the treatment of: Relapsing Forms of Multiple Sclerosis Tysabri (natalizumab) is medically necessary for the treatment of relapsing forms of multiple sclerosis (MS) when all of the following are met:1 Initial Therapy o Diagnosis of relapsing forms of multiple sclerosis (MS) (e.g., clinically isolated syndrome, relapsing-remitting disease, active secondary-progressive disease); and o Patient is not receiving Tysabri
    [Show full text]