Interface Between Nonmagnetic Insulators May Be Ferromagnetic

Total Page:16

File Type:pdf, Size:1020Kb

Interface Between Nonmagnetic Insulators May Be Ferromagnetic of e and g and therefore the proportion ing the population of a metastable state, New low pricing of atoms detected on those states. Set- they could infer jumps between two ting the detuning at just the right value other states.3 And in 1999 Steven Peil ensures that the second Ramsey cavity and Gerald Gabrielse trapped a single will rotate the superposition to e when- electron and watched it jump between ever a photon is present. Thus, detect- quantized cyclotron levels.4 4K ing an atom in g means no photon; de- When analyzed in theoretical detail, tecting an atom in e means one photon. jumps turn out to spring from the ap- ARS Displex Figure 2 shows the result of an ex- propriate Hamiltonian and the time- perimental run that lasted 2.5 s. Each dependent Schrödinger equation. Far Pneumatic vertical bar corresponds to the detec- from being awkwardly instantaneous or tion of one of the 2000 or so atoms sent unprovoked, jumps are an integral fea- Drive through the cavity. Most of the time, ture of orthodox quantum mechanics. barring noise, the atoms revealed an More recently, Wojciech Zurek of Cryocoolers empty cavity. But 1.05 s into the run, the Los Alamos National Laboratory ana- .8w @ 4.2K DE-210S cavity field jumped to its 1-photon lyzed quantum jumps by following the state, stayed there for 0.48 seconds, then progress of information from the sys- .25w @ 4.2K DE-204S jumped back down. tem to the apparatus and the environ- .1w @ 4.2K DE-202S At the cavity’s 0.8-K operating tem- ment. According to Zurek, that flow of perature, one expects the mirrors’ ther- information, along with basic assump- Research & OEM mal fluctuations to fill the cavity with tions of quantum theory, inevitably Cryostats one photon for about 5% of the time. breaks the unitary symmetry of Hilbert Averaging 500 runs, the ENS re- space and picks out the quantized states Optical & Non Optical searchers found a slightly higher value, that the system jumps to.5 True UHV (10 -11 torr) 6%, which they attribute to residual Brune, Haroche, Raimond, and their heating. team are now working on a new series Low Vibration Interface of experiments in which they fill the (5 nanometers) The meaning of jumps cavity with multiple photons. They Niels Bohr introduced the concept of hope to investigate another fundamen- quantum jumps in his model of the hy- tal quantum question: the transition to drogen atom. Their probabilistic na- classical behavior. ture—states suddenly changing with- Charles Day out cause—troubled some physicists. Quantum mechanics, they argued, is in- References trinsically statistical. Individual elec- 1. S. Gleyzes et al., Nature 446, 297 (2007). trons in atoms don’t jump. 2. M. Brune et al., Phys. Rev. Lett. 65, 976 In the 1980s physicists succeeded in (1990). 3. W. Nagourney, J. Sandberg, H. Dehmelt, trapping individual ions and looked for Phys. Rev. Lett. 56, 2797 (1986). electrons making jumps between states. 4. S. Peil, G. Gabrielse, Phys. Rev. Lett. 83, Warren Nagourney, Jon Sandberg, and 1287 (1999). Hans Dehmelt found the jumps in sin- 5. W. H. Zurek, http://arxiv.org/abs/quant- gle barium ions. By optically monitor- ph/0703160. Interface between nonmagnetic Compare insulators may be ferromagnetic our product specifications and conducting and our pricing! A ferromagnetic metal would be perhaps the first of many ARS novel electronic states that might emerge from the marriage manufactures of complex oxides. the complete cryocooler & In the past few decades, re- materials may yield even richer behav- www.arscryo.com cryostat searchers have focused much attention ior than is found in bulk. Perhaps the in- on complex oxides—oxide compounds terfaces exhibit phases that don’t exist in which the electrons interact strongly in either of the constituent compounds. with one another and with the lattice. Just look at the wide variety of elec- Such compounds exhibit a fascinating tronic devices that arise from the merg- range of properties: ferromagnetism, ing of semiconductors: One striking ex- Advanced Research ferroelectricity, high-temperature su- ample is the quantum Hall effect seen perconductivity, colossal magnetoresis- in the 2D electron gas formed at a gal- Systems, Inc. tance, and spin-glass behaviors. Not lium arsenide–aluminum gallium ar- surprisingly, these compounds are senide heterojunction. Tel 610 967 2120 being explored for myriad applications. Like semiconductors, many complex Fax 610 967 2395 e-mail; [email protected] Interfaces between complex-oxide oxides are closely lattice-matched to www.physicstoday.org June 2007 Physics Today 23 See www.pt.ims.ca/12307-14 one another and lend them- lem in different ways. The sur- selves to epitaxial growth. face may roughen as pyramids (AlO )– Only in the past decade, how- 2 e form there, so that other crystal ever, have experimenters /2 facets than the problematic (LaO)+ honed the techniques to grow e (001) plane present themselves high-quality oxide crystals and /2 to the outside. Or the ions might fabricate atomically abrupt (AlO )– rearrange themselves on the 2 e and uniform surfaces. /2 surface to compensate for the (LaO)+ One particular complex- e charge imbalance. / oxide interface has recently 0 2 What happens at the inter- shown some promise of fulfill- (TiO2 ) face when you try to grow a ing the high expectations. That positively charged plane of LaO (SrO)0 is the interface between lan- on top of the neutral TiO2 layer thanum aluminate (LaAlO3 or 0 of STO? To screen the charge LAO) and strontium titanate (TiO2 ) from the LaO layer, some of the (SrTiO3 or STO). Although 0 cations might shift position, or both are insulators in their (SrO) oxygen vacancies might form at bulk form, Akira Ohtomo and the interface. It’s also possible, Harold Hwang found two Figure 1. Layered structure of the interface however, for the electrons to re- years ago that the interface be- between lanthanum aluminate and strontium arrange themselves there. For tween them was conducting. titanate, showing the alternating planes of atoms. example, electrons might be The electron carriers had a La, Al, Sr, Ti, and O atoms are shown as orange, transferred from the LaO layer 2 very high mobility, 1 m /(V-s), yellow, purple, green, and gray, respectively. to the TiO2 layer, with a net ad- with a scattering rate compara- Arrows labeled e/2 indicate the charge transfer dition of half an electron, e/2, ble to that of gallium ar- per unit cell. Some of these elec- between LaO and AlO2 layers because of ionic senide.1 Ohtomo is at Tohoku bonding. When the LaO layer is grown atop the trons might enter the previ- University and Hwang is at the ously unoccupied d shell of the originally neutral TiO2 layer, there is a net charge University of Tokyo. transfer of e/2 per unit cell to that layer. (Adapted Ti atoms, changing their va- Now it seems that the from refs. 3 and 10.) lence from 4+ to 3+ and giving LAO/STO heterojunction might them local moments because of be ferromagnetic as well as the unpaired d-shell electrons. metallic, even though neither of the important depending on growth (Ti, like most transition metals, can constituent compounds is magnetic. circumstances. have several different valences.) This This month a team from the University charge transfer is what gives rise to the of Twente in the Netherlands reported Electronic reconstruction possibility of both conductive and fer- evidence for such magnetic behavior as How can the electrons, which are local- romagnetic behavior. a large negative magnetoresistance at ized in the constituent insulators, gain To grow the LAO/STO interfaces, the LAO/STO junction and, below 0.3 mobility at the interface? A key factor is experimenters use single crystals of K, hysteresis in its sheet resistance— the electric field that is created when STO as a substrate and etch atomically that is, resistance in a 2D plane.2 you terminate a complex oxide crystal flat terraces on top of that, terminating Twente’s Alexander Brinkman ac- along a (001) plane. To understand the in a TiO2 layer. The LAO layers are de- knowledges that more evidence may be origin of this field, consider the struc- posited on this substrate by pulsed needed to nail down the existence and ture of the compounds that make up the laser deposition in a low-pressure nature of ferromagnetism. Still, ob- apparent metallic ferromagnet: STO background of oxygen. Atomic force serves Andrew Millis of Columbia Uni- and LAO. Each one is a type of oxide microscopy can confirm that the step- versity, it’s exciting just to see some type known as a perovskite, having the gen- and-terrace structure of the substrate of ferromagnetic signature at the inter- eral form ABO3, where A and B are has been maintained as the LAO film is face when none is seen in the bulk. cations. In perovskites, (001) planes of deposited. The findings of conductivity and AO alternate with planes of BO2. As il- In their 2004 experiment, Ohtomo ferromagnetism are not without some lustrated in figure 1, the layers of STO and Hwang found that the charge car- reservations. The largest question con- are both neutral. But in LAO, positively riers at the LaO/TiO2 interface were cerns the origin of the charge and spin charged planes of LaO alternate with negative, as expected from either the carriers. Does the conductivity arise negatively charged planes of AlO2. The polar discontinuity or the presence of from an intrinsic effect, specifically lanthanum ions are sharing their elec- oxygen vacancies, and had high mobil- electronic rearrangement at the sur- trons with the aluminum ions in the ad- ity.
Recommended publications
  • Title of Paper Goes Here
    Template for APEX (Jan. 2014) Controlled formation of high-mobility shallow electron gases in SrTiO3 single crystal Jung-Won Chang1, Joon Sung Lee1*, Tae Ho Lee1, Jinhee Kim2, and Yong-Joo Doh1* 1Department of Applied Physics, Korea University Sejong Campus, Sejong 339-700, Republic of Korea 2Korea Research Institute of Standards and Science, Daejeon 305-600, Republic of Korea E-mail: [email protected], [email protected] We report controlled formation of sub-100 nm-thin electron channels in SrTiO3 by doping with oxygen vacancies induced by Ar+-ion irradiation. The conducting channels exhibit a consistent high electron mobility (~15,000 cm2V1s1), which enables clear observation of magnetic quantum oscillations, and gate-tunable linear magnetoresistance. Near the onset of electrical conduction, the metal-insulator transition is induced by the mobility suppression. With the high electron mobility and the ease of controlled channel formation, this ion-irradiation doping method may provide an excellent basis for developing oxide electronics. 1 Template for APEX (Jan. 2014) 1) SrTiO3 (STO) has the potential to become a key ingredient in oxide electronics owing to its intriguing electronic properties in addition to its versatility as a perovskite substrate for oxide heterostructures.2,3) The recent advancement in studies of the low-dimensional electronic system formed at the heterointerface between strontium titanate (STO) and 4) lanthanum aluminate (LaAlO3; LAO) has led to immense development and success in both understanding fundamental physics and developing new oxide electronic devices. When pure and stoichiometric, STO is an insulator with a large band gap of 3.2 eV. However, it can be made into an n-type conductor by substitutional doping with cations5,6) such as Nb and La or by introduction of oxygen vacancies.7) Especially, Ar+-ion irradiation on the crystal surface8-13) introduces oxygen vacancies and enables us to pattern conducting channels selectively on STO substrates using photolithography.
    [Show full text]
  • Manganite-Based Devices: Opportunities, Bottlenecks and Challenges
    Downloaded from http://rsta.royalsocietypublishing.org/ on October 30, 2018 Manganite-based devices: opportunities, bottlenecks and challenges By T. Venkatesan, M. Rajeswari, Zi-Wen Dong, S. B. Ogale and R. Ramesh NSF-MRSEC on Oxides and Surfaces, and Centre for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742, USA Since the rejuvenation of interest in the rare earth manganites owing to their poten- tial use as magnetoresistive sensors, there has been adequate research to arrive at some evaluation of the potential for these materials in a variety of technologies that would use the peculiar properties of these materials. The magnetic field sensitivity of the transport properties, the strong metal insulator transition at the Curie temper- ature, the electric field polarizability of the material and its subsequent effect on the transport properties, the half metallicity of the electronic bands, etc., are properties of the rare earth manganites that could be exploited in a variety of devices. In this review we explore the various interesting technological avenues that are being pur- sued and address the uniqueness of the material that may enable a given technology as well as the various bottlenecks that will have to be overcome in order to suc- cessfully compete with the existing technologies. As is the case with many emerging materials technologies, the devices also serve as a vehicle for further understanding of the fundamental mechanisms behind the basic properties of the materials. Keywords:
    [Show full text]
  • Influence of the Epitaxial Strain on Magnetic Anisotropy in LSMO Thin Films for Spintronics Applications Sandeep Kumar Chaluvadi
    Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Sandeep Kumar Chaluvadi To cite this version: Sandeep Kumar Chaluvadi. Influence of the epitaxial strain on magnetic anisotropy inLSMO thin films for spintronics applications. Electronics. Normandie Université, 2017. English. NNT: 2017NORMC248. tel-01717569 HAL Id: tel-01717569 https://tel.archives-ouvertes.fr/tel-01717569 Submitted on 26 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Spécialité ELECTRONIQUE, MICROELECTRONIQUE, OPTIQUE ET LASERS, OPTOELECTRONIQUE MICROONDES Préparée au sein de l’ENSICAEN et de l’UNICAEN Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Présentée et soutenue par Sandeep Kumar CHALUVADI Thèse soutenue publiquement le 13 décembre 2017 devant le jury composé de M. VIRET Michel Chercheur (HDR), CEA Saclay Rapporteur M. BELMEGUENAI Mohamed Maître de conférences (HDR), Université Paris 13 Rapporteur Mme MOUGIN Alexandra Directrice de recherches CNRS, Université Paris 11 Examinateur M. MAZALEYRAT Frédéric Professeur des universités, ENS Cachan Examinateur M. PERNA Paolo Chercheur, IMDEA Madrid Examinateur Mme MECHIN Laurence Directrice de recherches CNRS, Université Caen Normandie Directeur de thèse Thèse dirigée par Laurence MECHIN, laboratoire GREYC (UMR 6072) iii Contents List of Abbreviations ..............................................................................................................
    [Show full text]
  • Two-Dimensional Electron Layers in Perovskite Oxides Cover
    Two-dimensional electron layers in perovskite oxides Cover Stairstep twinning in lanthanum aluminate (LaAlO3), one of the main constituents of the perovskite heterostructures discussed in this thesis. Image was taken by Michael W. Davidson of the Florida State University and is used with permission. Ph.D. committee Chairman and secretary Prof. dr. G. van der Steenhoven (University of Twente) Supervisor Prof. dr. ing. D.H.A. Blank (University of Twente) Assistant supervisor Dr. ing. A.J.H.M. Rijnders (University of Twente) Members Prof. dr. Ir. H. Hilgenkamp (University of Twente) Prof. dr. P.J. Kelly (University of Twente) Prof. H.Y. Hwang (University of Tokyo, Japan) Prof. J.-M. Triscone (University of Geneva, Switzerland) Prof. dr. J. Aarts (Leiden University) Prof. dr. M.S. Golden (University of Amsterdam) The research described in this thesis was performed with the Inorganic Materials Science group, the MESA+ Research Institute at the University of Twente, the Netherlands and Hwang lab at the University of Tokyo, Japan as a part of the Nanoelectronic Materials flagship (TMM.6996) of the Dutch NanoNed national nanotechnology R&D initiative. This research was supported by NanoNed, a na- tional nanotechnology program coordinated by the Dutch Ministry of Economic Affairs. G.W.J. Hassink Two-dimensional electron layers in perovskite oxides Ph.D. thesis University of Twente, Enschede, the Netherlands. ISBN: 978-90-365-2918-1 DOI: 10.3990/1.9789036529181 Printed by W¨ohrmannPrint Service, Zutphen, the Netherlands Copyright c G.W.J. Hassink, 2009 TWO-DIMENSIONAL ELECTRON LAYERS IN PEROVSKITE OXIDES PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus, Prof.
    [Show full text]
  • Preparation and Characterization of Perovskite Structure Lanthanum Gallate and Lanthanum Aluminate Based Oxides
    Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides Shuai Li Doctoral Thesis Department of Materials Science and Engineering Division of Ceramics Royal Institute of Technology Stockholm, Sweden 2009 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm, framlägges för offentlig granskning för avläggande av teknologie doktorsexamen, fredagen den 12 juni 2009, kl. 10.00 i B2, Brinellvägen 23, KTH, Stockholm. ISRN KTH/MSE--09/18--SE+CER/AVH ISBN 978-91-7415-324-8 Shuai Li Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides Division of Ceramics Department of Materials Science and Engineering School of Industrial Engineering and Management Royal Institute of Technology SE-100 44 Stockholm Sweden ISRN KTH/MSE--09/18--SE+CER/AVH ISBN 978-91-7415-324-8 © Shuai Li ABSTRACT The present work was initiated to study the synthesis and properties of lanthanum gallate based oxides as intermediate temperature electrolyte for solid oxide fuel cells. The wet chemical method, polymer complexing route, was used to prepare the precursor powders. To further investigate the polymer complexing method, it was also applied to the preparation of lanthanum aluminate based oxides. Single perovskite phase La0.8Sr0.2Ga0.83Mg0.17O2.815 can be prepared by the polymer complexing method using PVA as complexing agent. The thermal decomposition of the precursor powder undergoes three stages. While complete decomposition of the precursor is obtained at 1000°C. Further investigation of LaGaO3 doped with various amounts Sr or/and Mg was conducted. Three secondary phases were identified by X- ray diffraction, e.g.
    [Show full text]
  • Sign Reversal of Magnetoresistance in a Perovskite Nickelate by Electron Doping
    PHYSICAL REVIEW B 94, 235124 (2016) Sign reversal of magnetoresistance in a perovskite nickelate by electron doping Koushik Ramadoss,1,* Nirajan Mandal,2,3 Xia Dai,4 Zhong Wan,2 You Zhou,5 Leonid Rokhinson,2,3,6 Yong P. Chen,2,3,6 Jiangpin Hu,2 and Shriram Ramanathan1 1School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA 2Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA 3Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA 4Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China 5School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA 6School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA (Received 31 July 2016; revised manuscript received 14 November 2016; published 9 December 2016) We present low temperature resistivity and magnetotransport measurements conducted on pristine and electron doped SmNiO3 (SNO). The low temperature transport in both pristine and electron-doped SNO shows a Mott variable range hopping with a substantial decrease in localization length of carriers by one order in the case of doped samples. Undoped SNO films show a negative magnetoresistance (MR) at all temperatures characterized by spin fluctuations with the evolution of a positive cusp at low temperatures. In striking contrast, upon electron doping of the films via hydrogenation, we observe a crossover to a linear nonsaturating positive MR ∼ 0.2% at 50 K. The results signify the role of localization phenomena in tuning the magnetotransport response in doped nickelates. Ionic doping is therefore a promising approach to tune magnetotransport in correlated perovskites.
    [Show full text]
  • A Thin Film Approach to Engineering Functionality Into Oxides
    J. Am. Ceram. Soc., 91; [8] 2429–2454 (2008) DOI: 10.1111/j.1551-2916.2008.02556.x r 2008 The American Ceramic Society Journal A Thin Film Approach to Engineering Functionality into Oxides Darrell G. Schlom,w,ww,z Long-Qing Chen,z Xiaoqing Pan,y Andreas Schmehl,z,z and Mark A. ZurbuchenJ zDepartment of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-5005 yDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 z Experimentalphysik VI, Elektronische Korrelationen und Magnetismus, Institut fu¨ r Physik, Universita¨ t Augsburg, D- 86159 Augsburg, Germany JThe Aerospace Corporation, Microelectronics Technology Department, El Segundo, California 90245 The broad spectrum of electronic and optical properties exhibited But as every ceramist knows, oxides are an exciting class of by oxides offers tremendous opportunities for microelectronic electronic materials in their own right. Oxides exhibit the full devices, especially when a combination of properties in a single spectrum of electronic, optical, and magnetic behavior: insulat- device is desired. Here we describe the use of reactive molecular- ing, semiconducting, metallic, superconducting, ferroelectric, beam epitaxy and pulsed-laser deposition to synthesize functional pyroelectric, piezoelectric, ferromagnetic, multiferroic, and oxides, including ferroelectrics, ferromagnets, and materials that nonlinear optical effects are all possessed by structurally com- arebothatthesametime.Owingtothedependenceofproperties
    [Show full text]
  • Layer-By-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites § † § † § ‡ † Tassie K
    Research Article Cite This: ACS Appl. Mater. Interfaces 2018, 10, 5949−5958 www.acsami.org Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites § † § † § ‡ † Tassie K. Andersen,*, , Seyoung Cook, , Gang Wan, Hawoong Hong, Laurence D. Marks, § and Dillon D. Fong § Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States † Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States ‡ Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States ABSTRACT: Control over structure and composition of ff (ABO3) perovskite oxides o ers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as a function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system. KEYWORDS: metal oxides, strontium cobalt oxide, molecular beam epitaxy, defects in oxides, perovskite oxides, thin films ■ INTRODUCTION the oxygen vacancy concentration.
    [Show full text]
  • Pulsed Laser Deposition of Thin Film Heterostructures
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Pulsed Laser Deposition of Thin Film Heterostructures Ezra Garza University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Physics Commons Recommended Citation Garza, Ezra, "Pulsed Laser Deposition of Thin Film Heterostructures" (2011). University of New Orleans Theses and Dissertations. 459. https://scholarworks.uno.edu/td/459 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Pulsed Laser Deposition of Thin Film Heterostructures A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Applied Physics by Ezra Garza B.S. University of New Orleans, 2008 August, 2011 Copyright 2011, Ezra Garza ii Acknowledgments I would like to thank Dr. Leonard Spinu for giving me the opportunity of being a part of such a great research group and guidance during the research process.
    [Show full text]
  • Tunable, Low Optical Loss Strontium Molybdate Thin Films for Plasmonic Applications
    Tunable, Low Optical Loss Strontium Molybdate Thin Films for Plasmonic Applications Matthew P. Wells*, Bin Zou, Brock Doiron, Rebecca Kilmurray, Andrei P. Mihai, Rupert F. M. Oulton, Lesley F. Cohen, Stefan A. Maier, Neil McN. Alford, Peter K. Petrov M. P. Wells, Dr B. Zou, R. Kilmurray, Dr A. P. Mihai, Prof. N. Alford, Dr P. K. Petrov Imperial College London, Department of Materials, Prince Consort Road, London SW7 2BP, UK E-mail: [email protected] B. Doiron, Dr R. F. M. Oulton, Prof. L. F. Cohen, Prof. S. A. Maier Imperial College London, Department of Physics, Prince Consort Road, London SW7 2AZ, UK Keywords: plasmonic materials, optics, thin films, strontium molybdate, optical losses Strontium molybdate (SrMoO3) thin films are shown to exhibit plasmonic behaviour with a zero crossover wavelength of the real part of the dielectric permittivity tunable between 600 and 950 nm (2.05 eV and 1.31 eV). The films are grown epitaxially on strontium titanate (SrTiO3), magnesium oxide (MgO), and lanthanum aluminate (LaAlO3) substrates by pulsed laser deposition. SrMoO3 is shown to have optical losses lower than those of gold at the point at which the real part of the dielectric permittivity is equal to -2, while possessing low electrical resistivity of 100 μΩ cm at room temperature. Spectroscopic ellipsometry measurements reveal that SrMoO3 shows plasmonic behaviour, moreover we demonstrate that the epsilon near zero (ENZ) wavelength is tunable by engineering the residual strain in the films. The relatively broadband ENZ behaviour observed in SrMoO3 demonstrates its potential suitability for transformation optics along with plasmonic applications in the visible to near infrared spectral range.
    [Show full text]
  • 1 Laalo3 Stoichiometry Found Key to Electron Liquid Formation At
    LaAlO3 stoichiometry found key to electron liquid formation at LaAlO3/SrTiO3 interfaces M. P. Warusawithana1*, C. Richter2,3, J. A. Mundy4, P. Roy1, J. Ludwig1, S. Paetel2, T. Heeg5, A. A. Pawlicki1, L. F. Kourkoutis4,6, M. Zheng7, M. Lee1, B. Mulcahy7, W. Zander8, Y. Zhu4, J. Schubert8, J. N. Eckstein7, D. A. Muller4,6, C. Stephen Hellberg9, J. Mannhart3, D. G. Schlom5,6 1 National High Magnetic Field Laboratory, Department of Physics, Florida State University, Tallahassee, Florida 32310, USA 2 Center for Electronic Correlations and Magnetism, University of Augsburg, D-86135 Augsburg, Germany 3 Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany 4 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA 5 Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA 6 Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA 7 Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA 8 Peter Gruenberg Institute 9, JARA-Fundamentals of Future Information Technologies, Research Centre Jülich, D-52425 Jülich, Germany 9 Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375, USA *e-mail: [email protected] Abstract Emergent phenomena, including superconductivity and magnetism, found in the two- dimensional electron liquid (2-DEL) at the interface between the insulators LaAlO3 and SrTiO3 distinguish this rich system from conventional two-dimensional electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated with focus on the role of defects in the SrTiO3 while the LaAlO3 has been assumed perfect.
    [Show full text]
  • Electronic Transport at Semiconductor and Perovskite
    ELECTRONIC TRANSPORT AT SEMICONDUCTOR AND PEROVSKITE OXIDE INTERFACES by NICHOLAS JAMES GOBLE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics CASE WESTERN RESERVE UNIVERSITY May, 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Nicholas James Goble candidate for the degree of Doctor of Philosophy*. Committee Chair Xuan P.A. Gao Committee Member Harsh Mathur Committee Member Kathleen Kash Committee Member Alp Sehirlioglu Date of Defense December 11, 2015 *We also certify that written approval has been obtained for any proprietary material contained therein. ii To my wife, Mary. Your love and support has made this all possible. iii Table of Contents Chapter 1 Introduction .................................................................................................... 1 1.1 Introducing quantum mechanics to electronic transport ........................................... 4 1.1 Two-dimensional electronic systems ........................................................................ 5 1.2 Materials of interest .................................................................................................. 9 1.2a GaAs/AlxGa1-xAs quantum wells ....................................................................... 10 1.2b LaAlO3/SrTiO3 heterointerfaces ....................................................................... 16 1.2c γ-Al2O3/SrTiO3 heterointerfaces .......................................................................
    [Show full text]