How to Tell the Difference: False Killer Whales, Pygmy

Total Page:16

File Type:pdf, Size:1020Kb

How to Tell the Difference: False Killer Whales, Pygmy HOW TO TELL THE DIFFERENCE: FALSE KILLER WHALES, PYGMY KILLER WHALES, SHORT-FINNED PILOT WHALES, AND MELON-HEADED WHALES IN HAWAI'I There are four species of small black whales resident in Hawaiian waters, two relatively large (short-finned pilot whales, false killer whales) and two relatively small (melon-headed whales, pygmy killer whales). The four species look fairly similar but can be discriminated based on relative dorsal fin size and position as well as other characteristics (summarized in table at the bottom). False killer whale Pygmy killer whale Melon-headed whale Short-finned pilot whale have a clear boundary to the cape and more are the fastest moving white linear scars than melon-headed whales and most acrobatic False killer whale, Pseudorca crassidens Pygmy killer whale, Feresa attenuata The dorsal fin of pilot whales is larger and further forward on the back than other species. Adult males are ~3’ larger than adult females and have a much larger dorsal fin have a very diffuse boundary between the dark dorsal cape and the lighter side of the body adult male Short-finned pilot whale, Globicephala macrorhynchus Melon-headed whale, Peponocephala electra Illustrations by Uko Gorter by Uko Illustrations Species Group Size Behavior Behavior Body size Typical depths Frequency Group typical & range towards boats during day range fathoms seen? spread Pilot whale 18 Usually Usually resting at 4’7” – 18’ 270-1640 Common Typically one or (1-195) indifferent surface or travel two subgroups False killer whale 18 Often Actively foraging 5’ – 17’ 25-2700 Rare Often over many (1-41) bowrides leaping regularly miles Pygmy killer 11 Usually Usually resting at 2’7” – 8’6” 270-1640 Rare Typically one whale (1-33) avoids surface group Melon-headed 245 Often bowrides Usually resting at 3’4” – 9’ 110-2700 Uncommon but Usually very whale (1-800) surface or travel very large groups clustered Prepared by Cascadia Research Collective, Olympia, WA. For more information see www.cascadiaresearch.org/hawaii.htm To send photos contact Robin Baird or Sabre Mahaffy at [email protected]. Rev 8 Sep 16..
Recommended publications
  • Marine Mammals of Hudson Strait the Following Marine Mammals Are Common to Hudson Strait, However, Other Species May Also Be Seen
    Marine Mammals of Hudson Strait The following marine mammals are common to Hudson Strait, however, other species may also be seen. It’s possible for marine mammals to venture outside of their common habitats and may be seen elsewhere. Bowhead Whale Length: 13-19 m Appearance: Stocky, with large head. Blue-black body with white markings on the chin, belly and just forward of the tail. No dorsal fin or ridge. Two blow holes, no teeth, has baleen. Behaviour: Blow is V-shaped and bushy, reaching 6 m in height. Often alone but sometimes in groups of 2-10. Habitat: Leads and cracks in pack ice during winter and in open water during summer. Status: Special concern Beluga Whale Length: 4-5 m Appearance: Adults are almost entirely white with a tough dorsal ridge and no dorsal fin. Young are grey. Behaviour: Blow is low and hardly visible. Not much of the body is visible out of the water. Found in small groups, but sometimes hundreds to thousands during annual migrations. Habitat: Found in open water year-round. Prefer shallow coastal water during summer and water near pack ice in winter. Killer Whale Status: Endangered Length: 8-9 m Appearance: Black body with white throat, belly and underside and white spot behind eye. Triangular dorsal fin in the middle of the back. Male dorsal fin can be up to 2 m in high. Behaviour: Blow is tall and column shaped; approximately 4 m in height. Narwhal Typically form groups of 2-25. Length: 4-5 m Habitat: Coastal water and open seas, often in water less than 200 m depth.
    [Show full text]
  • Southern Resident Killer Whales (Orcinus Orca) Cover: Aerial Photograph of a Mother and New Calf in SRKW J-Pod, Taken in September 2020
    SPECIES in the SPOTLIGHT Priority Actions 2021–2025 Southern Resident killer whales (Orcinus orca) Cover: Aerial photograph of a mother and new calf in SRKW J-pod, taken in September 2020. The photo was obtained using a non-invasive octocopter drone at >100 ft. Photo: Holly Fearnbach (SR3, SeaLife Response, Rehab and Research) and Dr. John Durban (SEA, Southall Environmental Associates); collected under NMFS research permit #19091. Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 Central California Coast coho salmon adult, Lagunitas Creek. Photo: Mt. Tamalpais Photos. Passengers aboard a Washington State Ferry view Southern Resident killer whales in Puget Sound, an example of low-impact whale watching. Photo: NWFSC. The Species in the Spotlight Initiative In 2015, the National Marine Fisheries Service (NOAA Fisheries) launched the Species in the Spotlight initiative to provide immediate, targeted efforts to halt declines and stabilize populations, focus resources within and outside of NOAA on the most at-risk species, guide agency actions where we have discretion to make investments, increase public awareness and support for these species, and expand partnerships. We have renewed the initiative for 2021–2025. U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service 1 Species in the Spotlight: Southern Resident Killer Whales | PRIORITY ACTIONS: 2021–2025 The criteria for Species in the Spotlight are that they partnerships, and prioritizing funding—providing or are endangered, their populations are declining, and leveraging more than $113 million toward projects that they are considered a recovery priority #1C (84 FR will help stabilize these highly at-risk species.
    [Show full text]
  • Commonly Found Marine Mammals of Puget Sound
    Marine Mammals of Puget Sound Pinnipeds: Seals & Sea Lions Cetaceans: Pacific Harbor Seal Whales, Dolphins & Porpoise Phoca vitulina Adults mottled tan or blue-gray with dark spots Seal Pups Orca Male: 6'/300 lbs; Female: 5'/200 pounds Earless (internal ears, with externally visible hole) (or Killer Whale) Short fur-covered flippers, nails at end Drags rear flippers behind body Orcinus orca Vocalization: "maah" (pups only) Black body with white chin, Most common marine mammal in Puget Sound belly, and eyepatch Shy, but curious. Pupping occurs June/July in Average 23 - 26'/4 - 8 tons the Strait of Juan de Fuca and San Juan Islands Southern Resident orcas (salmon-eating) are Endangered, travel in larger pods Northern Elephant Seal If you see a seal pup Transient (marine mammal -eating) orcas alone on the beach travel in smaller pods Orcas are most often observed in inland waters Mirounga angustirostris DO NOT DISTURB - fall - spring; off San Juan Islands in summer Brownish-gray it’s the law! Dall's Porpoise Male: 10-12'/4,000-5,000 lbs Human encroachment can stress the pup Female: 8-9'/900-1,000 lbs. Phocoenoides dalli and scare the mother away. Internal ears (slight hole) For your safety and the health of the pup, Harbor Porpoise Black body/white belly and sides Short fur-covered flippers, nails at end leave the pup alone. Do not touch! White on dorsal fin trailing edge Drags rear flippers behind body Phocoena phocoena Average 6 - 7'/300 lbs. Vocalization: Guttural growl or belch Dark gray or black Travels alone or in groups of 2 - 20 or more Elephant seals are increasing in with lighter sides and belly Creates “rooster tail” spray, number in this region Average 5- 6'/120 lbs.
    [Show full text]
  • Sustained Disruption of Narwhal Habitat Use and Behavior in The
    Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales Greg A. Breeda,1, Cory J. D. Matthewsb, Marianne Marcouxb, Jeff W. Higdonc, Bernard LeBlancd, Stephen D. Petersene, Jack Orrb, Natalie R. Reinhartf, and Steven H. Fergusonb aInstitute of Arctic Biology, University of Alaska, Fairbanks, AK 99775; bArctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB, Canada R3T 2N6; cHigdon Wildlife Consulting, Winnipeg, MB, Canada R3G 3C9; dFisheries Management, Fisheries and Oceans Canada, Quebec, QC, Canada G1K 7Y7; eAssiniboine Park Zoo, Winnipeg, MB, Canada R3R 0B8; and fDepartment of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 Edited by James A. Estes, University of California, Santa Cruz, CA, and approved January 10, 2017 (received for review July 17, 2016) Although predators influence behavior of prey, analyses of elec- Electronic tracking tags are also frequently used to track verte- tronic tracking data in marine environments rarely consider how brates in marine systems. Although there is evidence that marine predators affect the behavior of tracked animals. We collected animals adjust their behavior under predation threat (21, 22, 12), an unprecedented dataset by synchronously tracking predator few data or analyses exist showing how predators affect the (killer whales, N = 1; representing a family group) and prey movement of tracked marine animals. These data are lacking (narwhal, N = 7) via satellite telemetry in Admiralty Inlet, a because marine environments are more difficult to observe and large fjord in the Eastern Canadian Arctic. Analyzing the move- tracked animals often move over scales much larger than their ment data with a switching-state space model and a series of terrestrial counterparts, making it difficult to measure predator mixed effects models, we show that the presence of killer whales density in situations where tracking tags are deployed on prey.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Genetic Structure of the Beaked Whale Genus Berardius in the North Pacific
    MARINE MAMMAL SCIENCE, 33(1): 96–111 (January 2017) Published 2016. This article is a U.S. Government work and is in the public domain in the USA DOI: 10.1111/mms.12345 Genetic structure of the beaked whale genus Berardius in the North Pacific, with genetic evidence for a new species PHILLIP A. MORIN1, Marine Mammal and Turtle Division, Southwest Fisheries Science Cen- ter, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A. and Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92037, U.S.A.; C. SCOTT BAKER Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, Oregon 07365, U.S.A.; REID S. BREWER Fisheries Technology, University of Alaska South- east, 1332 Seward Avenue, Sitka, Alaska 99835, U.S.A.; ALEXANDER M. BURDIN Kam- chatka Branch of the Pacific Geographical Institute, Partizanskaya Str. 6, Petropavlovsk- Kamchatsky, 683000 Russia; MEREL L. DALEBOUT School of Biological, Earth, and Environ- mental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia; JAMES P. DINES Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.; IVAN D. FEDUTIN AND OLGA A. FILATOVA Faculty of Biology, Moscow State University, Moscow 119992, Russia; ERICH HOYT Whale and Dol- phin Conservation, Park House, Allington Park, Bridport, Dorset DT6 5DD, United King- dom; JEAN-LUC JUNG Laboratoire BioGEMME, Universite de Bretagne Occidentale, Brest, France; MORGANE LAUF Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Drive, La Jolla, California 92037, U.S.A.; CHARLES W.
    [Show full text]
  • 213 Subpart I—Taking and Importing Marine Mammals
    National Marine Fisheries Service/NOAA, Commerce Pt. 218 regulations or that result in no more PART 218—REGULATIONS GOV- than a minor change in the total esti- ERNING THE TAKING AND IM- mated number of takes (or distribution PORTING OF MARINE MAM- by species or years), NMFS may pub- lish a notice of proposed LOA in the MALS FEDERAL REGISTER, including the asso- ciated analysis of the change, and so- Subparts A–B [Reserved] licit public comment before issuing the Subpart C—Taking Marine Mammals Inci- LOA. dental to U.S. Navy Marine Structure (c) A LOA issued under § 216.106 of Maintenance and Pile Replacement in this chapter and § 217.256 for the activ- Washington ity identified in § 217.250 may be modi- fied by NMFS under the following cir- 218.20 Specified activity and specified geo- cumstances: graphical region. (1) Adaptive Management—NMFS 218.21 Effective dates. may modify (including augment) the 218.22 Permissible methods of taking. existing mitigation, monitoring, or re- 218.23 Prohibitions. porting measures (after consulting 218.24 Mitigation requirements. with Navy regarding the practicability 218.25 Requirements for monitoring and re- porting. of the modifications) if doing so cre- 218.26 Letters of Authorization. ates a reasonable likelihood of more ef- 218.27 Renewals and modifications of Let- fectively accomplishing the goals of ters of Authorization. the mitigation and monitoring set 218.28–218.29 [Reserved] forth in the preamble for these regula- tions. Subpart D—Taking Marine Mammals Inci- (i) Possible sources of data that could dental to U.S. Navy Construction Ac- contribute to the decision to modify tivities at Naval Weapons Station Seal the mitigation, monitoring, or report- Beach, California ing measures in a LOA: (A) Results from Navy’s monitoring 218.30 Specified activity and specified geo- graphical region.
    [Show full text]
  • SHORT-FINNED PILOT WHALE (Globicephala Macrorhynchus): Western North Atlantic Stock
    February 2019 SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Western North Atlantic Stock STOCK DEFINITION AND GEOGRAPHIC RANGE There are two species of pilot whales in the western North Atlantic - the long-finned pilot whale, Globicephala melas melas, and the short-finned pilot whale, G. macrorhynchus. These species are difficult to differentiate at sea and cannot be reliably visually identified during either abundance surveys or observations of fishery mortality without high-quality photographs (Rone and Pace 2012); therefore, the ability to separately assess the two species in U.S. Atlantic waters is complex and requires additional information on seasonal spatial distribution. Pilot whales (Globicephala sp.) in the western North Atlantic occur primarily along the continental shelf break from Florida to the Nova Scotia Shelf (Mullin and Fulling 2003). Long-finned and short- finned pilot whales overlap spatially along the mid-Atlantic shelf break between Delaware and the southern flank of Georges Bank (Payne and Heinemann 1993; Rone and Pace 2012). Long-finned pilot whales have occasionally been observed stranded as far south as South Carolina, and short- finned pilot whales have occasionally been observed stranded as far north as Massachusetts (Pugliares et al. 2016). The exact latitudinal ranges of the two species remain uncertain. However, south of Cape Hatteras most pilot whale sightings are expected to be short- Figure 1. Distribution of long-finned (open symbols), short-finned finned pilot whales, while north of (black symbols), and possibly mixed (gray symbols; could be ~42°N most pilot whale sightings are either species) pilot whale sightings from NEFSC and SEFSC expected to be long-finned pilot whales shipboard and aerial surveys during the summers of 1998, 1999, (Figure 1; Garrison and Rosel 2017).
    [Show full text]
  • Whale Identification Posters
    Whale dorsal fins Humpback whale Sperm whale Photo: Nadine Bott Photo: Whale Watch Kaikoura Blue whale Southern right whale (no dorsal) Photo: Nadine Bott Photo: Nadine Bott False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected] Thank you for your help! 24hr emergency hotline Orca Photo: Ailie Suzuki Keep your distance – do not approach closer than 50 m to whales Whale tail flukes Humpback whale Sperm whale Photo: Nadine Bott Photo: Nadine Bott Blue whale Southern right whale Photo: Gregory Smith (CC BY-SA 2.0) Photo: Tui De Roy False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected] Thank you for your help! 24hr emergency hotline Orca Photo: Nadine Bott Keep your distance – do not approach closer than 50 m to whales Whale surface behaviour Humpback whale Sperm whale Photo: Nadine Bott Photo: Whale Watch Kaikoura Blue whale Southern right whale Photo: Jochen Zaeschmar Photo: Don Goodhue False killer whale Pilot whale Photo: Jochen Zaeschmar Photo: Jochen Zaeschmar • Report all marine mammal sightings to DOC via the online sighting form (www.doc.govt.nz/marinemammalsightings) • Email photos of marine mammal sightings to [email protected]
    [Show full text]
  • False Killer Whale Fact Sheet
    False Killer whale (pseudorca crassidens) Adult length: Up to 6m (male)/5m (female) Distribution: coastal and primarily offshore waters in tropical and temperate regions (see map below and Adult weight: up to 2,000kg (m) full list of countries in the detailed species account online at: https://wwhandbook.iwc.int/en/species/false- Newborn: 1.6-1.9m /Unknown killer-whale Dark grey/black body Prominent dorsal fin is Threats: entanglement, contaminants colour with only a faintly usually curved and slightly Habitat: offshore Long, slender head tapers darker cape (variable) rounded at the tip to rounded snout with no Diet: squid, fish pronounced beak Body may be scarred IUCN Conservation status: Data deficient Flukes are small in relation to body size False killer whales can eat Head hangs over large prey species like this mouth Ono/Wahoo. photo courtesy of Daniel Webster, Cascadia Reserach Lighter grey anchor or Long strongly curved flipper Long, slender body “W” shaped patch on with a pronounced corner or chest between the flippers bend giving the flipper an ‘S’ (variable) shape – unique to this species This photo illustrates the Fun Facts bullet-shaped head and typically ‘S’ shaped flip- pers that help observers False killer whales are so named because the to distinguish false killer shape of their skulls, not their external appear- ance, is similar to that of killer whales. whales from pilot whales. Photo courtesy of Paula Like killer whales and sperm whales, false killer Olson/SEFSC/NOAA. whales form stable family groups, and females who no longer produce calves themselves probably help to look after the young of other females False killer whales participate in prey-sharing; a behaviour thought to reinforce social bonds False Killer whale distribution.
    [Show full text]
  • Pseudorca Crassidens) and Nine Other Odontocete Species from Hawai‘I
    Ecotoxicology DOI 10.1007/s10646-014-1300-0 Cytochrome P4501A1 expression in blubber biopsies of endangered false killer whales (Pseudorca crassidens) and nine other odontocete species from Hawai‘i Kerry M. Foltz • Robin W. Baird • Gina M. Ylitalo • Brenda A. Jensen Accepted: 2 August 2014 Ó Springer Science+Business Media New York 2014 Abstract Odontocetes (toothed whales) are considered insular false killer whale. Significantly higher levels of sentinel species in the marine environment because of their CYP1A1 were observed in false killer whales and rough- high trophic position, long life spans, and blubber that toothed dolphins compared to melon-headed whales, and in accumulates lipophilic contaminants. Cytochrome general, trophic position appears to influence CYP1A1 P4501A1 (CYP1A1) is a biomarker of exposure and expression patterns in particular species groups. No sig- molecular effects of certain persistent organic pollutants. nificant differences in CYP1A1 were found based on age Immunohistochemistry was used to visualize CYP1A1 class or sex across all samples. However, within male false expression in blubber biopsies collected by non-lethal killer whales, juveniles expressed significantly higher lev- sampling methods from 10 species of free-ranging els of CYP1A1 whenP compared to adults. Total polychlo- Hawaiian odontocetes: short-finned pilot whale, melon- rinated biphenyl ( PCBs) concentrations in 84 % of false headed whale, pygmy killer whale, common bottlenose killer whalesP exceeded proposed threshold levels for health dolphin, rough-toothed dolphin, pantropical spotted dol- effects, and PCBs correlated with CYP1A1 expression. phin, Blainville’s beaked whale, Cuvier’s beaked whale, There was no significant relationship between PCB toxic sperm whale, and endangered main Hawaiian Islands equivalent quotient and CYP1A1 expression, suggesting that this response may be influenced by agonists other than the dioxin-like PCBs measured in this study.
    [Show full text]
  • False Killer Whale Dorsal Fin Disfigurements As A
    False Killer Whale Dorsal Fin Disfigurements as a Possible Indicator of Long-Line Fishery Interactions in Hawaiian Waters1 Robin W. Baird 2 and Antoinette M. Gorgone3 Abstract: Scarring resulting from entanglement in fishing gear can be used to examine cetacean fishery interactions. False killer whales (Pseudorca crassidens) are known to interact with the Hawai‘i-based tuna and swordfish long-line fish- ery in offshore Hawaiian waters. We examined the rate of major dorsal fin dis- figurements of false killer whales from nearshore waters around the main Hawaiian Islands to assess the likelihood that individuals around the main is- lands are part of the same population that interacts with the fishery. False killer whales were encountered on 11 occasions between 2000 and 2004, and 80 dis- tinctive individuals were photographically documented. Three of these (3.75%) had major dorsal fin disfigurements (two with the fins completely bent over and one missing the fin). Information from other research suggests that the rate of such disfigurements for our study population may be more than four times greater than for other odontocete populations. We suggest that the most likely cause of such disfigurements is interactions with longlines and that false killer whales found in nearshore waters around the main Hawaiian Islands are part of the same population that interacts with the fishery. Two of the animals docu- mented with disfigurements had infants in close attendance and were thought to be adult females. This implies that even with such injuries, at least some fe- males may be able to produce offspring, despite the importance of the dorsal fin in reproductive thermoregulation.
    [Show full text]