Cross Sections for Neutron Inelastic Scattering and (N, 2N) Processes

Total Page:16

File Type:pdf, Size:1020Kb

Cross Sections for Neutron Inelastic Scattering and (N, 2N) Processes AE-88 00 Cross Sections for Neutron Inelastic 00 w < Scattering and (n, 2n) Processes. A Review of Available Experimental and Theoretical Data. M. Leimdörfer, E. Bock and L Arkeryd AKTIEBOLAGET ATOMENERGI STOCKHOLM SWEDEN 1962 AE-88 CROSS SECTIONS FOR NEUTRON INELASTIC SCATTERING AND ( n, 2n ) PROCESSES A Review of Available Experimental and Theoretical Data by M. Leimdörfer, E. Bock and L. Arkeryd Summary: A survey of the present state of knowledge on (n, n') and (n, 2n) reactions has been performed. The result is presented in the form of a main index to references on all elements and several special indices to different theoretical ways of approach, such as the direct-interaction concept, the continuum model (including level density theories), the discrete-level statistical model (Hauser-Feshbach), with a subsection on the optical model, 486 references accompanied with abstracts giving essential information pertaining to the field are supplied in the report. It is intended to keep this review up to date by regular issue of supplements. The abstracts have been arranged alphabetically according to the name of the first author. Printed and distributed in October 1962. Contents: Foreword page I Introduction I - V Main Coordinate Index Arranged According to Elements and Publishing Year VI - XXIV Subject Indices XXV - XXVI Author Index XXVII - XXXV Abstracts 1 - 486 A first edition of this report was issued as VDIT-50 (RFA-74) in Fehruary 1962. In the present, revised, edition such publica- tions as have appeared since the issue of the former report have been included, simultaneously as the.organization has been improved and, we hope, most of the inevitable printing errors have been removed. The authors are indebted to Dr. Robert J. Howerton for pointing out that reports of sphere transmission measurements might be misinterpreted as presenting results of inelastic and not non- elastic cross sections. To clarify this we want to underline that results of such experiments have been included to serve as indica- tions in case the (ti,?)» (n,p), (n,a) and similar cross sections are known and either the (n, n') or (n, 2n) cross sections are known to be ignorable. For Be which has no inelastic scattering the non- elastic cross section publications have been indexed under (n, 2n) data but for other elements they will be found in the (n, n') column of the index. I_ntrjO_duc_tio_n Data on fast neutron inelastic, processes are of great importance in reactor science, especially in the fields of fast reactor analysis, radiation damage theory,, and shielding. During the last few yoars considerable effort, both experimental and theoretical, has been focused at increasing the knowledge of these reactions. Compara- tively few of the results can be found in compilations of general aviiilability, such as those published by the Brookhaven National Laboratory and the Los Alamos Scientific Laboratory (BNL-325, BNL-400, UCRL-5226, UCRL-5351, UCRL-5573). In an attempt II to remedy this situation for the immediate needs of shielding calculations the authors have undertaken the task of compiling references relating to experimental and theoretical work on (n, n') and (n, 2n) processes. For the sake of completeness, no restriction was put on the range of elements, although a few might seem rather exotic in the eyes of the shielding theorist. We hope, thereby, to have produced a survey which should find quite general applications. Several scientists involved in research pertaining to this subject have been contacted personally in an ambition to insure the reliability and completeness of the informa- tion presented by us. The definition of the term "data" was taken as widely as possible. Consequently, this survey comprises information on measurements and calculations on total (n, n"") and (n, 2n) cross-sections and angular and energy distributions of neutrons and gamma rays produced in these processes. Results of non-elastic cross-section measurements have been included in many cases as these contain, inherently, values of the sum of the (n,n') and (n, 2n) cross-sections» Frequent references are given to abstract periodicals such as Bull. Am. Phys. Soc. although the abstracts naturally do not contain the complete information advertized by the title. It was thought, however, that much valuable information can be obtained from such sources and that they give a good view of the state of develop- ment. III Index arranged according to elements. The main index has been prepared with the intention of facili- tating the finding of data on specific elements and» in a few cases, on specific isotopes. The material has been subdivided chronologically according to the publishing year of the reference. All work carried out before 1958 (the year of the 2nd Geneva Conference) was collected in a single bin, a step which seems reasonably justified in view of the result itself. Subject indices. Survey articles giving an expanded view of the state of theoretical or experimental development were collected separately and will be found in a special index. The great amount of literature on theory has been split into several parts. The primary division into the compound nucleus model and the direct interaction concept is a natural consequence of the present-day state of theoretical nuclear physics. As, by far, the greatest effort combined with considerable success, can be noticed in compound interaction calculations a sub-division of this subject is justified. It should not be forgotten, however, that a great deal of evidence for direct interaction has shown up recently as a result of the improved experimental techniques for measuring the angular distribution of the in- elastically scattered neutrons. IV From the compound interaction subject we first peel off the subdivision o£ high compound nucleus and target nucleus exci- tation resulting in the evaporation or continuum model based on purely statistical considerations and first discussed by Weisskopf in 1937. This continuous level description seems to be applicable to most elements from about 5 MeV and upwards. The energy spectrum of scattered particles can be fitted to a Maxwell-Boltzmann distribution with a single parameter, the "nuclear temperature" depending on the nuclear level density. It therefore seems justified to include work carried out especially on the determination of this quantity. In the energy region starting from the ground state of the target nucleus and reaching over the first half-dozen levels of exci- tation the spins and parities of these levels have to be taken into account. The theory of this description has been developed on the basis of a paper by Hauser and Feshbach in 1952. A consider- able amount of calculational work has been laid down at various laboratories, and computer programs for performing these, rather lengthy, calculations are now in frequent use. All work based on the compound nucleus concept is dependent on the availability of one basic quantity, the compound nucleus forma- tion probability, which is obtained from solutions of the Schrödinger equation with various complex potentials, viz. the optical model. Parameters for such calculations are generally obtained from elastic scattering angular distributions, References to optical model calculations with special regard to obtaining the "penetra- bilities" necessary for Hauser-Feshbach calculations have been sorted out separately. v A number of compilations of experimental results, sometimes with theoretical inter- and extrapolations to give data on one or several elements in a systematical form suitable for transport calculations have appeared lately, but their sources of basic data, within the scope of this survey, are not generally of recent date. References to such compilation reports are given in a separate index at the end of the subject indices section. Finally, it should be remarked that the majority of the abstracts given are those of the original authors themselves, although, in many cases, abstracts giving information pertaining to the subject of this report have been specially prepared. Acknowledgements: The authors are very much indebted to the following scientists for giving information regarding their work and also for giving hints for further trailing of material. Dr. Lawrence Cranberg, Los Alamos Scientific Laboratory Dr. Cecil R. Lubitz, Knolls Atomic Power Laboratory Dr. Douglas M. Van Patter, Bartol Research Foundation Dr. David B. Thomson, Los Alamos Scientific Laboratory. VI MAIN COORDINATE INDEX ARRANGED ACCORDING TO ELEMENTS AND PUBLISHING YEAR (Abbreviation; b 1958 = before 1958) Element Inelastic scattering (n, 2n) 1 D2 - 1961: 89, 95, 249 I960: 204 1958: 45 2 He 1958; 391 1961: 89 1958: 420 3 Li 1961: 310, 112 1961: 310 1960; 349, 350 1959: 72, 486 1958: 207 1958: 186 4 Be 1961: 89, 95, 179, 248, 249, 112 I960; 251, 267, 28, 29, 266 1959: 30, 327, 486, 304, 268 1958: 30, 214, 325, 207, 216, 18, 45, 441, 48, b 1958: 212, 175, 122, 56, 54, 431, 39(BeO), 174, 376 VII Element Inelastic scattering (n, 2n) """"•••" »•••••- 5 B 1961: 17, 89, 179, 287, 112 1960: 129 1958: 269, 271, 216 1958: 45 b 1958: 212, 128, 175, 55, 218, 39, 354 6 C 1962: 64, 423 1961: 17, 20, 76, 1961: 179, 78 89, 179, 475, 249, 104, 477, 112 1960: 14, 92, 130, 133, 231, 349, 350 1959: 327, 411, 486, 452 1958: 18, 30, 40, 1958: 19, 45 110, 214, 215, 269, 271, 325, 457, 207, 353 b 1958: 212, 250, 56, b 1958: 79 128, 175, 322, 54, 55, 210, 246, 431, 468, 330, 433, 39, 354 7 N 1962: 64, 423 1961: 20, 89, 99, 1961: 89, 99, 367, 252 78 i960: 163 1959: 72, 197, 225 1958: 71, 271 1958: 19, 45, 365 b 1958: 212, 293, 122 b 1958: 345 VIII Element Inelastic scattering (n, 2n) N b 1958; 128, 175, 420, 354 O 1961: 20, 89, 99, 1961: 99, 179, 78, 179, 249, 112 I960; 19, 92, 133(H2o), 349, 350 1959: 72 1958; 71, 271, 428 b 1958; 212, 122, 128, 175, 433, 109, F 1961; 89, 367, 78 1958; 19, 45 b 1958; 345 11 Na 1962: 446 1961: 17, 89, 287, 1961: 89, 449, 289 346, 443, 445, 442, 449, 427.
Recommended publications
  • Part B. Radiation Sources Radiation Safety
    Part B. Radiation sources Radiation Safety 1. Interaction of electrons-e with the matter −31 me = 9.11×10 kg ; E = m ec2 = 0.511 MeV; qe = -e 2. Interaction of photons-γ with the matter mγ = 0 kg ; E γ = 0 eV; q γ = 0 3. Interaction of neutrons-n with the matter −27 mn = 1.68 × 10 kg ; En = 939.57 MeV; qn = 0 4. Interaction of protons-p with the matter −27 mp = 1.67 × 10 kg ; Ep = 938.27 MeV; qp = +e Note: for any nucleus A: mass number – nucleons number A = Z + N Z: atomic number – proton (charge) number N: neutron number 1 / 35 1. Interaction of electrons with the matter Radiation Safety The physical processes: 1. Ionization losses inelastic collisions with orbital electrons 2. Bremsstrahlung losses inelastic collisions with atomic nuclei 3. Rutherford scattering elastic collisions with atomic nuclei Positrons at nearly rest energy: annihilation emission of two 511 keV photons 2 / 35 1. Interaction of electrons with1.E+02 the matter Radiation Safety ) 1.E+03 -1 Graphite – Z = 6 .g 2 1.E+01 ) Lead – Z = 82 -1 .g 2 1.E+02 1.E+00 1.E+01 1.E-01 1.E+00 collision 1.E-02 radiative collision 1.E-01 stopping pow er (MeV.cm total radiative 1.E-03 stopping pow er (MeV.cm total 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E-02 energy (MeV) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Electrons – stopping power 1.E+02 energy (MeV) S 1 dE ) === -1 Copper – Z = 29 ρρρ ρρρ dl .g 2 1.E+01 S 1 dE 1 dE === +++ ρρρ ρρρ dl coll ρρρ dl rad 1 dE 1.E+00 : mass stopping power (MeV.cm 2 g.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]
  • Particles and Deep Inelastic Scattering
    Heidi Schellman Northwestern Particles and Deep Inelastic Scattering Heidi Schellman Northwestern University HUGS - JLab - June 2010 June 2010 HUGS 1 Heidi Schellman Northwestern k’ k q P P’ A generic scatter of a lepton off of some target. kµ and k0µ are the 4-momenta of the lepton and P µ and P 0µ indicate the target and the final state of the target, which may consist of many particles. qµ = kµ − k0µ is the 4-momentum transfer to the target. June 2010 HUGS 2 Heidi Schellman Northwestern Lorentz invariants k’ k q P P’ 2 2 02 2 2 2 02 2 2 2 The 5 invariant masses k = m` , k = m`0, P = M , P ≡ W , q ≡ −Q are invariants. In addition you can define 3 Mandelstam variables: s = (k + P )2, t = (k − k0)2 and u = (P − k0)2. 2 2 2 2 s + t + u = m` + M + m`0 + W . There are also handy variables ν = (p · q)=M , x = Q2=2Mµ and y = (p · q)=(p · k). June 2010 HUGS 3 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ The beam k is going in the z direction. Confine the scatter to the x − z plane. µ k = (Ek; 0; 0; k) P µ = (M; 0; 0; 0) 0µ 0 0 0 k = (Ek; k sin θ; 0; k cos θ) qµ = kµ − k0µ June 2010 HUGS 4 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ 2 2 2 s = ECM = 2EkM + M − m ! 2EkM 2 0 0 2 02 0 t = −Q = −2EkEk + 2kk cos θ + mk + mk ! −2kk (1 − cos θ) 0 ν = (p · q)=M = Ek − Ek energy transfer to target 0 y = (p · q)=(p · k) = (Ek − Ek)=Ek the inelasticity P 02 = W 2 = 2Mν + M 2 − Q2 invariant mass of P 0µ June 2010 HUGS 5 Heidi Schellman Northwestern In the CM frame k’ k q P P’ The beam k is going in the z direction.
    [Show full text]
  • Chemical Applications of Inelastic X-Ray Scattering
    BNL- 68406 CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING H. Hayashi and Y. Udagawa Research Institute for Scientific Measurements Tohoku University Sendai, 980-8577, Japan J.-M. Gillet Structures, Proprietes et Modelisation des Solides UMR8580 Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex, France W.A. Caliebe and C.-C. Kao National Synchrotron Light Source Brookhaven National Laboratory Upton, New York, 11973-5000, USA August 2001 National Synchrotron Light Source Brookhaven National Laboratory Operated by Brookhaven Science Associates Upton, NY 11973 Under Contract with the United States Department of Energy Contract Number DE-AC02-98CH10886 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy; completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Th.e views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING H.
    [Show full text]
  • Relative Merits and Limiting Factors for X-Ray and Electron Microscopy of Thick, Hydrated Organic Materials (2020 Revised Version)
    Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials (2020 revised version) Ming Du1, and Chris Jacobsen2;3;4;∗ 1Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA 2Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne IL 60439, USA 3Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, USA 4Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston IL 60208, USA ∗Corresponding author; Email: [email protected] Abstract Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated mate- rials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called \zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior charac- teristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging.
    [Show full text]
  • Basic Elements of Neutron Inelastic Scattering
    2012 NCNR Summer School on Fundamentals of Neutron Scattering Basic Elements of Neutron Inelastic Scattering Peter M. Gehring National Institute of Standards and Technology NIST Center for Neutron Research Gaithersburg, MD USA Φs hω Outline 1. Introduction - Motivation - Types of Scattering 2. The Neutron - Production and Moderation - Wave/Particle Duality 3. Basic Elements of Neutron Scattering - The Scattering Length, b - Scattering Cross Sections - Pair Correlation Functions - Coherent and Incoherent Scattering - Neutron Scattering Methods (( )) (( )) (( )) (( )) 4. Summary of Scattering Cross Sections ω0 ≠ 0 (( )) (( )) (( )) (( )) - Elastic (Bragg versus Diffuse) (( )) (( )) (( )) (( )) - Quasielastic (Diffusion) - Inelastic (Phonons) ω (( )) (( )) (( )) (( )) Motivation Structure and Dynamics The most important property of any material is its underlying atomic / molecular structure (structure dictates function). Bi2Sr2CaCu2O8+δ In addition the motions of the constituent atoms (dynamics) are extremely important because they provide information about the interatomic potentials. An ideal method of characterization would be one that can provide detailed information about both structure and dynamics. Types of Scattering How do we “see”? Thus scattering We see something when light scatters from it. conveys information! Light is composed of electromagnetic waves. λ ~ 4000 A – 7000 A However, the details of what we see are ultimately limited by the wavelength. Types of Scattering The tracks of a compact disk act as a diffraction grating, producing a separation of the colors of white light. From this one can determine the nominal distance between tracks on a CD, which is 1.6 x 10-6 meters = 16,000 Angstroms. To characterize materials we must determine the underlying structure. We do this by using d the material as a diffraction grating.
    [Show full text]
  • Theory of Inelastic Lepton-Nucleus Scattering Granddon D
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1988 Theory of inelastic lepton-nucleus scattering Granddon D. Yen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Nuclear Commons Recommended Citation Yen, Granddon D., "Theory of inelastic lepton-nucleus scattering " (1988). Retrospective Theses and Dissertations. 9746. https://lib.dr.iastate.edu/rtd/9746 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a IT x 23" black and white photographic print for an additional charge.
    [Show full text]
  • Inelastic Scattering of Electrons in Solids
    Scanning Electron Microscopy Volume 1982 Number 1 1982 Article 2 1982 Inelastic Scattering of Electrons in Solids C. J. Powell National Bureau of Standards Follow this and additional works at: https://digitalcommons.usu.edu/electron Part of the Biology Commons Recommended Citation Powell, C. J. (1982) "Inelastic Scattering of Electrons in Solids," Scanning Electron Microscopy: Vol. 1982 : No. 1 , Article 2. Available at: https://digitalcommons.usu.edu/electron/vol1982/iss1/2 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Electron Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Electron Beam Interactions With Solids (Pp. 19-3 I) SEM, Inc., AMF O'Hare (Chicago), IL 60666, U.S.A. INELASTIC SCATTERING OF ELECTRONS IN SOLIDS* C.J. POWELL Surface Science Division, National Bureau of Standards Washington, DC 20234 Tel. 301-921-2188 *Contribution of the National Bureau of Standards, not sub­ ject to copyright. ABSTRACT 1. INTRODUCTION The principal mechanisms and available data for the in­ Electrons incident on a solid or generated internally within elastic scatter ing of electrons in solids are reviewed. The pro­ a solid can be scattered elastically (with a change of momen­ cesses relevant for electron-probe microanalysis, electron tum but without change of energy) or inelastically (with a energy-loss spectroscopy, Auger-electron spectroscopy, and change of energy). This article reviews the principal mechan­ x-ray photoelectron spectroscopy are described and examples isms and available data for the inelastic scattering of elec­ of relevant electron energy-loss data are shown .
    [Show full text]
  • Introduction to Deep Inelastic Scattering: Past and Present
    Introduction to Deep Inelastic Scattering: past and present 24/03/2012 Joël Feltesse - DIS 2012 1 Outlook • Glorious surprises at SLAC • High precision fixed target data and new themes (Spin and Nuclear effects) • Discoveries from HERA • High precision and extension of the field • Conclusions 24/03/2012 Joël Feltesse - DIS 2012 2 Deep Inelastic Scattering Lepton-Nucleon Scattering Large MX = Inelastic Large Q2 = Deep 24/03/2012 Joël Feltesse - DIS 2012 3 Two major surprises observed in late 1967 at SLAC Very weak Q2 dependence Scaling at non asymptotic low Q2 values [W.K.H. Panovsky, HEP Vienna,1968] 24/03/2012 Joël Feltesse - DIS 2012 4 Why was it such a surprise? 24/03/2012 Joël Feltesse - DIS 2012 5 Before 1967 elastic scattering experiments (Hofstater) had demonstrated that the proton is not a point but an extensive structure (Dick Taylor, Nobel Prize Lecture) (almost) Nobody expected that the study of the continuum at high W would be so crucial in the history of high energy physics. At DESY, Brasse et al. did notice in june 1967 a surprising slow Q 2 dependence at high W that they tentatively attributed to resonances of high angular momentum. (F. Brasse et al. , DESY, 1967) Joël Feltesse - DIS 2012 6 Bjorken as lone prophet Formal desciption of scaling but « a more physical description is without question needed » (Bjorken, 1966) We can understand the sum rules in a very simple way (Bjorken, 1967). We suppose that the nucleon consists of a certain number of ‘ elementary constituents ’ « It will be of interest to look at very large
    [Show full text]
  • Deep Inelastic Scattering of Polarized Electrons by Polarized 3He and The
    SLACPUB Septemb er Deep Inelastic Scattering of Polarized Electrons by Polarized He and the Study of the Neutron Spin Structure The E Collab oration PL Anthony RG Arnold HR Band H Borel PE Bosted V Breton GD Cates TE Chupp FS Dietrich J Dunne R Erbacher J Fellbaum H Fonvieille R Gearhart R Holmes EW Hughes JR Johnson D Kawall C Kepp el SE Kuhn RM LombardNelsen J Marroncle T Maruyama W Meyer ZE Meziani H Middleton J Morgenstern NR Newbury GG Petratos R Pitthan R Prep ost Y Roblin SE Ro ck SH Rokni G Shapiro T Smith PA Souder M Sp engos F Staley LM Stuart ZM Szalata Y Terrien AK Thompson JL White M Wo o ds J Xu CC Young G Zapalac American University Washington DC LPC INPCNRS Univ Blaise Pascal F Aubiere Cedex France University of California and LBL Berkeley CA California Institute of Technology Pasadena CA hep-ex/9610007 14 Oct 1996 Centre dEtudes de Saclay DAPNIASPhN F GifsurYvette France Kent State University Kent OH Lawrence Livermore National Lab oratory Livermore CA University of Michigan Ann Arb or MI National Institute of Standards and Technology Gaithersburg MD Old Dominion University Norfolk VA Princeton University Princeton NJ Stanford Linear Accelerator Center Stanford CA Stanford University Stanford CA Syracuse University Syracuse NY Work supp orted by Department of Energy contract DEACSF Temple University Philadelphia PA University of Wisconsin Madison WI Abstract The neutron longitudinal and transverse
    [Show full text]
  • Deep Inelastic Scattering (DIS)
    Deep Inelastic Scattering (DIS) Ingo Schienbein Laboratoire de Physique UGA/LPSC Grenoble Campus Subatomique et de Cosmologie Universitaire CTEQ School on QCD and Electroweak Phenomenology Monday, October 8, 12 EAOM LPSC, Serge Kox, 20/9/2012 Mayaguez, Puerto Rico, USA 18-28 June 2018 Tuesday 19 June 18 Disclaimer This lecture has profited a lot from the following resources: • The text book by Halzen&Martin, Quarks and Leptons • The text book by Ellis, Stirling & Webber, QCD and Collider Physics • The lecture on DIS at the CTEQ school in 2012 by F. Olness • The lecture on DIS given by F. Gelis Saclay in 2006 Tuesday 19 June 18 Lecture 1 1. Kinematics of Deep Inelastic Scattering 2. Cross sections for inclusive DIS (photon exchange) 3. Longitudinal and Transverse Structure functions 4. CC and NC DIS 5. Bjorken scaling 6. The Parton Model 7. Which partons? 8. Structure functions in the parton model Tuesday 19 June 18 1. Kinematics of Deep Inelastic Scattering Tuesday 19 June 18 What is inside nucleons? ‣ Basic idea: smash a well known probe on a nucleon or nucleus in order to try to figure out what is inside ‣ Photons are well suited for that purpose because their interactions are well understood ‣ Deep inelastic scattering: collision between an electron and a nucleon or nucleus by exchange of a virtual photon Note: the virtual photon is spacelike: q 2 < 0 e- • q 2 2 2 2 • Deep: Q = -q >> MN ~1 GeV X 2≣ 2 2 p , A • Inelastic: W MX > MN ‣ Variant: collision with a neutrino, by exchange of a Z0 or W± Tuesday 19 June 18 18 Masses in deep inelastic scattering Kinematic variables Figure 2.1: Kinematics of DIS in the single exchange boson approximation.
    [Show full text]
  • Lec13 Inelastic-Scattering.Pdf
    Inelastic Scattering Ken Voss, Ocean Optics Summer class, 2017 Introduction Remember your freshman physics class and all that time you spent learning about collisions? Two types of collisions: elastic and in-elastic. What was the difference? Introduction Remember your freshman physics class and all that time you spent learning about collisions? Two types of collisions: elastic and in-elastic. What was the difference? Elastic collisions conserved Kinetic energy and momentum, inelastic just momentum….was energy lost? Introduction So elastic scattering: photons come in and out of the process with the same energy (wavelength) In-elastic scattering: photons come in with one wavelength and leave with another wavelength. (remember Compton scattering of photons?). Difference between this and fluorescence is basically a short intermediate time for the event (which leads to other effects). prepared samples (see Fig. 1). All measurements were when recording Raman and luminescence spectra. done at a temperature of 21°C. This background-correcting spectrum was sub- A schematic for the experimental setup is shown in tracted from the raw experimental data. In the case Fig. 1. Laser light of wavelength 532 nm with a of Raman spectra, a straight line has been fitted in polarization controlled through the λ∕2 waveplate the spectral region from 700 to 745 nm. This straight was reflected by a dichroic mirror and focused onto line is shown in Fig. 2 and has been also subtracted the sample by a microscope objective. The degree from the spectrum. This subtraction has affected the of linear polarization of the incoming laser light is final estimate for the scattering coefficient by less at least better than 99.9%.
    [Show full text]