The Gravity of Hadrons

Total Page:16

File Type:pdf, Size:1020Kb

The Gravity of Hadrons PHYSICS IN ACTION dimension can tell you that QCD is asymp- totically free. Other strings with different The gravity of hadrons vibrations or motions, for instance, can des- cribe the properties of states in which two Researchers have calculated the masses of several particles or more gluons are bound together. The duality therefore provides a strict mapping by exploiting a connection between string theory and QCD between each QCD state and a particular dual string. From Nick Evans in the Department of Physics, ICAR In the last few years theorists have turned V University of Southampton, UK AC this new theoretical tool to the question M AN I of whether we can describe the physics of In recent years particle physicists have real- real QCD. But in order to fully account ized that many theories they previously for the plethora of particles that we know thought were distinct are actually copies of to be bound by the strong nuclear force, the one another that describe the same physical dual theory has to be extended so that it phenomena. The most remarkable example includes quarks. of this “duality” has been the connection between string theory and the Standard Something from nothing Model of particle physics. The most versatile construction for inclu- String theory describes the subatomic ding quarks in the gravitational dual was world in terms of lengths and loops of infi- developed by Andreas Karch and co-wor- nitesimal strings that exist in higher spatial kers at the University of Seattle in 2002. dimensions than our familiar three. Differ- Using the same mapping rules between ent vibrations or modes of these strings re- QCD and strings developed for the gluon- present different particle properties, and only dual theory, the researchers included at long distances the strings appear as if a new sector of strings in the gravity theory they are indeed point-like. Crucially, these that had the correct properties, such as modes require the curved space–time of mass, to describe quarks. The next step was general relativity,which is a theory of grav- to find out whether the quarks triggered ity. String theory is thus viewed as a candi- the vacuum of the gluon-only theory to fill date for a “theory of everything” that unites with quark–antiquark pairs. gravity with the three other fundamental Asymptotic freedom has dramatic con- forces of nature: electromagnetism plus the Duality could simplify our understanding of the way sequences for the way QCD describes the weak and the strong nuclear forces. quarks are bound in hadrons such as neutrons. vacuum. You might think that the vacuum The hugely successful Standard Model would simply be empty, but according to describes these three forces in terms of gauge in computing capabilities have enabled re- the uncertainty principle empty space can theories, in which the interactions between searchers to thoroughly test the theory (see borrow a little energy for very short periods elementary particles are mediated by “gauge Physics World July pp22–23). But in 1997 of time. Einstein’s famous mass–energy bosons”. For example, in the gauge theory Juan Maldacena of the Institute for Ad- relation then tells us that this energy can be of electromagnetism – quantum electrody- vanced Study in Princeton conjectured that used to create particles such as a quark– namics or QED – charged particles such as the physics of quarks and gluons could antiquark pair. electrons interact via the exchange of pho- be equally well described in terms of the The strength of the attraction between tons. Gravity,however, is not included in the space–time geometry,black holes and grav- distant quarks means that these “virtual” Standard Model. ity waves of a “dual” string theory. This particles become real and long-lived. The Although there is no firm evidence for dual theory is weakly coupled, rather than vacuum therefore fills rapidly until the string theory or for higher dimensions, dual- strongly coupled like QCD, which means quarks are so close together that asymp- ity proposes that strings might offer a new we know how to calculate observables such totic freedom kicks in and the production description of the gauge theory of the strong as particle masses using it. In other words, of further quark pairs is no longer energet- force: quantum chromodynamics (QCD). Maldacena’s duality suggested that every- ically favourable. The signal we have for thing about the QCD particle spectrum this cut-off behaviour is simply the proton Strongly coupled might be calculable from the dual theory mass, which is 100 times larger than the In QCD the interactions between the six with no more than a pencil and paper! combined mass of its constituent quarks known quarks (up, down, charm, strange, Early work on this correspondence be- (two up quarks and a down quark) due to bottom and top) are mediated by massless tween QCD and string theory was per- their interactions with the mire of vacuum gluons. However, unlike the forces of elec- formed with a mathematical relative of quark pairs. tromagnetism and gravity – which decrease QCD that included only gluons, in order In 2004 James Babington and co-workers rapidly with distance – the strong nuclear to make the calculations simpler. This dual at Humboldt University in Berlin along with force gets stronger the further two quarks are theory,which automatically includes gravity, the present author (and, in a parallel ana- separated. Indeed, the interaction between contains strings that exist in four spatial di- lysis, Martin Kruczenski and co-workers at widely separated quarks is so strong that mensions. As you move in the fourth di- the Perimeter Institute in Canada) showed the quarks can never be freed from one rection of this “anti-de-Sitter” space–time, that one of the extra string distributions another, and are instead confined into pro- lengths in the remaining three directions in- introduced by Karch and co-workers cor- tons, neutrons and other hadrons. On the crease (see Physics World May 2003 pp35–38). responds to a non-zero density of quark– other hand, the strong interaction switches To the surprise of many theorists, the antiquark pairs in the dual theory. In other off completely at very short distances. extra dimension in this dual gravitational words, the gravitational description indeed This “asymptotic freedom” makes the theory turns out to account for the different appeared to describe the QCD vacuum, equations of QCD extremely difficult to length scales in QCD. For example, the den- and theorists could begin to study hadrons solve, and it is only recently that advances sity of strings at different places in the fourth for the first time. 26 physicsweb.org P HYSICS W ORLD A UGUST 2005 PHYSICS IN ACTION The first hadron we looked at was a type N (2600) of meson called a pion, which is a bound HIGHLIGHTS FROM state of either an up or down quark plus an antiquark. In QCD such a state corresponds N (2250) PHYSICSWEB to a small area of space where the quark– N (2190) antiquark density is greater than it is in the N (1700) New look for hydrogen storage vacuum. But the gravitational theory des- mass N (1675) N (2220) Physicists in the US, Canada and cribes the pion as an area of space in which N (1650) Germany have proposed a novel there is an excess in the density of strings that N (1720) technique for storing hydrogen. The N (1680) travels through anti-de-Sitter space like a N (1535) method involves storing the gas between wave. The gravitational technique again N (1520) layers of graphite, and could help in the turned out to be a success, reproducing, for N (939) quest for practical hydrogen-storage example, the experimental observation that 0 2 4 6 devices for fuel cells. John Tse of the the pion mass depends on the square root orbital angular momentum, L University of Saskatchewan and of the mass of the constituent quarks. Mass agreement – using a “gravitational dual” co-workers have shown that thin sheets These results were all obtained in simple theory that can also describe QCD, Stanley Brodsky of carbon atoms spaced between 6–7 Å gravitational duals that contained only one and co-workers were able to predict the masses of apart can store hydrogen at room certain baryons called nucleons, N. These particles type of quark. But formally deriving the 1 temperature and moderate pressures. can have a spin angular momentum of /2 (dashed 3 string theory of a more realistic gravita- curve) or of /2 (solid curve) and each state can also tional dual of QCD – one that includes up, have various values of orbital angular momentum Triple-star status for exoplanet down and strange quarks, for example – has (horizontal axis). For example, the L = 0 state is the A planet with a mass similar to that of turned out to be hard. Recently, however, neutron, N (939), where the number in brackets Jupiter has been discovered orbiting a Stanley Brodsky of Stanford University, represent its mass in mega-electron-volts. The star in the constellation Cygnus. Josh Erlich of Seattle University and Le- observed masses of the nucleons are shown by Maciej Konacki and colleagues found the points. Importantly, the gravitational-dual andro De Rold of the University of Barce- theory correctly predicts that states differing by that the new planet orbits the main star of lona independently took a more practical one unit of L on the solid and dotted curves have a triple-star system every 3.35 days, which approach and simply guessed what the grav- the same mass.
Recommended publications
  • Vacuum As a Physical Medium
    cu - TP - 626 / EERNIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I.12RI=IR1I;s. QI.; 621426 VACUUM AS A PHYSICAL MEDIUM (RELATIVISTIC HEAVY ION COLLISIONS AND THE BOLTZMANN EQUAT ION) T. D. LEE COLUMBIA UNIvERsI1Y, New Y0RI<, N.Y. 10027 A LECTURE GIVEN AT THE INTERNATIONAL SYMPOSIUM IN HONOUR OF BOLTZMANN'S 1 50TH BIRTHDAY, FEBRUARY 1994. THIS RESEARCH WAS SUPPORTED IN PART BY THE U.S. DEPARTMENT OF ENERGY. OCR Output OCR OutputVACUUM AS A PHYSICAL MEDIUM (Relativistic Heavy Ion Collisions and the Boltzmann Equation) T. D. Lee Columbia University, New York, N.Y. 10027 It is indeed a privilege for me to attend this international symposium in honor of Boltzmann's 150th birthday. ln this lecture, I would like to cover the following topics: 1) Symmetries and Asymmetries: Parity P (right—left symmetry) Charge conjugation C (particle-antiparticle symmetry) Time reversal T Their violations and CPT symmetry. 2) Two Puzzles of Modern Physics: Missing symmetry Vacuum as a physical medium Unseen quarks. 3) Relativistic Heavy Ion Collisions (RHIC): How to excite the vacuum? Phase transition of the vacuum Hanbury-Brown-Twiss experiments. 4) Application of the Relativistic Boltzmann Equations: ARC model and its Lorentz invariance AGS experiments and physics in ultra-heavy nuclear density. OCR Output One of the underlying reasons for viewing the vacuum as a physical medium is the discovery of missing symmetries. I will begin with the nonconservation of parity, or the asymmetry between right and left. ln everyday life, right and left are obviously distinct from each other. Our hearts, for example, are usually not on the right side. The word right also means "correct,' right? The word sinister in its Latin root means "left"; in Italian, "left" is sinistra.
    [Show full text]
  • Arxiv:1202.1557V1
    The Heisenberg-Euler Effective Action: 75 years on ∗ Gerald V. Dunne Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA On this 75th anniversary of the publication of the Heisenberg-Euler paper on the full non- perturbative one-loop effective action for quantum electrodynamics I review their paper and discuss some of the impact it has had on quantum field theory. I. HISTORICAL CONTEXT After the 1928 publication of Dirac’s work on his relativistic theory of the electron [1], Heisenberg immediately appreciated the significance of the new ”hole theory” picture of the quantum vacuum of quantum electrodynamics (QED). Following some confusion, in 1931 Dirac associated the holes with positively charged electrons [2]: A hole, if there were one, would be a new kind of particle, unknown to experimental physics, having the same mass and opposite charge to an electron. With the discovery of the positron in 1932, soon thereafter [but, interestingly, not immediately [3]], Dirac proposed at the 1933 Solvay Conference that the negative energy solutions [holes] should be identified with the positron [4]: Any state of negative energy which is not occupied represents a lack of uniformity and this must be shown by observation as a kind of hole. It is possible to assume that the positrons are these holes. Positron theory and QED was born, and Heisenberg began investigating positron theory in earnest, publishing two fundamental papers in 1934, formalizing the treatment of the quantum fluctuations inherent in this Dirac sea picture of the QED vacuum [5, 6]. It was soon realized that these quantum fluctuations would lead to quantum nonlinearities [6]: Halpern and Debye have already independently drawn attention to the fact that the Dirac theory of the positron leads to the scattering of light by light, even when the energy of the photons is not sufficient to create pairs.
    [Show full text]
  • Simple Model for the QCD Vacuum
    A1110? 31045(3 NBSIR 83-2759 Simple Model for the QCD Vacuum U S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Radiation Research Washington, DC 20234 Centre d'Etudes de Bruyeres-le-Chatel 92542 Montrouge CEDEX, France July 1983 U S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANOAROS - - - i rx. NBSIR 83-2759 SIMPLE MODEL FOR THE QCD VACUUM m3 C 5- Michael Danos U S DEPARTMENT OF COMMERCE National Bureau of Standards Center for Radiation Research Washington, DC 20234 Daniel Gogny and Daniel Irakane Centre d'Etudes de Bruyeres-le-Chatel 92542 Montrouge CEDEX, France July 1983 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director SIMPLE MODEL FOR THE QCD VACUUM Michael Danos, Nastional Bureau of Standards, Washington, D.C. 20234, USA and Daniel Gogny and Daniel Irakane Centre d' Etudes de Bruyeres-le-Chatel , 92542 Montrouge CEDEX, France Abstract B.v treating the high-momentum gluon and the quark sector as an in principle calculable effective Lagrangian we obtain a non-perturbati ve vacuum state for OCD as an infrdred gluon condensate. This vacuum is removed from the perturbative vacuum by an energy gap and supports a Meissner-Ochsenfeld effect. It is unstable below a minimum size and it also suggests the existence of a universal hadroni zation time. This vacuum thus exhibits all the properties required for color confinement. I. Introduction By now it is widely believed that the confinement in QCD, in analogy with superconductivity, results from the existence of a physical vacuum which is removed from the remainder of the spectrum by an energy density gap and which exhibits a Meissner-Ochsenfeld effect.
    [Show full text]
  • Vacuum Energy
    Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant.
    [Show full text]
  • Quantum Optics Properties of QCD Vacuum
    EPJ Web of Conferences 164, 07030 (2017) DOI: 10.1051/epjconf/201716407030 ICNFP 2016 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2016 Quantum Optics Properties of QCD Vacuum V. Kuvshinov1,a, V. Shaparau1,b, E. Bagashov1,c 1Joint Institute for Power and Nuclear Research - Sosny National Academy of Science of Belarus PO box 119, 220109 Minsk, BELARUS Abstract. Theoretical justification of the occurrence of multimode squeezed and entan- gled colour states in QCD is given. We show that gluon entangled states which are closely related with corresponding squeezed states can appear by the four-gluon self-interaction. Correlations for the collinear gluons are revealed two groups of the colour correlations which is significant at consider of the quark-antiquark pair productions. It is shown that the interaction of colour quark with the stochastic vacuum of QCD leads to the loss of information on the initial colour state of the particle, which gives a new perspective regarding the confinement of quarks phenomenon. The effect is demonstrated for a single particle and in the multiparticle case is proposed. Quantum characteristics (purity and von Neumann entropy) are used to analyse the pro- cess of interaction. 1 Introduction + Many experiments at e e−, pp¯, ep colliders are devoted to hadronic jet physics, since detailed studies of jets are important for better understanding and testing both perturbative and non-perturbative QCD and also for finding manifestations of new physics. Although the nature of jets is of a universal + character, e e−- annihilation stands out among hard processes, since jet events admit a straightforward and clear-cut separation in this process.
    [Show full text]
  • Marc Scott Four Forces of Nature How Strong Is the Strong Force? the Vacuum Isn't Empty Understanding the QCD Vacuum Holography
    TheThe StrangeStrange WorldWorld ofof thethe Marc Scott StrongStrong ForceForce STAG Research Centre & Physics and Astronomy UnderstandingUnderstanding whywhy thethe vacuumvacuum isn'tisn't soso emptyempty Su(ervisor: Prof. Nick Evans AA goodgood wayway toto trytry andand understandunderstand thethe QCDQCD vacuumvacuum isis toto simplifysimplify thethe FourFour forcesforces ofof naturenature UnderstandingUnderstanding situationsituation toto aa twotwo quarkquark QCD,QCD, i.e.i.e. thethe twotwo lightestlightest -- upup (u)(u) andand downdown (d).(d). SinceSince thethe vacuumvacuum inin QCDQCD isis aa seethingseething realmrealm ofof quark-anti-quarkquark-anti-quark (( )) Im%!e- /.01NASA time thethe QCDQCD vacuumvacuum pairspairs –– withwith onlyonly twotwo quarksquarks toto choosechoose fromfrom (u(u oror d),d), therethere areare onlyonly 44 BIG combinationscombinations toto pick;pick; BANG GRAVITYGRAVITY Orbits. Downhill Movement. Bin in! o" #$%r&s insi e n$'leons. EachEach ofof thethe fourfour possiblepossible combinationscombinations hashas aa certaincertain probabilityprobability givengiven byby thethe vacuum,vacuum, Bin in! o" n$'lei. whichwhich variesvaries inin space.space. WeWe cancan representrepresent thisthis onon 4-dimensional4-dimensional grid,grid, eacheach axisaxis beingbeing aa Were all the N$'le%r (ower. forces of nature STRONGSTRONG combination.combination. EachEach locationlocation inin spacespace isis givengiven anan arrowarrow whichwhich isis placedplaced inin thethe 4-D4-D grid,grid, united at the thethe moremore thethe arrowarrow pointspoints inin thethe directiondirection ofof aa givengiven combinationcombination thethe moremore probableprobable beginning of the itit isis (see(see diagram).diagram). universe? Bet% De'%). In fact the vacuum is a little more WEAKWEAK The usual method for analysing interacting systems is constrained. In order to obtain the lowest TheThe usualusual methodmethod forfor analysinganalysing interactinginteracting systemssystems isis perturbation theory, but this relies on the strength of M%!netism.
    [Show full text]
  • Several Effects Unexplained by QCD
    universe Article Several Effects Unexplained by QCD Igor M. Dremin 1,2 1 Lebedev Physics Institute, Moscow 119991, Russia; [email protected] 2 National Research Nuclear University MEPhI, Moscow 115409, Russia Received: 13 March 2018; Accepted: 10 May 2018; Published: 16 May 2018 Abstract: Several new experimental discoveries in high energy proton interactions, yet unexplained by QCD, are discussed in the paper. The increase of the cross sections with increasing energy from ISR to LHC, the correlation between it and the behavior of the slope of the elastic diffraction cone, the unexpected increase of the survival probability of protons in the same energy range, the new structure of the elastic differential cross section at rather large transferred momenta (small distances) and the peculiar ridge effect in high multiplicity inelastic processes are still waiting for QCD interpretation and deeper insight in vacuum. Keywords: proton; quark; gluon; QCD; vacuum; cross section PACS: 13.75 Cs; 13.85 Dz 1. Introduction Cosmic-ray studies revealed many new unexpected features of particle interactions. The invention of particle accelerators and, later on, colliders helped to learn paticle properties in more detail. Nowadays higher energy results come out from the Large Hadron Collider (LHC). Proton beams collide there with energy ps up to 13 TeV in the center-of-mass system that exceeds their own rest mass by more than 4 orders of magnitude. The main goal of the particle studies (and, in particular, those at LHC) is to understand the forces governing the particle interactions and the internal structure of the fundamental blocks of matter1.
    [Show full text]
  • Quantum Vacuum Structure and Cosmology
    Quantum Vacuum Structure and Cosmology Johann Rafelski, Lance Labun, Yaron Hadad, Departments of Physics and Mathematics, The University of Arizona 85721 Tucson, AZ, USA, and Department f¨ur Physik, Ludwig-Maximillians-Universit¨at M¨unchen Am Coulombwall 1, 85748 Garching, Germany Pisin Chen, Leung Center for Cosmology and Particle Astrophysics and Graduate Institute of Astrophysics and Department of Physics, National Taiwan University, Taipei, Taiwan 10617, and Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, U.S.A. Introductory Remarks Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are 1. The expansion of the universe is accelerating – an extra factor of two appears in the size. 2. Zero-point fluctuations do not gravitate – a matter of 120 orders of magnitude 3. The “True” quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physi- cal role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe’s quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.
    [Show full text]
  • On the Semiclassical Structure of QCD — a Lattice Study at Finite Temperature
    Humboldt-UniversitatÄ zu Berlin Mathematisch-Naturwissenschaftliche FakultatÄ I Institut furÄ Physik On the semiclassical structure of QCD | A lattice study at ¯nite temperature | Diplomarbeit eingereicht von Dirk Peschka geboren am 21. November 1977 in Zossen Aufgabensteller: Prof. Dr. M. Muller-Preu¼kÄ er Zweitgutachter: Prof. Dr. U. Wol® Abgabedatum: 30. August 2004 Contents 1 Introduction 2 2 Quantum mechanics and the semiclassical approximation 5 2.1 The path-integral in quantum mechanics . 5 2.2 Semiclassical approach to quantum mechanics . 8 2.3 Kink solutions and fluctuations . 10 2.4 Kink-gas approximation . 13 2.5 Numerical results for the double-well . 14 2.6 Lessons for QCD . 20 3 Classical SU(3) gauge ¯elds 21 3.1 Classical SU(3) gauge theory . 21 3.2 Calorons in SU(2) . 24 3.3 Calorons in SU(3) . 27 3.4 Instanton model . 29 4 QCD on the lattice 33 4.1 Functional integral for lattice QCD . 33 4.2 QCD at ¯nite temperature . 34 4.3 Improved actions . 37 4.4 Cooling methods . 38 4.5 Detecting classical ¯elds on the lattice . 39 5 Classical solutions on the lattice - examples 42 5.1 Systematics of the investigation . 42 5.2 Constructed calorons with Q = 1 . 45 j j 5.3 Cooled calorons with Q = 1 . 53 j j 5.4 Cooled calorons with Q = 2 . 61 j j 5.5 Caloron-anticaloron superposition with Q = 0 . 67 5.6 Fitting an analytical expression . 70 5.7 Summary . 73 6 Classical solutions on the lattice - statistical properties 74 6.1 Problems ¯nding calorons in SU(3) .
    [Show full text]
  • CERN Courier September 2016 (Volume 56 Issue 7).Pdf
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WLCOMEE V OLUME 5 6 N UMBER 7 S EPTEMBER 2 0 1 6 CERN Courier – digital edition Welcome to the digital edition of the September 2016 issue of CERN Courier. Super-B factory takes shape As the LHC continues with its record-breaking 2016 performance, a new “super-B factory” designed to search for new weak interactions in the flavour sector – Belle II at SuperKEKB – is nearing completion at the KEK laboratory in Japan. The inauguration of the MAX IV light source in Sweden, meanwhile, showcases another machine milestone: a novel lattice design that produces the brightest X-rays on Earth. Sticking with the accelerator theme, we also report on an attempt to use a storage ring to pinpoint the electric dipole moment of particles. Finally, the CMS collaboration describes how a new trigger system is taming the harsh collision environment of LHC Run 2, while CERN considers how to deal with the computing and data challenges presented by its major machine upgrade, the HL-LHC. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. DETECTORS FACILITIES COMPUTING IN CMS trigger upgrade MAX IV takes tames collisions X-ray science into THE CLOUD EDITOR: MATTHEW CHALMERS at LHC Run 2 uncharted territory CERN prepares for the HL-LHC DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p21 p38 and beyond p5 CERNCOURIER WWW.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • Emergent Structure Of
    Emergent Structure of QCD James Biddle, Waseem Kamleh and Derek Leinwebery Centre for the Subatomic Structure of Matter, Department of Physics, The University of Adelaide, SA 5005, Australia Empty Space is not Empty Gluon Field in the non-trivial QCD Vacuum Viewing Stereoscopic Images Quantum Chromodynamics (QCD) is the fundamental relativistic quantum Remember the Magic Eye R 3D field theory underpinning the strong illustrations? You stare at them interactions of nature. cross-eyed to see the 3D image. The gluons of QCD carry colour charge The same principle applies here. and interact directly Try this! 1. Hold your finger about 5 cm from your nose and look at it. 2. While looking at your finger, take note of the double image Gluon self-coupling makes the empty behind it. Your goal is to line vacuum unstable to the formation of up those images. non-trivial quark and gluon condensates. 3. Move your finger forwards and 16 chromo-electric and -magnetic fields backwards to move the images compose the QCD vacuum. behind it horizontally. One of the chromo-magnetic fields is 4. Tilt your head from side to side illustrated at right. to move the images vertically. 5. Eventually your eyes will lock Vortices in the Gluon Field in on the 3D image. What is the most fundamental perspective Stereoscopic image of one the eight chromo-magnetic fields composing the nontrivial vacuum of QCD. of QCD vacuum structure that can generate Centre Vortices in the Gluon Field Can't see the the key distinguishing features of QCD stereoscopic view? The confinement of quarks, and Dynamical chiral symmetry breaking and Try these! associated dynamical-mass generation.
    [Show full text]