The RNA Editing Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Ji Calendar Educator Guide
xxx Contents The Jewish Day ............................................................................................................................... 6 A. What is a day? ..................................................................................................................... 6 B. Jewish Days As ‘Natural’ Days ........................................................................................... 7 C. When does a Jewish day start and end? ........................................................................... 8 D. The values we can learn from the Jewish day ................................................................... 9 Appendix: Additional Information About the Jewish Day ..................................................... 10 The Jewish Week .......................................................................................................................... 13 A. An Accompaniment to Shabbat ....................................................................................... 13 B. The Days of the Week are all Connected to Shabbat ...................................................... 14 C. The Days of the Week are all Connected to the First Week of Creation ........................ 17 D. The Structure of the Jewish Week .................................................................................... 18 E. Deeper Lessons About the Jewish Week ......................................................................... 18 F. Did You Know? ................................................................................................................. -
March 2021 Adar / Nisan 5781
March 2021 Adar / Nisan 5781 www.ti-stl.org Congregation Temple Israel is an inclusive community that supports your unique Jewish journey. TEMPLE NEWS SHABBAT WORSHIP SCHEDULE HIAS REFUGEE SHABBAT SERVICES WORSHIP SERVICE SCHEDULE Friday, March 5 @ 6:30 PM Throughout the month of March, Shabbat services will Temple Israel will be a proud participant in HIAS’ Refugee be available online only. Join us and watch services Shabbat, during which Jews in the United States and around the remotely on our website or on our Facebook page, where world will take action for refugees and asylum seekers. you can connect with other viewers in the comments section. Founded as the Hebrew Immigrant Aid Society in 1881 to assist Jews fleeing persecution in Russia and Eastern Europe, HIAS’s work is rooted in Jewish values and the belief that anyone fleeing WATCH SERVICES ONLINE hatred, bigotry and xenophobia, regardless of their faith or Services on our website: ethnicity, should be provided with a safe refuge. www.ti-stl.org/Watch Services on our Facebook page: Over the Shabbat of March 5-6, 2021, the Jewish community www.facebook.com/TempleIsraelStLouis will dedicate sacred time and space to refugees and asylum seekers. Now in its third year with hundreds of congregations and thousands of individuals participating, this Refugee Shabbat SERVICE SCHEDULE & PARSHA will be an opportunity to once again raise awareness in our 6:00 pm Weekly Pre-Oneg on Zoom communities, to recognize the work that has been done, and to (Link shared in our eNews each week.) reaffirm our commitment to welcoming refugees and asylum seekers. -
The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Passover Guide & March 2021
VIRTUAL SEDERS MARCH 27 5:00PM MARCH 28 5:00PM PAGE 3 PASSOVER GUIDE & MARCH 2021 ADAR / NISSAN1 5781 BULLETIN A MESSAGE FOR PASSOVER A Message for Passover Every year we remind the participants at the Passover table that the recounting of the experience is a “Haggadah,” a telling, and not a “Kriyah,” a reading. What’s the difference? A reading is simply going by the script of what’s on the page. A telling, on the other hand, requires both creativity, and the art, making the story pop. While the words on the page of the Haggadah have been the basis for the Passover Seder for thousands of years, they are merely jumping off points for rituals, conversations, and teaching the Passover narrative to our children and to each other. Taking part in a fulfilling Seder isn’t about reading every word on the page, but rather making the words that you do read come to life. Look no further than the famous Haggadah section of the Four Children to remind us of our responsibility to make the Seder interesting for every kind of participant. The Haggadah offers us four different types of Seder guests, the wise one, the rebellious one, the simple one, and the one who doesn’t know how to ask. We are given guidelines for how to explain the meaning of Passover to each of them. The four children remind us that each type of person at the table requires a different type of experience, and it’s the leader’s job to make the narrative relevant for each of them. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
Downloaded from the Ensembl Database) Using the BWA MEM Algorithm (Version
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.17.953281; this version posted March 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Identification of characteristic genomic markers in human hepatoma Huh7 and Huh7.5.1-8 2 cell lines 3 Masaki Kawamoto1, Toshiyuki Yamaji2, Kyoko Saito2, Kazuhiro Satomura3, Toshinori Endo3, 4 Masayoshi Fukasawa2, Kentaro Hanada2,*, and Naoki Osada3,4,* 5 1. Graduate School of Information Science and Technology, Hokkaido University, Sapporo 6 060-0814, Japan 7 2. Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 8 Tokyo 162-8640, Japan 9 3. Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, 10 Japan 11 4. Global Station for Big Data and Cybersecurity, GI-CoRE, Hokkaido University, Sapporo 12 060-0814, Japan 13 14 *Correspondence 15 Kentaro Hanada 16 Email: [email protected] 17 Naoki Osada 18 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.17.953281; this version posted March 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 The human hepatoma-derived Huh7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been 21 widely used as a convenient experimental substitute for primary hepatocytes. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
How Asbestos Drives the Tissue Towards Tumors: YAP Activation, Macrophage and Mesothelial Precursor Recruitment, RNA Editing, and Somatic Mutations
Oncogene (2018) 37:2645–2659 https://doi.org/10.1038/s41388-018-0153-z ARTICLE How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations 1 2 3 3 3 4 Hubert Rehrauer ● Licun Wu ● Walter Blum ● Lazslo Pecze ● Thomas Henzi ● Véronique Serre-Beinier ● 1 5 2 3 6 Catherine Aquino ● Bart Vrugt ● Marc de Perrot ● Beat Schwaller ● Emanuela Felley-Bosco Received: 1 September 2017 / Revised: 11 December 2017 / Accepted: 30 December 2017 / Published online: 6 March 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were 1234567890();,: even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression. Introduction The association of exposure to asbestos with development of mesothelioma has been demonstrated in the seminal experimental work of Wagner in the 1960s [1]. In 1987, Kane and co-workers [2] observed that already a single dose These authors contributed equally: Hubert Rehrauer, Licun Wu. -
A-To-I RNA Editing Does Not Change with Age in the Healthy Male Rat Brain
Biogerontology (2013) 14:395–400 DOI 10.1007/s10522-013-9433-8 RESEARCH ARTICLE A-to-I RNA editing does not change with age in the healthy male rat brain Andrew P. Holmes • Shona H. Wood • Brian J. Merry • Joa˜o Pedro de Magalha˜es Received: 18 January 2013 / Accepted: 15 May 2013 / Published online: 26 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract RNA editing is a post-transcriptional pro- Introduction cess, which results in base substitution modifications to RNA. It is an important process in generating Adenosine to inosine (A-to-I) RNA editing is a post- protein diversity through amino acid substitution and transcriptional process that alters the sequences of the modulation of splicing events. Previous studies RNA molecules. The adenosine deaminases ADAR have suggested a link between gene-specific reduc- and ADARB1 convert specific adenosine residues on tions in adenosine to inosine RNA editing and aging in RNA to inosine bases. During translation, sequencing, the human brain. Here we demonstrate that changes in and splicing, inosine is recognized as guanosine. RNA editing observed in humans with age are not Therefore, A-to-I RNA editing has important impli- observed during aging in healthy rats. Furthermore, we cations in altering specific amino acids, miRNA identify a conserved editing site in rats, in Cog3.We targeting, and in the modulation of alternative splicing propose that either age-related changes in RNA (Nishikura 2010). editing are specific to primates or humans, or that Targets of A-to-I RNA editing are often genes they are the manifestation of disease pathology. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.