T Lymphocytes Mrna, and Protein Expression in Activated Networks

Total Page:16

File Type:pdf, Size:1020Kb

T Lymphocytes Mrna, and Protein Expression in Activated Networks MicroRNA Regulation of Molecular Networks Mapped by Global MicroRNA, mRNA, and Protein Expression in Activated T Lymphocytes This information is current as of September 23, 2021. Yevgeniy A. Grigoryev, Sunil M. Kurian, Traver Hart, Aleksey A. Nakorchevsky, Caifu Chen, Daniel Campbell, Steven R. Head, John R. Yates III and Daniel R. Salomon J Immunol 2011; 187:2233-2243; Prepublished online 25 July 2011; Downloaded from doi: 10.4049/jimmunol.1101233 http://www.jimmunol.org/content/187/5/2233 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2011/07/25/jimmunol.110123 Material 3.DC1 References This article cites 83 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/187/5/2233.full#ref-list-1 Why The JI? Submit online. by guest on September 23, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology MicroRNA Regulation of Molecular Networks Mapped by Global MicroRNA, mRNA, and Protein Expression in Activated T Lymphocytes Yevgeniy A. Grigoryev,* Sunil M. Kurian,* Traver Hart,* Aleksey A. Nakorchevsky,† Caifu Chen,‡ Daniel Campbell,x Steven R. Head,x John R. Yates, III,† and Daniel R. Salomon* MicroRNAs (miRNAs) regulate specific immune mechanisms, but their genome-wide regulation of T lymphocyte activation is largely unknown. We performed a multidimensional functional genomics analysis to integrate genome-wide differential mRNA, miRNA, and protein expression as a function of human T lymphocyte activation and time. We surveyed expression of 420 human miRNAs in parallel with genome-wide mRNA expression. We identified a unique signature of 71 differentially expressed miRNAs, Downloaded from 57 of which were previously not known as regulators of immune activation. The majority of miRNAs are upregulated, mRNA expression of these target genes is downregulated, and this is a function of binding multiple miRNAs (combinatorial targeting). Our data reveal that consideration of this complex signature, rather than single miRNAs, is necessary to construct a full picture of miRNA-mediated regulation. Molecular network mapping of miRNA targets revealed the regulation of activation-induced immune signaling. In contrast, pathways populated by genes that are not miRNA targets are enriched for metabolism and biosynthesis. Finally, we specifically validated miR-155 (known) and miR-221 (novel in T lymphocytes) using locked nucleic acid inhibitors. http://www.jimmunol.org/ Inhibition of these two highly upregulated miRNAs in CD4+ T cells was shown to increase proliferation by removing suppression of four target genes linked to proliferation and survival. Thus, multiple lines of evidence link top functional networks directly to T lymphocyte immunity, underlining the value of mapping global gene, protein, and miRNA expression. The Journal of Immu- nology, 2011, 187: 2233–2243. lymphocytes regulate the adaptive immune response by coordinated fashion to achieve a balance among proliferation, serving as Ag-specific effector cells. Activation via TCR memory, and quiescence. T engagement and CD28 costimulation is characterized by MicroRNAs (miRNAs) have emerged as posttranscriptional by guest on September 23, 2021 gene upregulation (1) and is a highly regulated process requiring regulators of gene expression in a variety of biological processes coordination of multiple signaling pathways for proliferation, cyto- (3–7). The mode of miRNA regulation is protein repression via kines, and differentiation. After Ag clearance, some effector cells complementary sequence recognition in the 39 untranslated region must be reduced or eliminated by mechanisms like activation- of the target mRNA and/or degradation of the target transcript (8– induced cell death (2). Thus, activation must be regulated in a 11). A recent paper indicates the major effect of miRNAs is to decrease mRNA levels (12). miRNAs can potentially regulate hundreds of proteins (13) and *Department of Molecular and Experimental Medicine, The Scripps Research In- modulate concentration of proteins over a narrow range in a dose- † stitute, La Jolla, CA 92037; Department of Chemical Physiology, The Scripps Re- dependent manner (14, 15). miRNAs are involved in hematopoi- search Institute, La Jolla, CA 92037; ‡Applied Biosystems, Foster City, CA 94404; and xDNA Microarray Core, The Scripps Research Institute, La Jolla, CA 92037 etic cell function and development (as summarized in Refs. 16– Received for publication May 2, 2011. Accepted for publication June 17, 2011. 64). A few miRNAs have been linked to specific T lymphocyte This work was supported by National Institutes of Health Grants U19 A1063603 and mechanisms—181a (37), 181c (39), 155 (28), 150 (18), 146 (20), R01 AI081757. and 142 (40)—via regulation of T cell sensitivity to Ag stimula- Y.A.G., S.M.K., and D.R.S. conceived and designed the experiments and wrote the tion, regulating transcription factors, and activation-induced cell manuscript; Y.A.G., S.M.K., and A.A.N. performed the experiments; Y.A.G., A.A.N., death. However, at the global level, little is known about the im- and T.H. analyzed the data; and C.C., D.C., S.R.H., and J.R.Y. contributed reagents/ materials/analysis tools. pact of activation-induced miRNAs on mRNA and protein ex- pression in human T lymphocytes, particularly in the context of The sequences presented in this article (entire set of CEL files) have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus mapping miRNA-regulated molecular networks. under accession number GSE14352 (http://www.ncbi.nlm.nih.gov/geo/query/acc. In this study, we show that differentially upregulated miRNAs cgi?acc=GSE14352). regulate T lymphocyte activation by targeting highly differentially Address correspondence and reprint requests to Dr. Daniel R. Salomon, Department expressed genes involved in networks critical for cell activation, of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Code MEM-L55, La Jolla, CA 92037. E-mail address: proliferation, and survival. We used a multidimensional approach [email protected] to integrate genome-wide miRNA, mRNA, and protein expression. The online version of this article contains supplemental material. We surveyed expression for 420 human miRNA sequences at 0, 24, Abbreviations used in this article: Ct, threshold cycle; FDR, false discovery rate; IPA, 48, and 72 h after activation. In parallel, we profiled global mRNA Ingenuity Pathways Analysis; LNA, locked nucleic acid; miRNA, microRNA; qPCR, and protein expression. We found 71 significantly differentially ex- quantitative real-time PCR. pressed miRNAs, of which 57 have not been previously linked to Copyright Ó 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 T lymphocyte function. Testing several established miRNA target www.jimmunol.org/cgi/doi/10.4049/jimmunol.1101233 2234 microRNA-REGULATED NETWORKS IN T CELL ACTIVATION prediction algorithms, we demonstrated globally that targets of performed for specified pairwise comparisons among all time points of multiple upregulated miRNAs (combinatorial targeting) have de- activation. creased mRNA expression with activation. In validation, we In parallel, we performed our own analysis of differential gene ex- pression to corroborate AltAnalyze results. CEL files for each donor from showed that inhibition of two highly upregulated miRNAs in the 1.0ST HuEx Arrays were normalized by robust multiarray averaging CD4+ T cells increased proliferation by removing suppression of using a custom cumulative distribution function downloaded from the four target genes involved in proliferation and survival. Thus, University of Michigan (http://brainarray.mbni.med.umich.edu/Brainarray/ our studies provide novel evidence for a large number of func- Database/CustomCDF/genomic_curated_CDF.asp). Differential expression was measured with the Limma package (http://www.bioconductor.org/ tional molecular networks populated by downregulated targets of packages/2.6/bioc/html/limma.html) using a two-class model. All calcu- highly upregulated miRNAs. lations were performed in R/Bioconductor. Genes were filtered using a fold-change filter of 1.5 (0.58 in log2) and an FDR filter of 0.01. Genes that were detected as significantly differentially expressed by both AltA- Materials and Methods nalyze and Limma analysis were then selected for further analysis. T lymphocyte isolation The Multidimensional Protein Identification Tool proteomics Blood draw for this study was accepted by our institution’s ethical com- mission, and all subjects gave their written consent according to review The Multidimensional Protein Identification Tool (66) protocol was used board guidelines. CD2+ T lymphocytes
Recommended publications
  • Not Dicer but Argonaute Is Required for a Microrna Production
    Cell Research (2010) 20:735-737. npg © 2010 IBCB, SIBS, CAS All rights reserved 1001-0602/10 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production Gabriel D Bossé1, Martin J Simard1 1Laval University Cancer Research Centre, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada Cell Research (2010) 20:735-737. doi:10.1038/cr.2010.83; published online 15 June 2010 Found in all metazoans, microRNAs A Canonical pathway B Ago2-dependent pathway or miRNAs are small non-coding RNA Nucleus Cytoplasm Nucleus Cytoplasm of ~22 nucleotides in length that com- Exp.5 Exp.5 pletely reshaped our understanding of gene regulation. This new class of gene pre-miR-451 regulator is mostly transcribed by the pre-miRNA RNA polymerase II producing a long stem-loop structure, called primary- or Ago2 pri-miRNA, that will first be processed Ago2 Dicer in the cell nucleus by a multiprotein TRBP complex called microprocessor to gen- erate a shorter RNA structure called Ago2 RISC precursor- or pre-miRNA. The precisely Ago2 RISC processed pre-miRNA will next be ex- ported into the cytoplasm by Exportin 5 and loaded onto another processing machine containing the ribonuclease III enzyme Dicer, an Argonaute protein Ago2 Ago2 and other accessory cellular factors mRNA mRNA (Figure 1A; [1]). Dicer will mediate the Translation inhibition Translation inhibition cleavage of the pre-miRNA to form the mature miRNA that will then be bound Figure 1 (A) Canonical microRNA biogenesis. In mammals, the pre-miRNA is by the Argonaute protein to form, most loaded onto a multiprotein complex consisting minimally of Dicer, Tar RNA Bind- likely with other cellular factors, the ef- ing Protein (TRBP) and Ago2.
    [Show full text]
  • EIF2C2 Monoclonal Antibody (M01), Clone 2E12-1C9
    EIF2C2 monoclonal antibody (M01), clone 2E12-1C9 Catalog # : H00027161-M01 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a full length recombinant Western Blot (Cell lysate) Description: EIF2C2. Immunogen: EIF2C2 (AAH07633.1, 483 a.a. ~ 859 a.a) full-length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: MPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAE VKRVGDTVLGMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLP enlarge QGRPPVFQQPVIFLGADVTHPPAGDGKKPSIAAVVGSMDAHPNRYCATV Western Blot (Transfected RVQQHRQEIIQDLAAMVRELLIQFYKSTRFKPTRIIFYRDGVSEGQFQQV lysate) LHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTDKNERVGKSGNIP AGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDELQI LTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTS GQSNGRDHQALAKAVQVHQDTLRTMYFA Host: Mouse enlarge Reactivity: Human Western Blot (Recombinant Isotype: IgG1 Kappa protein) Quality Control Antibody Reactive Against Recombinant Protein. Immunofluorescence Testing: enlarge Immunohistochemistry (Formalin/PFA-fixed paraffin- embedded sections) Western Blot detection against Immunogen (68.03 KDa) . Storage Buffer: In 1x PBS, pH 7.4 enlarge Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Instruction: Sandwich ELISA (Recombinant protein) MSDS: Download Interspecies Mouse (100); Rat (99) Antigen Sequence: enlarge Datasheet: Download ELISA Publication Reference RNAi Knockdown (Antibody validated) 1. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance
    [Show full text]
  • Mir-125 in Normal and Malignant Hematopoiesis
    Leukemia (2012) 26, 2011–2018 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu SPOTLIGHT REVIEW MiR-125 in normal and malignant hematopoiesis L Shaham1,2, V Binder3,4,NGefen1,5, A Borkhardt3 and S Izraeli1,5 MiR-125 is a highly conserved microRNA throughout many different species from nematode to humans. In humans, there are three homologs (hsa-miR-125b-1, hsa-miR-125b-2 and hsa-miR-125a). Here we review a recent research on the role of miR-125 in normal and malignant hematopoietic cells. Its high expression in hematopoietic stem cells (HSCs) enhances self-renewal and survival. Its expression in specific subtypes of myeloid and lymphoid leukemias provides resistance to apoptosis and blocks further differentiation. A direct oncogenic role in the hematopoietic system has recently been demonstrated by several mouse models. Targets of miR-125b include key proteins regulating apoptosis, innate immunity, inflammation and hematopoietic differentiation. Leukemia (2012) 26, 2011–2018; doi:10.1038/leu.2012.90 Keywords: microRNA; hematopoiesis; hematological malignancies; acute myeloid leukemia; acute lymphoblastic leukemia MicroRNAs (miRNAs) are 21–23-nucleotide non-coding RNAs that nucleotides with the seed region of miR-125b (ebv-miR-BART21-5p, have crucial roles in fundamental biological processes by ebv-miR-BART8 and rlcv-miR-rL1-25). In humans, as in most of the regulating the levels of multiple proteins. They are transcribed genomes, there are two paralogs (hsa-miR-125b-1 on chromosome as primary miRNAs and processed in the nucleus by the RNase III 11 and hsa-miR-125b-2 on chromosome 21), coding for the same endonuclease DROSHA to liberate 70-nucleotide stem loops, the mature sequence.
    [Show full text]
  • EIF2C2 Monoclonal Antibody (M01), Clone 2E12-1C9
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic EIF2C2 monoclonal antibody (M01), clone 2E12-1C9 Catalog # : H00027161-M01 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a full length recombinant Western Blot (Cell lysate) Description: EIF2C2. Immunogen: EIF2C2 (AAH07633.1, 1 a.a. ~ 377 a.a) full-length recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: MPIQGQPCFCKYAQGADSVEPMFRHLKNTYAGLQLVVVILPGKTPVYAE VKRVGDTVLGMATQCVQMKNVQRTTPQTLSNLCLKINVKLGGVNNILLP enlarge QGRPPVFQQPVIFLGADVTHPPAGDGKKPSIAAVVGSMDAHPNRYCATV Western Blot (Transfected RVQQHRQEIIQDLAAMVRELLIQFYKSTRFKPTRIIFYRDGVSEGQFQQV lysate) LHHELLAIREACIKLEKDYQPGITFIVVQKRHHTRLFCTDKNERVGKSGNIP AGTTVDTKITHPTEFDFYLCSHAGIQGTSRPSHYHVLWDDNRFSSDELQI LTYQLCHTYVRCTRSVSIPAPAYYAHLVAFRARYHLVDKEHDSAEGSHTS GQSNGRDHQALAKAVQVHQDTLRTMYFA Host: Mouse enlarge Reactivity: Human Western Blot (Recombinant Isotype: IgG1 Kappa
    [Show full text]
  • How Asbestos Drives the Tissue Towards Tumors: YAP Activation, Macrophage and Mesothelial Precursor Recruitment, RNA Editing, and Somatic Mutations
    Oncogene (2018) 37:2645–2659 https://doi.org/10.1038/s41388-018-0153-z ARTICLE How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations 1 2 3 3 3 4 Hubert Rehrauer ● Licun Wu ● Walter Blum ● Lazslo Pecze ● Thomas Henzi ● Véronique Serre-Beinier ● 1 5 2 3 6 Catherine Aquino ● Bart Vrugt ● Marc de Perrot ● Beat Schwaller ● Emanuela Felley-Bosco Received: 1 September 2017 / Revised: 11 December 2017 / Accepted: 30 December 2017 / Published online: 6 March 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were 1234567890();,: even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression. Introduction The association of exposure to asbestos with development of mesothelioma has been demonstrated in the seminal experimental work of Wagner in the 1960s [1]. In 1987, Kane and co-workers [2] observed that already a single dose These authors contributed equally: Hubert Rehrauer, Licun Wu.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Relative Contribution of Sequence and Structure Features to the Mrna Binding of Argonaute/ EIF2C–Mirna Complexes and the Degradation of Mirna Targets
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Relative contribution of sequence and structure features to the mRNA binding of Argonaute/ EIF2C–miRNA complexes and the degradation of miRNA targets Jean Hausser,1,3 Markus Landthaler,2,3,4 Lukasz Jaskiewicz,1 Dimos Gaidatzis,1,5 and Mihaela Zavolan1,6 1Biozentrum, University of Basel and Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland; 2Howard Hughes Medical Institute, Laboratory for RNA Biology, The Rockefeller University, New York, New York 10021, USA How miRNAs recognize their target sites is a puzzle that many experimental and computational studies aimed to solve. Several features, such as perfect pairing of the miRNA seed, additional pairing in the 39 region of the miRNA, relative position in the 39 UTR, and the A/Ucontent of the environment of the putative site, have been found to be relevant. Here we have used a large number of previously published data sets to assess the power that various sequence and structure features have in distinguishing between putative sites that do and those that do not appear to be functional. We found that although different data sets give widely different answers when it comes to ranking the relative importance of these features, the sites inferred from most transcriptomics experiments, as well as from comparative genomics, appear similar at this level. This suggests that miRNA target sites have been selected in evolution on their ability to trigger mRNA degradation. To understand at what step in the miRNA-induced response individual features play a role, we transfected human HEK293 cells with miRNAs and analyzed the association of Argonaute/EIF2C–miRNA complexes with target mRNAs and the degradation of these messages.
    [Show full text]
  • Dysregulated RNA-Induced Silencing Complex (RISC) Assembly Within CNS Corresponds with Abnormal Mirna Expression During Autoimmune Demyelination
    The Journal of Neuroscience, May 13, 2015 • 35(19):7521–7537 • 7521 Neurobiology of Disease Dysregulated RNA-Induced Silencing Complex (RISC) Assembly within CNS Corresponds with Abnormal miRNA Expression during Autoimmune Demyelination Przemysław Lewkowicz, Hanna Cwiklin´ska, Marcin P. Mycko, Maria Cichalewska, Małgorzata Domowicz, Natalia Lewkowicz, Anna Jurewicz, and Krzysztof W. Selmaj Department of Neurology, Laboratory of Neuroimmunology, Medical University of Lodz, 92-213 Lodz, Poland MicroRNAs (miRNAs) associate with Argonaute (Ago), GW182, and FXR1 proteins to form RNA-induced silencing complexes (RISCs). RISCs represent a critical checkpoint in the regulation and bioavailability of miRNAs. Recent studies have revealed dysregulation of miRNAs in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE); however, the function of RISCs in EAE and MS is largely unknown. Here, we examined the expression of Ago, GW182, and FXR1 in CNS tissue, oligodendrocytes (OLs), brain-infiltrating T lymphocytes, and CD3 ϩsplenocytes (SCs) of EAE mic, and found that global RISC protein levels were signifi- cantly dysregulated. Specifically, Ago2 and FXR1 levels were decreased in OLs and brain-infiltrating T cells in EAE mice. Accordingly, assembly of Ago2/GW182/FXR1 complexes in EAE brain tissues was disrupted, as confirmed by immunoprecipitation experiments. In parallel with alterations in RISC complex content in OLs, we found downregulation of miRNAs essential for differentiation and survival of OLs and myelin synthesis. In brain-infiltrating T lymphocytes, aberrant RISC formation contributed to miRNA-dependent proinflam- matory helper T-cell polarization. In CD3 ϩ SCs, we found increased expression of both Ago2 and FXR1 in EAE compared with nonim- munized mice.
    [Show full text]
  • NIH Public Access Author Manuscript Epigenetics
    NIH Public Access Author Manuscript Epigenetics. Author manuscript; available in PMC 2009 June 23. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Epigenetics. 2007 ; 2(2): 126±134. Epigenetics and Neural Developmental Disorders: Washington DC, September 18 and 19, 2006 Xinyu Zhao1,*, ChangHui Pak2, Richard D. Smrt1, and Peng Jin2,* 1 Department of Neuroscience; University of New Mexico School of Medicine; Albuquerque, New Mexico USA 2 Department of Human Genetics; Emory University School of Medicine; Atlanta, Georgia USA Abstract Neural developmental disorders, such as autism, Rett Syndrome, Fragile X syndrome, and Angelman syndrome manifest during early postnatal neural development. Although the genes responsible for some of these disorders have been identified, how the mutations of these genes affect neural development is currently unclear. Emerging evidence suggest that these disorders share common underlying defects in neuronal morphology, synaptic connectivity and brain plasticity. In particular, alterations in dendritic branching and spine morphology play a central role in the pathophysiology of most mental retardation disorders, suggesting that common pathways regulating neuronal function may be affected. Epigenetic modulations, mediated by DNA methylation, RNA-associated silencing, and histone modification, can serve as an intermediate process that imprints dynamic environmental experiences on the “fixed” genome, resulting in stable alterations in phenotypes. Disturbance in epigenetic regulations can lead to inappropriate expression or silencing of genes, causing an array of multi-system disorders and neoplasias. Rett syndrome, the most common form of mental retardation in young girls, is due to l mutation of MECP2, encoding a methylated DNA binding protein that translates DNA methylation into gene repression.
    [Show full text]
  • Altered Regulation of Adipomir Editing with Aging
    International Journal of Molecular Sciences Article Altered Regulation of adipomiR Editing with Aging Sabel Meadows, Abbagael Seidler, Madison Wall, Jamika Page, Cara Taylor, Brendin Flinn , Robin Turner and Nalini Santanam * Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; [email protected] (S.M.); [email protected] (A.S.); [email protected] (M.W.); [email protected] (J.P.); [email protected] (C.T.); fl[email protected] (B.F.); [email protected] (R.T.) * Correspondence: [email protected] Received: 18 August 2020; Accepted: 17 September 2020; Published: 20 September 2020 Abstract: Adipose dysfunction with aging increases risk to insulin resistance and other chronic metabolic diseases. We previously showed functional changes in microRNAs involved in pre-adipocyte differentiation with aging resulting in adipose dysfunction. However, the mechanisms leading to this dysfunction in microRNAs in adipose tissue (adipomiRs) during aging are not well understood. We determined the longitudinal changes in expression of adipomiRs and studied their regulatory mechanisms, such as miRNA biogenesis and editing, in an aging rodent model, with Fischer344 Brown-Norway hybrid rats at ages ranging from 3 to 30 months (male/females, × n > 8). Expression of adipomiRs and their edited forms were determined by small-RNA sequencing. RT-qPCR was used to measure the mRNA expression of biogenesis and editing enzymes. Sanger sequencing was used to validate editing with aging. Differential expression of adipomiRs involved in adipocyte differentiation and insulin signaling was altered with aging. Sex- and age-specific changes in edited adipomiRs were observed. An increase in miRNA biogenesis and editing enzymes (ADARs and their splice variants) were observed with increasing age, more so in female than male rats.
    [Show full text]
  • A Drosophila Fragile X Protein Interacts with Components of Rnai and Ribosomal Proteins
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins Akira Ishizuka,1,2,3 Mikiko C. Siomi,1,3 and Haruhiko Siomi1,4 1Institute for Genome Research, 2Graduate School of Nutrition University of Tokushima, Tokushima 770-8503, Japan Fragile X syndrome is a common form of inherited mental retardation caused by the loss of FMR1 expression. The FMR1 gene encodes an RNA-binding protein that associates with translating ribosomes and acts as a negative translational regulator. In Drosophila, the fly homolog of the FMR1 protein (dFMR1) binds to and represses the translation of an mRNA encoding of the microtuble-associated protein Futsch. We have isolated a dFMR1-associated complex that includes two ribosomal proteins, L5 and L11, along with 5S RNA. The dFMR1 complex also contains Argonaute2 (AGO2) and a Drosophila homolog of p68 RNA helicase (Dmp68). AGO2 is an essential component for the RNA-induced silencing complex (RISC), a sequence-specific nuclease complex that mediates RNA interference (RNAi) in Drosophila. We show that Dmp68 is also required for efficient RNAi. We further show that dFMR1 is associated with Dicer, another essential component of the RNAi pathway, and microRNAs (miRNAs) in vivo, suggesting that dFMR1 is part of the RNAi-related apparatus. Our findings suggest a model in which the RNAi and dFMR1-mediated translational control pathways intersect in Drosophila. Our findings also raise the possibility that defects in an RNAi-related machinery may cause human disease. [Keywords: fragile X syndrome; FMR1; RNAi; RNA helicase; miRNA] Received July 9, 2002; revised version accepted August 22, 2002.
    [Show full text]