ADAR2 Mislocalization and Widespread RNA Editing Aberrations in C9orf72‑Mediated ALS/FTD

Total Page:16

File Type:pdf, Size:1020Kb

ADAR2 Mislocalization and Widespread RNA Editing Aberrations in C9orf72‑Mediated ALS/FTD Acta Neuropathologica https://doi.org/10.1007/s00401-019-01999-w ORIGINAL PAPER ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72‑mediated ALS/FTD Stephen Moore1,2 · Eric Alsop3 · Ileana Lorenzini1 · Alexander Starr1 · Benjamin E. Rabichow1 · Emily Mendez1 · Jennifer L. Levy1 · Camelia Burciu1 · Rebecca Reiman3 · Jeannie Chew4 · Veronique V. Belzil4 · Dennis W. Dickson4 · Janice Robertson5 · Kim A. Staats6 · Justin K. Ichida6 · Leonard Petrucelli4 · Kendall Van Keuren‑Jensen3 · Rita Sattler1 Received: 14 September 2018 / Revised: 28 March 2019 / Accepted: 28 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The hexanucleotide repeat expansion GGG GCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality asso- ciated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent fndings suggest that dysfunc- tion of nuclear-cytoplasmic trafcking could afect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G 4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our fndings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation. Keywords C9orf72 · ALS · FTD · Nucleocytoplasmic mislocalization · ADAR2 · RNA editing · RNA metabolism · iPSC neurons · RNA-seq · Neurodegeneration · Protein accumulation Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0040 1-019-01999 -w) contains Introduction supplementary material, which is available to authorized users. Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegen- * Rita Sattler erative disorder caused by progressive loss of both upper [email protected] and lower motor neurons, leading to muscle atrophy and 1 Department of Neurobiology, Barrow Neurological Institute, eventually death due to respiratory failure [65]. A GGG GCC 350 W Thomas Road, Phoenix, AZ 85013, USA (G4C2) hexanucleotide repeat expansion (HRE) in the frst 2 School of Life Sciences, Arizona State University, Tempe, intron of the C9orf72 gene represents the most common AZ, USA genetic abnormality in ALS, as well as in frontotemporal 3 Neurogenomics Division, Translational Genomics Research dementia (FTD), to date [19, 53]. Extensive research on the Institute, Phoenix, AZ, USA role of the (G4C2)n repeat expansion in the C9orf72 gene 4 Department of Neuroscience, Mayo Clinic Jacksonville, has led to the proposal of three alternative-but not mutually Jacksonville, FL, USA exclusive-pathogenic mechanisms: (1) protein loss-of-func- 5 Tanz Centre for Research in Neurodegenerative Diseases, tion [4, 8, 11, 17, 27, 58, 62, 66, 70], (2) toxic RNA gain-of- University of Toronto, Toronto, Canada function [2, 21, 40, 41, 47, 54, 73], and (3) toxicity caused 6 Department of Stem Cell Biology and Regenerative by repeat-associated non-AUG initiated (RAN) translation, Medicine, Eli and Edythe Broad Center for Regenerative which leads to the accumulation of dipeptide repeat proteins Medicine and Stem Cell Biology, Keck School of Medicine, (DPRs) [3, 26, 37, 44, 46, 48, 63, 69, 71, 75, 76]. University of Southern California, Los Angeles, CA, USA Vol.:(0123456789)1 3 Acta Neuropathologica A more recent hypothesis suggests defcits in nucleocy- channel, the large majority of RNA editing events have an toplasmic trafcking of mRNAs and/or proteins are caused unknown impact on cellular function [42, 72]. Nevertheless, by the repeat expansion in the C9orf72 gene [9, 10, 24, 37, dysregulation of crucial post-transcriptional modifcations of 70, 73]. Specifcally, defects in nuclear protein import and editing target genes have been associated with sporadic ALS, nuclear mRNA export were observed in diferent models of Alzheimer’s disease, Huntington’s disease, Parkinson’s dis- C9orf72 disease, spanning human postmortem patient tissue, ease, epilepsy, stroke, as well as many types of cancer [12, human induced pluripotent stem cell-diferentiated neurons 42, 56, 57]. Interestingly, a recent study showed widespread (hiPSC-neurons), drosophila, and yeast [10, 29]. In addition, RNA editing changes in postmortem autopsy brain tissue several nuclear pore complex protein members were identi- from persons with autism spectrum disease (ASD), as well fed as genetic modifers of C9orf72 disease pathogenesis as brains from individuals with Fragile X syndrome, sup- [24, 37], or displayed aggregation at the nuclear membrane porting the broad hypothesis that RNA editing dysregulation [73]. These fndings strengthen the critical role of nucleocy- will uncover novel mechanisms of neurological, neurodegen- toplasmic trafcking in neurodegenerative diseases and may erative and/or neuropsychiatric diseases. explain why altered RNA metabolism is one of the major To thoroughly assess the cytoplasmic mislocalization defcits described in C9orf72 disease pathogenesis. of ADAR2 in C9orf72 ALS/FTD, we examined varying Here, we show the nucleocytoplasmic mislocalization of brain regions of human postmortem C9orf72 patient tissue, the RNA binding protein, adenosine deaminase acting on C9orf72 patient-derived hiPSCs diferentiated into motor RNA 2 (ADAR2), which we hypothesize leads to aberrant neurons (hiPSC-MNs), and wild type (WT) mice express- RNA processing in C9orf72 mediated ALS/FTD. ADAR2 ing (G4C2)149 by means of somatic brain transgenesis using is a member of the ADAR protein family, which deaminates adeno-associated virus (AAV) vectors [16]. Fluorescent adenosine in double-stranded RNA transcripts, thus cata- immunolabeling of ADAR2 protein revealed aberrant lytically converting a single nucleotide from an adenosine ADAR2 staining in the neuronal cytoplasm of C9orf72 to an inosine (A-to-I) [5, 18, 38, 45]. ADAR2 is localized ALS/FTD patient postmortem spinal cord and motor cortex exclusively to the nucleus, and has been proposed to accu- tissue, C9orf72 ALS/FTD hiPSC-MNs, and diferent brain mulate in the nucleus during neuronal development [6]. The regions of AAV9-(G4C2)149-transduced WT mice. Interest- catalytic conversion alters the hydrogen bonding capacity ingly, ADAR2 showed no alterations in gene expression lev- of the edited nucleotide and leads to recognition by cellular els in C9orf72 ALS/FTD, in comparison to what had been machinery as guanosine. ADAR1 and ADAR2 (commonly found in sporadic ALS spinal cord motor neurons [33]. To referred to as ADAR and ADARB1, respectively) are the study the functional consequence of the mislocalization two catalytically active proteins in the ADAR family and are of ADAR2, we utilized RNA sequencing of patient tissue highly regulated. Knockout of these proteins leads to epilep- and diferentiated hiPSC-MNs to analyze the whole tran- tic-like seizures and death in mice, emphasizing its critical scriptome for RNA A to I editing changes. We uncovered roles in normal brain development [34, 35, 67, 68]. ADAR3 widespread RNA editing aberrations (hypo- and hyperedit- (alternate nomenclature is ADARB2), while highly brain ing) in varying brain regions of C9orf72 ALS/FTD patient specifc, is thought to be catalytically inactive and its role tissue as well as C9orf72 patient hiPSC-MNs. These RNA remains mostly unknown [13] (see also Online Resource 1). alterations were assigned to 1,526 genes, including genes Although RNA editing defcits are believed to play an involved in ALS related transcripts and the EIF2 signaling important role in neurodegeneration, there have been rela- pathway. These data provide new insights into the contribu- tively few studies investigating A to I editing in disease. tion of RNA A to I editing in neurodegeneration caused by Previously, studying RNA editing was difcult and relied the C9orf72 repeat expansion. In addition, these data dem- on the serendipitous discovery of A to I editing sites [42, onstrate functional consequences of C9orf72 HRE-mediated 61]. The increasing ease and availability of RNA sequenc- nucleocytoplasmic trafcking defects, supporting the critical ing allow for more robust characterization of A to I RNA role of functional trafcking of RNA processing proteins editing using a more quantitative method. These RNA- between the cytoplasm and nucleus. seq based approaches look for mismatched pairing in the transcriptome to the genome allowing for analysis of every RNA editing site in the transcriptome [61]. Utilizing these Methods methods, there have been millions of A to I RNA editing sites reported, suggesting it may be one of the most com- AAV9‑(G4C2) over expressing mouse tissue mon post-transcriptional
Recommended publications
  • Download Ji Calendar Educator Guide
    xxx Contents The Jewish Day ............................................................................................................................... 6 A. What is a day? ..................................................................................................................... 6 B. Jewish Days As ‘Natural’ Days ........................................................................................... 7 C. When does a Jewish day start and end? ........................................................................... 8 D. The values we can learn from the Jewish day ................................................................... 9 Appendix: Additional Information About the Jewish Day ..................................................... 10 The Jewish Week .......................................................................................................................... 13 A. An Accompaniment to Shabbat ....................................................................................... 13 B. The Days of the Week are all Connected to Shabbat ...................................................... 14 C. The Days of the Week are all Connected to the First Week of Creation ........................ 17 D. The Structure of the Jewish Week .................................................................................... 18 E. Deeper Lessons About the Jewish Week ......................................................................... 18 F. Did You Know? .................................................................................................................
    [Show full text]
  • March 2021 Adar / Nisan 5781
    March 2021 Adar / Nisan 5781 www.ti-stl.org Congregation Temple Israel is an inclusive community that supports your unique Jewish journey. TEMPLE NEWS SHABBAT WORSHIP SCHEDULE HIAS REFUGEE SHABBAT SERVICES WORSHIP SERVICE SCHEDULE Friday, March 5 @ 6:30 PM Throughout the month of March, Shabbat services will Temple Israel will be a proud participant in HIAS’ Refugee be available online only. Join us and watch services Shabbat, during which Jews in the United States and around the remotely on our website or on our Facebook page, where world will take action for refugees and asylum seekers. you can connect with other viewers in the comments section. Founded as the Hebrew Immigrant Aid Society in 1881 to assist Jews fleeing persecution in Russia and Eastern Europe, HIAS’s work is rooted in Jewish values and the belief that anyone fleeing WATCH SERVICES ONLINE hatred, bigotry and xenophobia, regardless of their faith or Services on our website: ethnicity, should be provided with a safe refuge. www.ti-stl.org/Watch Services on our Facebook page: Over the Shabbat of March 5-6, 2021, the Jewish community www.facebook.com/TempleIsraelStLouis will dedicate sacred time and space to refugees and asylum seekers. Now in its third year with hundreds of congregations and thousands of individuals participating, this Refugee Shabbat SERVICE SCHEDULE & PARSHA will be an opportunity to once again raise awareness in our 6:00 pm Weekly Pre-Oneg on Zoom communities, to recognize the work that has been done, and to (Link shared in our eNews each week.) reaffirm our commitment to welcoming refugees and asylum seekers.
    [Show full text]
  • Passover Guide & March 2021
    VIRTUAL SEDERS MARCH 27 5:00PM MARCH 28 5:00PM PAGE 3 PASSOVER GUIDE & MARCH 2021 ADAR / NISSAN1 5781 BULLETIN A MESSAGE FOR PASSOVER A Message for Passover Every year we remind the participants at the Passover table that the recounting of the experience is a “Haggadah,” a telling, and not a “Kriyah,” a reading. What’s the difference? A reading is simply going by the script of what’s on the page. A telling, on the other hand, requires both creativity, and the art, making the story pop. While the words on the page of the Haggadah have been the basis for the Passover Seder for thousands of years, they are merely jumping off points for rituals, conversations, and teaching the Passover narrative to our children and to each other. Taking part in a fulfilling Seder isn’t about reading every word on the page, but rather making the words that you do read come to life. Look no further than the famous Haggadah section of the Four Children to remind us of our responsibility to make the Seder interesting for every kind of participant. The Haggadah offers us four different types of Seder guests, the wise one, the rebellious one, the simple one, and the one who doesn’t know how to ask. We are given guidelines for how to explain the meaning of Passover to each of them. The four children remind us that each type of person at the table requires a different type of experience, and it’s the leader’s job to make the narrative relevant for each of them.
    [Show full text]
  • How Asbestos Drives the Tissue Towards Tumors: YAP Activation, Macrophage and Mesothelial Precursor Recruitment, RNA Editing, and Somatic Mutations
    Oncogene (2018) 37:2645–2659 https://doi.org/10.1038/s41388-018-0153-z ARTICLE How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations 1 2 3 3 3 4 Hubert Rehrauer ● Licun Wu ● Walter Blum ● Lazslo Pecze ● Thomas Henzi ● Véronique Serre-Beinier ● 1 5 2 3 6 Catherine Aquino ● Bart Vrugt ● Marc de Perrot ● Beat Schwaller ● Emanuela Felley-Bosco Received: 1 September 2017 / Revised: 11 December 2017 / Accepted: 30 December 2017 / Published online: 6 March 2018 © The Author(s) 2018. This article is published with open access Abstract Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were 1234567890();,: even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression. Introduction The association of exposure to asbestos with development of mesothelioma has been demonstrated in the seminal experimental work of Wagner in the 1960s [1]. In 1987, Kane and co-workers [2] observed that already a single dose These authors contributed equally: Hubert Rehrauer, Licun Wu.
    [Show full text]
  • A-To-I RNA Editing Does Not Change with Age in the Healthy Male Rat Brain
    Biogerontology (2013) 14:395–400 DOI 10.1007/s10522-013-9433-8 RESEARCH ARTICLE A-to-I RNA editing does not change with age in the healthy male rat brain Andrew P. Holmes • Shona H. Wood • Brian J. Merry • Joa˜o Pedro de Magalha˜es Received: 18 January 2013 / Accepted: 15 May 2013 / Published online: 26 May 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract RNA editing is a post-transcriptional pro- Introduction cess, which results in base substitution modifications to RNA. It is an important process in generating Adenosine to inosine (A-to-I) RNA editing is a post- protein diversity through amino acid substitution and transcriptional process that alters the sequences of the modulation of splicing events. Previous studies RNA molecules. The adenosine deaminases ADAR have suggested a link between gene-specific reduc- and ADARB1 convert specific adenosine residues on tions in adenosine to inosine RNA editing and aging in RNA to inosine bases. During translation, sequencing, the human brain. Here we demonstrate that changes in and splicing, inosine is recognized as guanosine. RNA editing observed in humans with age are not Therefore, A-to-I RNA editing has important impli- observed during aging in healthy rats. Furthermore, we cations in altering specific amino acids, miRNA identify a conserved editing site in rats, in Cog3.We targeting, and in the modulation of alternative splicing propose that either age-related changes in RNA (Nishikura 2010). editing are specific to primates or humans, or that Targets of A-to-I RNA editing are often genes they are the manifestation of disease pathology.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Structural Studies of C9orf72-SMCR8-WDR41 Protein Complex
    Structural Studies of C9orf72-SMCR8-WDR41 Protein Complex Valeria Shkuratova Department of Biochemistry McGill University, Montreal A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Valeria Shkuratova, 2020 Table of Contents Abstract ............................................................................................................................................ 3 Résumé ............................................................................................................................................ 4 Acknowledgment ............................................................................................................................. 5 Author Contribution ........................................................................................................................ 6 List of Abbreviations ....................................................................................................................... 7 List of Figures .................................................................................................................................. 9 List of Tables ................................................................................................................................... 9 Introduction ................................................................................................................................... 10 1. Amyotrophic Lateral Sclerosis (ALS) ..............................................................................
    [Show full text]
  • The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome
    New Research Disorders of the Nervous System The Proline/Arginine Dipeptide from Hexanucleotide Repeat Expanded C9ORF72 Inhibits the Proteasome Jelena Mojsilovic-Petrovic,4 Won Hoon Choi,5 Nathaniel Safren,6 ء,Matthews Lan,3 ء,Rahul Gupta,1,2 Sami Barmada,6 Min Jae Lee,5 and Robert Kalb4,7 DOI:http://dx.doi.org/10.1523/ENEURO.0249-16.2017 1Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 2Department of Biology, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 3Department of Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, 4Division of Neurology, Department of Pediatrics, Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, 5Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea, 6Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, and 7Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 Abstract An intronic hexanucleotide repeat expansion (HRE) mutation in the C9ORF72 gene is the most common cause of familial ALS and frontotemporal dementia (FTD) and is found in ϳ7% of individuals with apparently sporadic disease. Several different diamino acid peptides can be generated from the HRE by noncanonical translation (repeat-associated non-ATG translation, or RAN translation), and some of these peptides can be toxic. Here, we studied the effects of two arginine containing RAN translation products [proline/arginine repeated 20 times (PR20) and glycine/arginine repeated 20 times (GR20)] in primary rat spinal cord neuron cultures grown on an astrocyte ␮ feeder layer.
    [Show full text]
  • The Four Special Shabbatot: Shekalim, Zakhor, Parah, and Hahodesh
    The four special Shabbatot: Shekalim, Zakhor, Parah, and HaHodesh As Purim and Passover approach four special Torah and Haftarah readings are added to the weekly lectionary of the Torah. They are called the Arba Parshiyot (four Torah portions). The first of these Shabbatot is Shabbat Shekalim which is read on the Shabbat prior to or on Rosh Hodesh Adar or in a leap year Rosh Hodesh Adar Sheni (Second Adar). The reading is of the census in the Wilderness of Sinai conducted by Moses by means of each Israeli giving a half- Shekel and the counting the Shekalim. ((Shemot 30:11-16). In later times the Shekalim were used for the purchase of the communal sacrifice offered morning and evening. The second Shabbat is Zakhor (Deuteronomy 25:17-19) it is read on the Shabbat preceding the holiday of Purim: 17) Remember what Amalek did unto you by the way as you came out of Egypt. 18) How he met you by the way, and killed your stragglers, all that were weak in your rear, when you were faint and weary: and he did not fear God. 19) Therefore it shall be, when the Lord your God has given you rest from all your enemies around, in the land which the Lord your god dives you for an inheritance to possess it, that you shall blot out the remembrance of Amalek from under heaven; you shall not forget. The tie-in to Purim is that in the Haftarah First Samuel 15:2-34 King Saul makes war on the Amalekites and captures their King Agag.
    [Show full text]
  • C9orf72 Testing in a Diagnostic Laboratory Using the Asuragen Amplidex® PCR/CE C9orf72 Kit
    C9orf72 testing in a diagnostic laboratory using the Asuragen AmplideX® PCR/CE C9orf72 kit Rick van Minkelen1, Patricia Reichgelt1, Saskia Theunisse2, Jody Salomon2, Kristen Culp3, Dept. Clinical Genetics Janne M. Papma4, Laura Donker Kaat4,5, John C. van Swieten4,6, Raoul van de Graaf1, Lies H. Hoefsloot1, Martina Wilke1 1 Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands 2 Sanbio B.V., Uden, the Netherlands 3 Asuragen, Inc., Austin, TX, USA 4 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands 5 Department of Clinical Genetics, LUMC, Leiden, the Netherlands 6 Department of Clinical Genetics, VUMC, Amsterdam, the Netherlands [email protected] Introduction The pathogenic expanded hexanucleotide repeat element (G4C2) in intron 1 of the Chromosome 9 open reading frame 72 gene (C9orf72; Results NM_001256054.2) is the most prevalent genetic cause of the All samples previously scored as pathogenic using the home-made tests neurodegenerative disorders frontotemporal dementia (FTD) and also showed a pathogenic repeat expansion of at least 145 repeats using amyotrophic lateral sclerosis (ALS). Here we describe our experiences in the new Asuragen test (for examples see Figure 1). No repeats were sized using the newly introduced Asuragen AmplideX® PCR/CE C9orf72 assay in the range 60-145. Repeats in the normal range were sized exactly the compared to our home-made long range and repeat-primed PCR tests for same. DNA concentrations of 50ng/µl (our standard lab dilution) and the detection of C9orf72 repeats. Our home-made tests are limited to 25ng/µl showed similar results. A dilution (including a second 30s injection detection of up to ~60 C9orf72 repeats.
    [Show full text]
  • Altered Regulation of Adipomir Editing with Aging
    International Journal of Molecular Sciences Article Altered Regulation of adipomiR Editing with Aging Sabel Meadows, Abbagael Seidler, Madison Wall, Jamika Page, Cara Taylor, Brendin Flinn , Robin Turner and Nalini Santanam * Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; [email protected] (S.M.); [email protected] (A.S.); [email protected] (M.W.); [email protected] (J.P.); [email protected] (C.T.); fl[email protected] (B.F.); [email protected] (R.T.) * Correspondence: [email protected] Received: 18 August 2020; Accepted: 17 September 2020; Published: 20 September 2020 Abstract: Adipose dysfunction with aging increases risk to insulin resistance and other chronic metabolic diseases. We previously showed functional changes in microRNAs involved in pre-adipocyte differentiation with aging resulting in adipose dysfunction. However, the mechanisms leading to this dysfunction in microRNAs in adipose tissue (adipomiRs) during aging are not well understood. We determined the longitudinal changes in expression of adipomiRs and studied their regulatory mechanisms, such as miRNA biogenesis and editing, in an aging rodent model, with Fischer344 Brown-Norway hybrid rats at ages ranging from 3 to 30 months (male/females, × n > 8). Expression of adipomiRs and their edited forms were determined by small-RNA sequencing. RT-qPCR was used to measure the mRNA expression of biogenesis and editing enzymes. Sanger sequencing was used to validate editing with aging. Differential expression of adipomiRs involved in adipocyte differentiation and insulin signaling was altered with aging. Sex- and age-specific changes in edited adipomiRs were observed. An increase in miRNA biogenesis and editing enzymes (ADARs and their splice variants) were observed with increasing age, more so in female than male rats.
    [Show full text]