Paleopódium 51

Total Page:16

File Type:pdf, Size:1020Kb

Paleopódium 51 PALEOPÓDIUM 51. MEGHÍVÓ Az MTA–MTM–ELTE Paleontológiai Kutatócsoportja és az MTM Őslénytani és Földtani Tára félig formális, félig kötetlen, házi (de nyilvános) előadás-sorozatának ötvenegyedik előadására Ştefan VASILE: Continental microfossil remains from the Upper Cretaceous of Hungary and Romania – paleogeographic and paleoecological significance Ideje: 2013. március 7. (csütörtök), 15:00 Helye: az Őslénytár könyvtára (Ludovika tér 2.) The Upper Cretaceous continental deposits of Hungary and Romania are close to each other both spatially (neighboring landmasses within insular Europe) and temporally (Santonian age for the Csehbánya Formation and Maastrichtian age for the Haţeg and Rusca Montană Basins). Although there are important differences between the ecosystems found in the two areas, similarities also existed. Albanerpetontidae are an extinct family of tailed amphibians, including four genera known from the Middle Jurassic to the Pliocene, with occurrences in North America, Europe, Asia and Africa. Of these, only the genus Albanerpeton is known from the Upper Cretaceous of Romania and, most probably Hungary. Newly-discovered specimens from the Haţeg Basin might prove useful for a more precise taxonomical assessment of Romanian albanerpetontids, adding important information on the evolution and dispersal of the different species of Albanerpeton in Cretaceous Europe. A large number of small peculiar fossils have been recovered from both the Santonian of Hungary and the Maastrichtian of Romania. The morphology and chemical composition of these structures showed that they actually represent insect coprolites, produced by drywood termites. The discovery is of great importance in the attempt to reconstruct the Upper Cretaceous ecosystems, since fossil insect remains are much harder to find. Termites have an important role in the decomposition of vegetal matter, and were surely included in the diet of invertivore vertebrates. The Central-Eastern occurrence of termite coprolites also adds important information to the dispersion of these insects throughout Cretaceous Europe. Ştefan a Laboratory of Paleontology, Faculty of Geology and Geophysics, University of Bucharest munkatársa. Vendégünk a SYNTHESYS projekt keretében érkezett, házigazdája Gasparik Mihály. Az előadásra minden érdeklődőt szeretettel várunk! .
Recommended publications
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Early Cretaceous) Wessex Formation of the Isle of Wight, Southern England
    A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wessex Formation of the Isle of Wight, southern England STEVEN C. SWEETMAN and JAMES D. GARDNER Sweetman, S.C. and Gardner, J.D. 2013. A new albanerpetontid amphibian from the Barremian (Early Cretaceous) Wes− sex Formation of the Isle of Wight, southern England. Acta Palaeontologica Polonica 58 (2): 295–324. A new albanerpetontid, Wesserpeton evansae gen. et sp. nov., from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern England, is described. Wesserpeton is established on the basis of a unique combination of primitive and derived characters relating to the frontals and jaws which render it distinct from currently recognized albanerpetontid genera: Albanerpeton (Late Cretaceous to Pliocene of Europe, Early Cretaceous to Paleocene of North America and Late Cretaceous of Asia); Celtedens (Late Jurassic to Early Cretaceous of Europe); and Anoualerpeton (Middle Jurassic of Europe and Early Cretaceous of North Africa). Although Wesserpeton exhibits considerable intraspecific variation in characters pertaining to the jaws and, to a lesser extent, frontals, the new taxon differs from Celtedens in the shape of the internasal process and gross morphology of the frontals in dorsal or ventral view. It differs from Anoualerpeton in the lack of pronounced heterodonty of dentary and maxillary teeth; and in the more medial loca− tion and direction of opening of the suprapalatal pit. The new taxon cannot be referred to Albanerpeton on the basis of the morphology of the frontals. Wesserpeton currently represents the youngest record of Albanerpetontidae in Britain. Key words: Lissamphibia, Albanerpetontidae, microvertebrates, Cretaceous, Britain. Steven C.
    [Show full text]
  • Yaksha Perettii
    Yaksha perettii Yaksha perettii is an extinct species of albanerpetontid amphibian, and the only species in the genus Yaksha. It is known from three Yaksha perettii specimens found in Cenomanian aged Burmese amber from Temporal range: Early Cenomanian Myanmar. The remains of Yaksha perettii are the best preserved of 99 Ma all albanerpetontids, which usually consist of isolated fragments or ↓ crushed flat, and have provided significant insights in the PreꞒ Ꞓ O S D C P T J K PgN morphology and lifestyle of the group. Contents Etymology Discovery Description Phylogeny Holotype skull of Yaksha perettii, dark References grey represents preserved soft tissue Scientific classification Etymology Kingdom: Animalia Phylum: Chordata The generic epithet is named after the Yaksha, a class of nature Class: Amphibia and guardian spirits in Indian religions, while the specific epithet honors Dr. Adolf Peretti, who provided some of the specimens, Order: †Allocaudata including the holotype.[1] Family: †Albanerpetontidae Discovery Genus: †Yaksha Daza et al, 2020 The paratype specimen was originally described in 2016 amongst Species: †Y. perettii a collection of fossil lizard species from Burmese amber, and was initially identified as a stem-chameleon.[2] However Professor Binomial name Susan E. Evans, a researcher who has extensively worked on †Yaksha perettii albanerpetontids, recognised the specimen as belonging to the Daza et al, 2020 group.[3] Subsequently, another specimen was discovered in the collection of gemologist Dr. Adolf Peretti, which would later become the holotype specimen.[4] The paper describing Yaksha perettii was published in November 2020 in the journal Science.[1] Description The species is known from three specimens, the small juvenile skeleton described in the 2016 paper (JZC Bu154), a complete adult skull and lower jaws (GRS-Ref-060829), and a partial adult postcranium (GRSRef- 27746).
    [Show full text]
  • Fossils Importance Bibliography
    GEOL 204 The Fossil Record Las Hoyas Spring 2020 Section 0101 Daniel Boyarsky, Noor Nabulsi, Alyssa Pryputniewicz & Elijah WeBB Fossils Geological Layout This Lagerstätten site has exceptionally preserved fossils. Some of these fossils include Microbial mats: responsible for the preservation of soft tissue in many fossils The iron structures that are rarely found in the fossil record, such as soft tissues, patterns of carbonate depositions, as a result from bacterial metabolism which covered the dinosaur's crest coloring, nerviation, and gut tracts (Buscalioni, A.D.). Below are some of the other animals increased the preservation of those soft tissues. Evidence of these mats comes from the studies that researchers have found fossils of. on microfacies and the fossils themselves. Albanerpeton (amphibian) Europejara (pterosaur) Crusafontia (mammal) Abruption: Notable in the formation, due to the presence of complex specimens. From studies on several different organisms it can be estimated that the burial of most entities was quick. Stagnation: Millions of years with the lack of external forces on the site created an untouched site of easily accessible fossils. 20 mm 35 cm 5 cm Fig. 1: Tamura, N. (Albanerpeton); Fig. 2: “Euro” Fig. 3: “Crusafontia” Venczel, M. Fig. 6: “Crusafontia” Http://Gomeslab.weebly.com/Uploads/1/0/9/2/10 Https://d1k5w7mbrh6vq5.Cloudfront.net/Images/ 9219815/Published/Img-1803- Cache/0d/34/7d/0d347d1e06f219283da2064b963 Importance 2.Jpg?1503670391, 5b420.Jpg,mages.app.goo.gl/qTGBW7NvY4X9v The Las Hoyas site has recorded a wide array of species of diverse plant and animal taxa. At images.app.goo.gl/C2zWPTU1rVD9VzoR7. 6HU8. present, the biodiversity count comprises 118 families and 201 species.
    [Show full text]
  • Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal)
    Alexandre Renaud Daniel Guillaume Licenciatura em Biologia celular Mestrado em Sistemática, Evolução, e Paleobiodiversidade Microvertebrates of the Lourinhã Formation (Late Jurassic, Portugal) Dissertação para obtenção do Grau de Mestre em Paleontologia Orientador: Miguel Moreno-Azanza, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-orientador: Octávio Mateus, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor Paulo Alexandre Rodrigues Roque Legoinha (FCT-UNL) Arguente: Doutor Hughes-Alexandres Blain (IPHES) Vogal: Doutor Miguel Moreno-Azanza (FCT-UNL) Júri: Dezembro 2018 MICROVERTEBRATES OF THE LOURINHÃ FORMATION (LATE JURASSIC, PORTUGAL) © Alexandre Renaud Daniel Guillaume, FCT/UNL e UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ACKNOWLEDGMENTS First of all, I would like to dedicate this thesis to my late grandfather “Papi Joël”, who wanted to tie me to a tree when I first start my journey to paleontology six years ago, in Paris. And yet, he never failed to support me at any cost, even if he did not always understand what I was doing and why I was doing it. He is always in my mind. Merci papi ! This master thesis has been one-year long project during which one there were highs and lows.
    [Show full text]
  • Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(S): Matthew T
    Vertebrate Paleontology of the Cloverly Formation (Lower Cretaceous), II: Paleoecology Author(s): Matthew T. Carrano , Matthew P. J. Oreska , and Rowan Lockwood Source: Journal of Vertebrate Paleontology, 36(2) Published By: The Society of Vertebrate Paleontology URL: http://www.bioone.org/doi/full/10.1080/02724634.2015.1071265 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Vertebrate Paleontology e1071265 (12 pages) Ó by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2015.1071265 ARTICLE VERTEBRATE PALEONTOLOGY OF THE CLOVERLY FORMATION (LOWER CRETACEOUS), II: PALEOECOLOGY MATTHEW T. CARRANO,*,1 MATTHEW P. J. ORESKA,1,2 and ROWAN LOCKWOOD3 1Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013-7012, U.S.A., [email protected]; 2Department of Environmental Sciences, University of Virginia, Clark Hall, 291 McCormick Road, P.O.
    [Show full text]
  • The Latest Cretaceous Fauna with Dinosaurs and Mammals from the Haţeg Basin — a Historical Overview
    Palaeogeography, Palaeoclimatology, Palaeoecology 293 (2010) 271–282 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo The Latest Cretaceous fauna with dinosaurs and mammals from the Haţeg Basin — A historical overview Dan Grigorescu Department of Geology and Geophysics, University of Bucharest, 1 Bălcescu Blvd., RO-010041 Bucharest, Romania article info abstract Article history: Research on the uppermost Cretaceous continental deposits with dinosaur remains from the Haţeg Basin has Received 20 October 2009 behind it a history of more than 110 years. The first studies were by Franz Nopcsa (1877–1933) who Received in revised form 12 January 2010 published between 1897 and 1929 a series of notes and papers on this fauna, including five monographs Accepted 22 January 2010 dedicated to the Haţeg dinosaurs. Nopcsa described 10 vertebrate taxa, including dinosaurs, crocodilians and Available online 29 January 2010 turtles, from the Haţeg Basin, out of which 6 are still valid. He recognized the primitiveness and the small size of most of the taxa from the Haţeg palaeofauna, characters that he related to the isolated island environment Keywords: Dinosaurs within which this fauna lived for a long time span. Vertebrates After Nopcsa, systematic research on the Haţeg fauna was interrupted for many decades, being resumed after Maastrichtian 1977 when D. Grigorescu, leading a small group of students in Geology started to explore the deposits Haţeg Basin outcropping along the Sibişel valley, near Sânpetru village, from where Nopcsa made most of his collection of History of Palaeontology fossil bones. Since then the fieldwork continued every summer until now, numerous remains of dinosaurs, crocodiles and turtles being unearthed.
    [Show full text]
  • Dinosaur Paleontology and Taphonomy of a Mixed Bonebed
    1 Sankey, J.T. In Press. In: New Perspectives on Horned Dinosaurs, M. Ryan, B. Chinnery- Allgeier, and D. Eberth (eds). Indiana University Press, Bloomington. Faunal Composition and Significance of High Diversity, Mixed Bonebeds Containing Agujaceratops mariscalensis and other Dinosaurs, Aguja Formation (Upper Cretaceous), Big Bend, Texas Julia T. Sankey Department of Physics and Geology, California State University, Stanislaus, One University Circle, Turlock, California 95382 U.S.A. [email protected] RH: Bonebeds and Agujaceratops in Big Bend 2 Abstract New sedimentologic and paleontologic information are presented from multiple, closely associated mixed bonebeds in the Aguja Formation (Campanian) from the Big Bend area of Texas. These bonebeds appear to have been deposited as component parts of channel lags during major flooding events. One of these bonebeds yields the most complete skull of Agujaceratops mariscalensis. Correlation of paleosols in the bonebed sections with those from the well studied Dawson Creek section (Big Bend), provides a critical stratigraphic context for A. mariscalensis and these bonebeds. Cumulatively, all the sites yield a rich assemblage of plants, invertebrates and other vertebrates. The combined vertebrate assemblage provides a means of assessing local terrestrial- community composition in the Late Cretaceous in Big Bend, and for comparing Late Cretaceous southern faunas with those of comparable age from Montana and Alberta. Introduction Big Bend National Park, Texas, is the southernmost area in the United States that yields Upper Cretaceous macrofossil dinosaur remains, as well as rich and diverse vertebrate microfossil assemblages. Although this area contains unique vertebrate assemblages, much less is known about them than those of similar age from regions farther north in Montana and Alberta.
    [Show full text]
  • The Tetrapod Fossil Record from the Uppermost
    geosciences Review The Tetrapod Fossil Record from the Uppermost Maastrichtian of the Ibero-Armorican Island: An Integrative Review Based on the Outcrops of the Western Tremp Syncline (Aragón, Huesca Province, NE Spain) Manuel Pérez-Pueyo 1,* , Penélope Cruzado-Caballero 1,2,3,4 , Miguel Moreno-Azanza 1,5,6 , Bernat Vila 7, Diego Castanera 1,7 , José Manuel Gasca 1 , Eduardo Puértolas-Pascual 1,5,6, Beatriz Bádenas 1 and José Ignacio Canudo 1 1 Grupo Aragosaurus-IUCA, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009 Zaragoza, Aragón, Spain; [email protected] (P.C.-C.); [email protected] (M.M.-A.); [email protected] (D.C.); [email protected] (J.M.G.); [email protected] (E.P.-P.); [email protected] (B.B.); [email protected] (J.I.C.) 2 Área de Paleontología, Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Citation: Pérez-Pueyo, M.; 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain 3 Cruzado-Caballero, P.; Instituto de Investigación en Paleobiología y Geología (IIPG), Universidad Nacional de Río Negro, Moreno-Azanza, M.; Vila, B.; 8500 Río Negro, Argentina 4 IIPG, UNRN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Castanera, D.; Gasca, J.M.; 2300 Buenos Aires, Argentina Puértolas-Pascual, E.; Bádenas, B.; 5 GEOBIOTEC, Department of Earth Sciences, NOVA School of Science and Technology, Campus de Caparica, Canudo, J.I. The Tetrapod Fossil 2829-516 Caparica, Portugal Record from the Uppermost 6 Espaço Nova Paleo, Museu de Lourinhã, Rua João Luis de Moura 95, 2530-158 Lourinhã, Portugal Maastrichtian of the Ibero-Armorican 7 Institut Català de Paleontologia Miquel Crusafont, Edifici Z, C/de les Columnes s/n, Campus de la Island: An Integrative Review Based Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; [email protected] on the Outcrops of the Western Tremp * Correspondence: [email protected] Syncline (Aragón, Huesca Province, NE Spain).
    [Show full text]
  • Dependent Sex Determination at The
    Downloaded from rsbl.royalsocietypublishing.org on October 27, 2010 Biol. Lett. Indian plate peaked slightly before the K–Pg boundary doi:10.1098/rsbl.2010.0882 [3]. It has been widely suggested that one or both Published online events were responsible for the mass extinction at the Palaeontology K–Pg boundary and that each had profound effects on global climate. The impact vapourized large quantities of evaporite minerals, and the resulting sulphate aerosols Unexpected resilience of probably seeded clouds that reflected solar radiation [4]. The volcanic eruptions, which formed the Deccan Traps species with temperature- of India, released large quantities of CO2 into the atmos- phere and may have initiated global warming [5]. Those dependent sex species that had temperature-dependent sex determi- determination at the nation (TSD) are expected to have been negatively impacted by these climate changes [6,7]. Cretaceous–Palaeogene In TSD, the sex of the embryo is determined by the incubation temperature of the eggs. Incubation at the boundary pivotal temperature(s) yields a 1 : 1 sex ratio, small temp- erature deviations yield an unbalanced sex ratio and 1, 2 Sherman Silber *, Jonathan H. Geisler larger deviations yield single-sex clutches [8]. In genoty- and Minjin Bolortsetseg3 pic sex determination (GSD), a sex-determining gene 1Infertility Center of Saint Louis, St Luke’s Hospital, Saint Louis, activates a downstream cascade of other genes that are MO 63017, USA responsible for testis or ovarian development. The 2New York College of Osteopathic Medicine, Old Westbury, NY 11568, USA specific chromosomes and genes in GSD have evolved 3Institute for the Study of Mongolian Dinosaurs, Ulaanbaatar 14201, independently in numerous lineages, suggesting that it Mongolia has adaptive benefits [7].
    [Show full text]
  • A Messinian (Latest Miocene) Occurrence for Albanerpeton Estes
    geodiversitas 2021 43 14 e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Réalisée à partir des Figures de l’article/Made from the Figures of the article. Geodiversitas est
    [Show full text]
  • Vertebrate Microfossil Diversity from the Tremp Formation
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials dʼinvestigació i docència en els termes establerts a lʼart. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix lʼautorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No sʼautoritza la seva reproducció o altres formes dʼexplotació efectuades amb finalitats de lucre ni la seva comunicació pública des dʼun lloc aliè al servei TDX. Tampoc sʼautoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]