Academic Careers

Total Page:16

File Type:pdf, Size:1020Kb

Academic Careers Liu, Y. Vita 1 Curriculum Vitae Yu Liu Measurement, Quantitative Methods, and Learning Sciences Program 472 Farish Hall Department of Psychological, Health, and Learning Sciences 3657 Cullen Blvd. College of Education Houston, TX 77204 University of Houston Email: [email protected] Office: 713-743-8988 ACADEMIC APPOINTMENT 2016 – Present, Assistant Professor, Measurement, Quantitative Methods, and Learning Sciences, Department of Psychological, Health, and Learning Sciences, University of Houston 2015 – 2016, Research Assistant, Department of Psychology, Arizona State University 2011 – 2014, Research Assistant, Prevention Research Center, Arizona State University EDUCATION Doctor of Philosophy, Quantitative Psychology, Arizona State University, 2016 (Advisors: Drs. Stephen G. West and Jenn-Yun Tein) Master of Arts, Quantitative Psychology, Arizona State University, 2013 (Advisor: Dr. Stephen G. West) Bachelor of Science, Statistics, Peking University, Beijing, China, 2010 Bachelor of Science, Psychology, Peking University, Beijing, China, 2010 RESEARCH INTERESTS My methodological research focuses on statistical modeling and measurement issues in the study of intraindividual growth/change and interpersonal processes influencing intraindividual growth/change, as well as the probing of moderation effects. I have collaborated in applying multilevel models, structural equation models, and various missing data handling procedures to the study of growth and change and the corresponding moderators/mediators in health and mental health outcomes of Mexican-origin youths and their parents, to the study of mediation mechanisms of reading comprehension for native English speakers and fluent and limited English learners, and to the validation of measurement instruments of children’s behaviors, emotions, and academic and social profile in an economically disadvantaged Latinx population. AWARDS AND RECOGNITIONS 2019 Nominated for the University of Houston Teaching Excellence Award 2018 Faculty Teaching Excellence Award, College of Education, University of Houston 2017 Outstanding Poster Award for the Early Career Psychologists (ECP) Research and Innovation Poster Session of the 125th American Psychological Association Annual Convention, for Liu, Y., & Enders, C. K., “Evaluation of multi-parameter test statistics for multiple imputation” Liu, Y. Vita 2 2014 Society of Multivariate Experimental Psychology Invitational Award to Present Outstanding Graduate Research, for Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2015). Probing interactions in multiple regression: Frequentist versus Bayesian approaches. Multivariate Behavioral Research, 50(1), 139. (Abstract). 2014 Top 3 posters for the 2014 Early Career Preventionist Network (ECPN) Student Poster Contest of the 2014 Society for Prevention Research Annual Meeting, for Liu, Y., Millsap, R. E., Tanaka, R., & Tein, J., “Testing measurement invariance in longitudinal data using ordinal variables” 2012 Best Paper Award 2012, Journal of Research in Personality, for Finch, J., Baranik, L. E., Liu, Y., & West, S. G. (2012). Physical health, positive and negative affect, and personality: A longitudinal analysis. Journal of Research in Personality, 46(5), 537-545. PEER-REVIEWED ARTICLES (underlined authors were students when the work was conducted) 1. Liu, Y., & Sriutaisuk, S. (in press). A comparison of FIML- versus multiple-imputation- based methods to test measurement invariance with incomplete ordinal variables. Structural Equation Modeling: A Multidisciplinary Journal. Accepted 01/08/2021. 2. Murillo, R., Reesor-Oyer, L., Liu, Y., Desai, S., Hernandez, D. C. (in press). The role of neighborhood social cohesion in the association between seeing people walk and leisure-time walking among Latino adults. Leisure Sciences. Published online 12/28/2020. Accepted 12/04/2020. 2019 Impact Factor (2-year) = 1.952, Impact Factor (5-year) = 2.232 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 3. Zhang, J., Lin, T. J., Liu, Y., & Nagy, W. (2020). Morphological awareness and reading comprehension: Differential mediation mechanisms for native English speakers, fluent and limited English learners. Journal of Experimental Child Psychology, 199, 104915. Published online 07/09/2020. Accepted 05/19/2020. 2019 Impact Factor (2-year) = 2.301, Impact Factor (5-year) = 2.867 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 4. Liu, Y.*, Anderson, J. R.*, Weldon, A. N., Zhu, L., Sajovec, P., Pollard-Duradola, S., Zhang, R., McCormick, A. S., & Gonzalez, J. E. (2020). Examining the factor structure of the Child Behavior Questionnaire – Very Short Form – teacher form in a Spanish-speaking Mexican- American sample. Early Childhood Research Quarterly, 53(4), 403-412. (* Co-first authors) Published online 06/16/2020. Accepted 05/21/2020. 2019 Impact Factor (2-year) = 2.316, Impact Factor (5-year) = 3.709 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 5. Murillo, R., Reesor, L. M., Hernandez, D. C., Liu, Y., & Obasi, E. M. (2020). Neighborhood walkability and overweight/obese weight status among Latino adults. American Journal of Health Promotion, 34(6), 599-607. Published online 03/05/2020. Accepted 01/27/2020. Liu, Y. Vita 3 2019 Impact Factor (2-year) = 2.232, Impact Factor (5-year) = 2.380 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 6. Relyea, J. E., Zhang, J., Liu, Y., & Wui, G. (2020). Contribution of home language and literacy environment to English reading comprehension for emergent bilinguals: Sequential mediation model analyses. Reading Research Quarterly, 55(3), 473-492. Published online 11/06/2019. Accepted 09/30/2019. 2019 Impact Factor (2-year) = 3.543, Impact Factor (5-year) = 3.690 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 7. Liu, Y., & Sriutaisuk, S. (2020). Evaluation of model fit in structural equation models with ordinal missing data: An examination of the D2 method. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 561-583. Published online 10/08/2019. Accepted 08/28/2019. 2019 Impact Factor (2-year) = 3.638, Impact Factor (5-year) = 5.993 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 8. Liu, Y. (2020). Probing curvilinear-by-linear interactions when the predictors are randomly sampled. Behavior Research Methods, 52, 773–798. Published online 09/03/2019. Accepted 06/15/2019. 2019 Impact Factor (2-year) = 4.425, Impact Factor (5-year) = 5.130 [2019 Journal Citation Reports® (Clarivate Analytics, 2020)] 9. Liu, Y., & West, S. G. (2018). Longitudinal measurement non-invariance with ordered- categorical indicators: How are the parameters in second-order latent linear growth models affected?. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 762-777. 2018 Impact Factor (2-year) = 4.426, Impact Factor (5-year) = 6.742 [2018 Journal Citation Reports® (Clarivate Analytics, 2019)] 10. Liu, Y., West, S. G., Levy, R., & Aiken, L. S. (2017). Tests of simple slopes in multiple regression models with an interaction: Comparison of four approaches. Multivariate Behavioral Research, 52(4), 445-464. 2017 Impact Factor (2-year) = 3.691, Impact Factor (5-year) = 4.180 [2017 Journal Citation Reports® (Clarivate Analytics, 2018)] 11. Gonzales, N. A., Liu, Y., Jensen, M., Tein, J., White, R. M. B., & Deardorff, J. (2017). Externalizing and internalizing pathways to Mexican American adolescents’ risk-taking. Development and Psychopathology, 29(4), 1371-1390. 2017 Impact Factor (2-year) = 4.357, Impact Factor (5-year) = 5.021 [2017 Journal Citation Reports® (Clarivate Analytics, 2018)] 12. Liu, Y., & Enders, C. K. (2017). Evaluation of multi-parameter test statistics for multiple imputation. Multivariate Behavioral Research, 52(3), 371-390. 2017 Impact Factor (2-year) = 3.691, Impact Factor (5-year) = 4.180 [2017 Journal Citation Reports® (Clarivate Analytics, 2018)] 13. Liu, Y., Millsap, R. E., West, S. G. Tein, J., Tanaka, R., & Grimm, K. J. (2017). Testing Liu, Y. Vita 4 measurement invariance in longitudinal data with ordered-categorical measures. Psychological Methods, 22(3), 486-506. 2017 Impact Factor (2-year) = 6.485, Impact Factor (5-year) = 10.315 [2017 Journal Citation Reports® (Clarivate Analytics, 2018)] Rejection rate: 85% [2017 APA Summary Report of Journal Operations (American Psychologist, 2018)] 14. White, R. M. B., Liu, Y., Gonzales, N. A., Tein, J., & Knight, G. P. (2016). Neighborhood qualification of the association between parenting and problem behavior trajectories among Mexican-origin father–adolescent dyads. Journal of Research on Adolescence, 26(4), 927-946. 2016 Impact Factor (2-year) = 2.288, Impact Factor (5-year) = 3.486 [2016 Journal Citation Reports® (Clarivate Analytics, 2017)] 15. Grimm, K. J. & Liu, Y. (2016). Residual structures in growth models with ordinal outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 23(3), 466-475. 2016 Impact Factor (2-year) = 3.097, Impact Factor (5-year) = 6.214 [2016 Journal Citation Reports® (Clarivate Analytics, 2017)] 16. Liu, Y., & West, S. G. (2016). Weekly cycles in daily report data: An overlooked issue. Journal of Personality, 84(5), 560-579. 2016 Impact Factor (2-year) = 3.590, Impact Factor (5-year) = 4.255 [2016 Journal Citation Reports® (Clarivate Analytics, 2017)] [Jeffrey S. Tanaka Occasional Paper series in quantitative methods for personality] 17. White, R. M. B., Liu, Y., Nair, R. L., & Tein, J. Y. (2015). Longitudinal and integrative tests of family stress model effects on
Recommended publications
  • Cronbach, L. J. (1951). Coefficient Alpha and the Internal Structure of Tests. Psychometrika, 16, 297-334 (28,307 Citations in Google Scholar As of 4/1/2016)
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334 (28,307 citations in Google Scholar as of 4/1/2016). By far the most cited article in Psychometrika is Lee Cronbach’s famous study of coefficient alpha. I will address four questions: What makes the article special? Why do people cite the article more than other special articles? Was the article also influential beyond psychology? How does alpha fit in present-day psychometrics? What makes the article special? In the first half of the 20 th century, psychometricians distinguished two practically useful types of reliability, which were coefficients of stability and coefficients of equivalence. Coefficients of stability are correlations between two test scores obtained with the same test on two different time points, administered with a time interval that serves the psychologist’s purpose. The coefficient provides information about the stability of the attribute across the time interval. Coefficients of equivalence are correlations between two test scores based on different sets of items intended to measure the same attribute, and express the degree to which the different sets are interchangeable. Cronbach mentioned two additional coefficient types. One type is the coefficient of equivalence and stability that refers to the correlation between test scores on different sets of items, one set administered first and the other set administered after a useful time interval. The other type is the coefficient of precision , referring to the correlation between the scores on the same test administered twice in one session to the same group of persons. The latter coefficient is hypothetical and not realizable in practice.
    [Show full text]
  • An Academic Genealogy of Psychometric Society Presidents
    UvA-DARE (Digital Academic Repository) An Academic Genealogy of Psychometric Society Presidents Wijsen, L.D.; Borsboom, D.; Cabaço, T.; Heiser, W.J. DOI 10.1007/s11336-018-09651-4 Publication date 2019 Document Version Final published version Published in Psychometrika License CC BY Link to publication Citation for published version (APA): Wijsen, L. D., Borsboom, D., Cabaço, T., & Heiser, W. J. (2019). An Academic Genealogy of Psychometric Society Presidents. Psychometrika, 84(2), 562-588. https://doi.org/10.1007/s11336-018-09651-4 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 psychometrika—vol. 84, no. 2, 562–588 June 2019 https://doi.org/10.1007/s11336-018-09651-4 AN ACADEMIC GENEALOGY OF PSYCHOMETRIC SOCIETY PRESIDENTS Lisa D.
    [Show full text]
  • A Creation Narrative for the Psychometric Society and Psychometrika: in the Beginning There Was Paul Horst
    A Creation Narrative for the Psychometric Society and Psychometrika: In the Beginning There Was Paul Horst There are four published sources available that can help develop a coherent account of the formation of the Psychometric Society (1935) and the founding of its journal, Psychometrika (1936): (1) Dunlap, J. W. (1942). The Psychometric Society|Roots and powers. Psychometrika, 7, 1{8. Jack Dunlap was the sixth President of the Soci- ety; this was his Presidential Address (given September 4, 1941). Dunlap is considered one of the founding group of six: Jack Dunlap; Paul Horst; Al- bert Kurtz; Marion Richardson; John Stalnaker; and Leon Thurstone. In the 1930s and 40s, Dunlap was a co-editor (for technical material) of the Journal of Educational Psychology (JEdP); rather surprisingly, JEdP was the only place to publish the type of quantitative work that Psychometrika would eventually solicit. As Dunlap states in the article listed below in (2) (1961, p. 66): The speaker [Dunlap] was approached because of his knowledge and the volume of tech- nical material available to him as editor of the Journal of Educational Psychology, the only outlet of consequence at that time for such articles. (2) Dunlap, J. W. (1961). Psychometrics|A special case of the Brahman theory. Psychometrika, 26, 65{71. As part of the Society's twenty-fifth an- niversary, the Chairman of the Program Committee for that year, Charles Wrigley, asked Jack Dunlap to review the early history of the organization and \discuss something of its achievements to date." This second paper is the result of that invitation. (3) Horst, P., & Stalnaker, J.
    [Show full text]
  • Web of Science and Scopus Databases
    Asian Social Science; Vol. 9, No. 5; 2013 ISSN 1911-2017 E-ISSN 1911-2025 Published by Canadian Center of Science and Education A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases Arezoo Aghaei Chadegani1, Hadi Salehi2, Melor Md Yunus3, Hadi Farhadi4, Masood Fooladi1, Maryam Farhadi1 & Nader Ale Ebrahim5 1 Department of Accounting, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Isfahan, Iran 2 Faculty of Literature and Humanities, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran 3 Faculty of Education, Universiti Kebangsaan Malaysia (UKM), Malaysia 4 School of Psychology and Human Development, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia (UKM), Malaysia 5 Research Support Unit, Centre of Research Services, Institute of Research Management and Monitoring (IPPP), University of Malaya, Malaysia Correspondence: Arezoo Aghaei Chadegani, Department of Accounting, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Isfahan, Iran. Tel: 60-17-319-1093. E-mail: [email protected] Received: February 11, 2013 Accepted: March 18, 2013 Online Published: April 27, 2013 doi:10.5539/ass.v9n5p18 URL: http://dx.doi.org/10.5539/ass.v9n5p18 Abstract Nowadays, the world’s scientific community has been publishing an enormous number of papers in different scientific fields. In such environment, it is essential to know which databases are equally efficient and objective for literature searches. It seems that two most extensive databases are Web of Science
    [Show full text]
  • Principal Component Analysis (PCA)
    Overview Principal component analysis 1 2 HerveAbdi´ ∗ and Lynne J. Williams Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations and of the variables as points in maps. The quality of the PCA model can be evaluated using cross-validation techniques such as the bootstrap and the jackknife. PCA can be generalized as correspondence analysis (CA) in order to handle qualitative variables and as multiple factor analysis (MFA) in order to handle heterogeneous sets of variables. Mathematically, PCA depends upon the eigen-decomposition of positive semi- definite matrices and upon the singular value decomposition (SVD) of rectangular matrices. 2010 John Wiley & Sons, Inc. WIREs Comp Stat 2010 2 433–459 rincipal component analysis (PCA) is probably the from the same matrix all use the same letter (e.g., Pmost popular multivariate statistical technique A, a, a). The transpose operation is denoted by the and it is used by almost all scientific disciplines. It superscriptT.TheidentitymatrixisdenotedI. is also likely to be the oldest multivariate technique. The data table to be analyzed by PCA comprises In fact, its origin can be traced back to Pearson1 or I observations described by J variables and it is even Cauchy2 [see Ref 3, p. 416], or Jordan4 and also represented by the I J matrix X,whosegeneric × Cayley, Silverster, and Hamilton, [see Refs 5,6, for element is xi,j.ThematrixX has rank L where more details] but its modern instantiation was formal- L min I, J .
    [Show full text]
  • Coefficient Alpha and the Internal Structure of Tests. Psychometrika, 16, 297-334 (28,307 Citations in Google Scholar As of 4/1/2016)
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297-334 (28,307 citations in Google Scholar as of 4/1/2016). Klaas Sijtsma—Tilburg University, The Netherlands E-mail: [email protected] By far the most cited article in Psychometrika is Lee Cronbach’s famous study of coefficient alpha. I will address four questions: What makes the article special? Why do people cite the article more than other special articles? Was the article also influential beyond psychology? How does alpha fit in present-day psychometrics? What makes the article special? In the first half of the 20th century, psychometricians distinguished two practically useful types of reliability, which were coefficients of stability and coefficients of equivalence. Coefficients of stability are correlations between two test scores obtained with the same test on two different time points, administered with a time interval that serves the psychologist’s purpose. The coefficient provides information about the stability of the attribute across the time interval. Coefficients of equivalence are correlations between two test scores based on different sets of items intended to measure the same attribute, and express the degree to which the different sets are interchangeable. Cronbach mentioned two additional coefficient types. One type is the coefficient of equivalence and stability that refers to the correlation between test scores on different sets of items, one set administered first and the other set administered after a useful time interval. The other type is the coefficient of precision, referring to the correlation between the scores on the same test administered twice in one session to the same group of persons.
    [Show full text]
  • A Creation Narrative for the Psychometric Society and Psychometrika: in the Beginning There Was Paul Horst There Are Four Publis
    A Creation Narrative for the Psychometric Society and Psychometrika: In the Beginning There Was Paul Horst There are four published sources available that can help develop a coherent account of the formation of the Psychometric Society (1935) and the founding of its journal, Psychometrika (1936): (1) Dunlap, J. W. (1942). The Psychometric Society|Roots and powers. Psychometrika, 7, 1{8. Jack Dunlap was the sixth President of the Soci- ety; this was his Presidential Address (given September 4, 1941). Dunlap is considered one of the founding group of six: Jack Dunlap; Paul Horst; Al- bert Kurtz; Marion Richardson; John Stalnaker; and Leon Thurstone. In the 1930s and 40s, Dunlap was a co-editor (for technical material) of the Journal of Educational Psychology (JEdP); rather surprisingly, JEdP was the only place to publish the type of quantitative work that Psychometrika would eventually solicit. As Dunlap states in the article listed below in (2) (1961, p. 66): The speaker [Dunlap] was approached because of his knowledge and the volume of tech- nical material available to him as editor of the Journal of Educational Psychology, the only outlet of consequence at that time for such articles. (2) Dunlap, J. W. (1961). Psychometrics|A special case of the Brahman theory. Psychometrika, 26, 65{71. As part of the Society's twenty-fifth an- niversary, the Chairman of the Program Committee for that year, Charles Wrigley, asked Jack Dunlap to review the early history of the organization and \discuss something of its achievements to date." This second paper is the result of that invitation. (3) Horst, P., & Stalnaker, J.
    [Show full text]
  • Yunxiao Chen: Curriculum Vitae
    YUNXIAO CHEN: CURRICULUM VITAE Address Columbia House, Room 5.16 Houghton Street, London, WC2A 2AE Email: [email protected] Website: http://stats.lse.ac.uk/cheny185/ Education 05/2016 Columbia University, New York, NY, USA Ph.D. in Statistics Advisors: Zhiliang Ying and Jingchen Liu 07/2011 Fudan University, Shanghai, China B.S. in Mathematics Employment History 09/03/2018 - : Assistant Professor (tenure-track), Department of Statistics, London School of Economics and Political Science, London, UK 07/13/2021 - : Affiliated member, Data Science Institute, London School of Economics and Political Science, London, UK 10/01/2018 - : Adjunct Professor, Department of Psychology, Emory University, Atlanta, GA, USA 08/24/2016 - 08/24/2018: Assistant Professor (tenure-track), Department of Psychology, Emory University, Atlanta, GA, USA 08/24/2016 - 08/24/2018: Assistant Professor, Institute for Quantitative Theory and Methods, Emory University, Atlanta, GA, USA 06/01/2014 - 07/25/2014: Intern (supervised by Dr. Matthias von Davier), Educational Testing Service, Princeton, NJ, USA Primary Research Interests Statistical analysis and computational algorithms for large-scale item response data Statistical modeling and computational algorithms for dynamic behavioral data Sequential design of dynamic systems, with applications to educational assessment and learning Awards/Honors 2020 AERA Outstanding Reviewer Award NCME Brenda H. Lloyd Dissertation Award, National Council on Measurement in Education, 2018 Pearson Travel Award of 80th Annual Meeting of the Psychometric Society, July, 2015 Minghui Yu Teaching Assistant Award, Department of Statistics, Columbia University, 2014 Funding National Academy of Education/Spencer Postdoctoral Fellowship, 2018-2020 Published Articles 1. Chen, Y., Liu, J., and Ying, Z.
    [Show full text]
  • ABS Academic Journal Guide 2015 Acknowledgements - 3
    Academic Journal Guide 2015 - page 1 SEO version Table of Contents | Flash version ACADEMIC JOURNAL GUIDE 2015 1 2,3,4,5,6,7,8,9,10,11,...54 Academic Journal Guide 2015 - page 2 SEO version Table of Contents | Flash version CONTENTS Acknowledgements. 3 Editors’ Introduction. 5 Methodology. 6 Conclusion. 10 References . 14 Tables Accounting. 15 Business History and Economic History. 17 Economics, Econometrics and Statistics. 18 Entrepreneurship and Small Business Management. 25 Finance. 26 General Management, Ethics and Social Responsibility. 29 Human Resource Management and Employment Studies. 30 Information Management. 31 Innovation. 33 International Business and Area Studies. 34 Management Development and Education. 35 Marketing. 36 Operations and Technology Management. 38 Operations Research and Management Science . 40 Organisation Studies. 42 Psychology (General). 43 Psychology (Organisational) . 45 Public Sector and Health Care . 47 Regional Studies, Planning and Environment. 48 Sector Studies. 49 Social Sciences. 51 Strategy. 53 1 3,4,5,6,7,8,9,10,11,12,...54 Academic Journal Guide 2015 - page 3 SEO version Table of Contents | Flash version ACKNOWLEDGEMENTS A MESSAGE FROM THE MANAGEMENT BOARD We are hugely grateful to the Editors, Methodologists and members of the Scientific Committee without whom the Academic Journal Guide 2015 would not be possible. The work they have carried out to analyse data, consult with subject communities and find consensus has led to an impressive and robust Guide to the range, subject matter and quality of journals in which business and management academics publish their research. With their hard work we have a Guide which is genuinely based upon peer review, along with editorial and expert judgements following from the evaluation of many hundreds of publications.
    [Show full text]
  • Tensor Decompositions and Applications∗
    Preprint of article to appear in SIAM Review (June 10, 2008). Tensor Decompositions and Applications∗ Tamara G. Kolday Brett W. Baderz Abstract. This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions of higher-order tensors (i.e., N-way arrays with N ≥ 3) have applications in psychomet- rics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank- one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors. Key words. tensor decompositions, multiway arrays, multilinear algebra, parallel factors (PARAFAC), canonical decomposition (CANDECOMP), higher-order principal components analysis (Tucker), higher-order singular value decomposition (HOSVD) AMS subject classifications. 15A69, 65F99 1. Introduction. A tensor is a multidimensional array. More formally, an N-way or Nth-order tensor is an element of the tensor product of N vector spaces, each of which has its own coordinate system. This notion of tensors is not to be confused with tensors in physics and engineering (such as stress tensors) [175], which are generally referred to as tensor fields in mathematics [69].
    [Show full text]
  • Psychometrics--A Special Case of the Brahman Theory Jack W. Dunlap
    PSTCHO3IETBIKA~'VOL. 26, NO. 1 MARCH, 1961 PSYCHOMETRICS--A SPECIAL CASE OF THE BRAHMAN THEORY JACK W. DUNLAP DUNLAP AND ASSOCIATES~ INC. We are gathered today to commemorate the completion of the first quarter of a century of the Society's history, and I consider it no small honor to have been selected to address this distinguished group on this memorable occasion. When Dr. Charles Wrigley, Chairman of the Program Committee, extended the invitation, he expressed the hope that I would review the history of the formation of the Society and discuss something of its achievements to date. Today I shall only highlight the early history of the organization, since in my Presidential Address in September 1941 a rather full history was presented. The policy and philosophy laid down initially have, in my opinion, proved sound over the past quarter century. Careful re-examination con- vinces me that these will be sound not only for the next quarter century, but probably for the next century as well. It is my firm conviction that the Society and the Corporation through the Journal, Psychometrika, have made a substantial contribution to psychology. It is proper, however, and perhaps timely to re-examine our past contributions to psychology and society and perhaps to question whether we have become stagnant or made fully the contribution envisaged by the founders. Before reviewing our contribution, it might be wise to review briefly the early history of these organizations. 1931 Dr. A. P. Horst was attempting to buy or form a journal to be devoted • to quantitative methods as applied to education and psychology.
    [Show full text]
  • Future of Psychometrics: Ask What Psychometrics Can Do for Psychology
    PSYCHOMETRIKA—VOL. 77, NO. 1, 4–20 JANUARY 2012 DOI: 10.1007/S11336-011-9242-4 FUTURE OF PSYCHOMETRICS: ASK WHAT PSYCHOMETRICS CAN DO FOR PSYCHOLOGY KLAAS SIJTSMA TILBURG UNIVERSITY I address two issues that were inspired by my work on the Dutch Committee on Tests and Testing (COTAN). The first issue is the understanding of problems test constructors and researchers using tests have of psychometric knowledge. I argue that this understanding is important for a field, like psychomet- rics, for which the dissemination of psychometric knowledge among test constructors and researchers in general is highly important. The second issue concerns the identification of psychometric research topics that are relevant for test constructors and test users but in my view do not receive enough attention in psychometrics. I discuss the influence of test length on decision quality in personnel selection and qual- ity of difference scores in therapy assessment, and theory development in test construction and validity research. I also briefly mention the issue of whether particular attributes are continuous or discrete. Key words: change assessment, decision quality based on short tests, didactics of psychometrics, person- nel selection, test-quality assessment, test validity, theory construction. 1. Introduction From 2005 till 2010, I was chairman of the Dutch Committee on Tests and Testing (COTAN). COTAN works under the auspices of the Dutch Association of Psychologists (Nederlands Insti- tuut van Psychologen; NIP). COTANs mission is to advance the quality of tests and the quality of test use in The Netherlands, and to inform test users about developments concerning availability of novel tests, test use, legislation, and so on.
    [Show full text]