Supersymmetric Flux Compactifications and Calabi-Yau
Supersymmetric Flux Compactifications and Calabi-Yau Modularity Shamit Kachru, Richard Nally, and Wenzhe Yang Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA, 94305 March 31, 2020 Abstract Flux compactification of IIB string theory associates special points in Calabi-Yau moduli space to choices of (pairs of) integral three-form fluxes. In this paper, we propose that super- symmetric flux vacua are modular. That is, to a supersymmetric flux vacuum arising in a variety defined over Q, we associate a two-dimensional Galois representation that we conjecture to be modular. We provide numerical evidence for our conjecture by examining flux vacua arising on the octic hypersurface in P4(1, 1, 2, 2, 2). arXiv:2001.06022v2 [hep-th] 30 Mar 2020 1 Contents 1 Introduction 2 2 The Modularity of Calabi-Yau Varieties 4 2.1 ModularityForEllipticCurves . ......... 5 2.2 Modularity For Calabi-Yau Threefolds . ........... 6 2.3 ζ-FunctionsandTheWeilConjectures . ...... 8 3 Supersymmetric Flux Compactifications 11 4 Modularity From Supersymmetric Flux Compactifications 15 5 An Example: The Octic in P(1, 1, 2, 2, 2) 17 6 Conclusion 19 A ζ-Functions and the Greene-Plesser Mirror 21 B Weil Cohomology Theories, Motives, and the Hodge Conjecture 22 B.1 TheAbsoluteGaloisGroup . ...... 22 B.2 Classical Weil Cohomology Theories . .......... 23 B.3 L-functions ......................................... 26 B.4 AUniversalCohomologyTheory . ....... 27 B.5 Algebraic Cycles and Adequate Equivalence Relations . ............... 28 B.6 PureMotives ..................................... 29 B.7 The Hodge Conjecture and Motivic Splits . .......... 32 C Modularity of the Octic at Rational Points 33 C.1 φ = 1/2 ........................................... 34 C.2 φ = 3/5 ..........................................
[Show full text]