Supersymmetric Flux Compactifications and Calabi-Yau
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is the Motivation Behind the Theory of Motives?
What is the motivation behind the Theory of Motives? Barry Mazur How much of the algebraic topology of a connected simplicial complex X is captured by its one-dimensional cohomology? Specifically, how much do you know about X when you know H1(X, Z) alone? For a (nearly tautological) answer put GX := the compact, connected abelian Lie group (i.e., product of circles) which is the Pontrjagin dual of the free abelian group H1(X, Z). Now H1(GX, Z) is canonically isomorphic to H1(X, Z) = Hom(GX, R/Z) and there is a canonical homotopy class of mappings X −→ GX which induces the identity mapping on H1. The answer: we know whatever information can be read off from GX; and are ignorant of anything that gets lost in the projection X → GX. The theory of Eilenberg-Maclane spaces offers us a somewhat analogous analysis of what we know and don’t know about X, when we equip ourselves with n-dimensional cohomology, for any specific n, with specific coefficients. If we repeat our rhetorical question in the context of algebraic geometry, where the structure is somewhat richer, can we hope for a similar discussion? In algebraic topology, the standard cohomology functor is uniquely characterized by the basic Eilenberg-Steenrod axioms in terms of a simple normalization (the value of the functor on a single point). In contrast, in algebraic geometry we have a more intricate set- up to deal with: for one thing, we don’t even have a cohomology theory with coefficients in Z for varieties over a field k unless we provide a homomorphism k → C, so that we can form the topological space of complex points on our variety, and compute the cohomology groups of that topological space. -
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
What's Inside
Newsletter A publication of the Controlled Release Society Volume 32 • Number 1 • 2015 What’s Inside 42nd CRS Annual Meeting & Exposition pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device Interview with Paolo Colombo Patent Watch Robert Langer Awarded the Queen Elizabeth Prize for Engineering Newsletter Charles Frey Vol. 32 • No. 1 • 2015 Editor Table of Contents From the Editor .................................................................................................................. 2 From the President ............................................................................................................ 3 Interview Steven Giannos An Interview with Paolo Colombo from University of Parma .............................................. 4 Editor 42nd CRS Annual Meeting & Exposition .......................................................................... 6 What’s on Board Access the Future of Delivery Science and Technology with Key CRS Resources .............. 9 Scientifically Speaking pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting ............................. 10 Arlene McDowell Editor In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device ........................................................................................................ 12 Patent Watch ................................................................................................................... 14 Special -
Quantum Symmetries and Stringy Instantons
PUPT–1464 hep-th@xxx/9406091 Quantum Symmetries and Stringy Instantons ⋆ Jacques Distler and Shamit Kachru† Joseph Henry Laboratories Princeton University Princeton, NJ 08544 USA The quantum symmetry of many Landau-Ginzburg orbifolds appears to be broken by Yang-Mills instantons. However, isolated Yang-Mills instantons are not solutions of string theory: They must be accompanied by gauge anti-instantons, gravitational instantons, or topologically non-trivial configurations of the H field. We check that the configura- tions permitted in string theory do in fact preserve the quantum symmetry, as a result of non-trivial cancellations between symmetry breaking effects due to the various types arXiv:hep-th/9406091v1 14 Jun 1994 of instantons. These cancellations indicate new constraints on Landau-Ginzburg orbifold spectra and require that the dilaton modulus mix with the twisted moduli in some Landau- Ginzburg compactifications. We point out that one can find similar constraints at all fixed points of the modular group of the moduli space of vacua. June 1994 †Address after June 30: Department of Physics, Harvard University, Cambridge, MA 02138. ⋆ Email: [email protected], [email protected] . Research supported by NSF grant PHY90-21984, and the A. P. Sloan Foundation. 1. Introduction Landau-Ginzburg orbifolds [1,2] describe special submanifolds in the moduli spaces of Calabi-Yau models, at “very small radius.” New, stringy features of the physics are therefore often apparent in the Landau-Ginzburg theories. For example, these theories sometimes manifest enhanced gauge symmetries which do not occur in the field theory limit, where the large radius manifold description is valid. -
Etale and Crystalline Companions, I
ETALE´ AND CRYSTALLINE COMPANIONS, I KIRAN S. KEDLAYA Abstract. Let X be a smooth scheme over a finite field of characteristic p. Consider the coefficient objects of locally constant rank on X in ℓ-adic Weil cohomology: these are lisse Weil sheaves in ´etale cohomology when ℓ 6= p, and overconvergent F -isocrystals in rigid cohomology when ℓ = p. Using the Langlands correspondence for global function fields in both the ´etale and crystalline settings (work of Lafforgue and Abe, respectively), one sees that on a curve, any coefficient object in one category has “companions” in the other categories with matching characteristic polynomials of Frobenius at closed points. A similar statement is expected for general X; building on work of Deligne, Drinfeld showed that any ´etale coefficient object has ´etale companions. We adapt Drinfeld’s method to show that any crystalline coefficient object has ´etale companions; this has been shown independently by Abe–Esnault. We also prove some auxiliary results relevant for the construction of crystalline companions of ´etale coefficient objects; this subject will be pursued in a subsequent paper. 0. Introduction 0.1. Coefficients, companions, and conjectures. Throughout this introduction (but not beyond; see §1.1), let k be a finite field of characteristic p and let X be a smooth scheme over k. When studying the cohomology of motives over X, one typically fixes a prime ℓ =6 p and considers ´etale cohomology with ℓ-adic coefficients; in this setting, the natural coefficient objects of locally constant rank are the lisse Weil Qℓ-sheaves. However, ´etale cohomology with p-adic coefficients behaves poorly in characteristic p; for ℓ = p, the correct choice for a Weil cohomology with ℓ-adic coefficients is Berthelot’s rigid cohomology, wherein the natural coefficient objects of locally constant rank are the overconvergent F -isocrystals. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
Inflation in String Theory: - Towards Inflation in String Theory - on D3-Brane Potentials in Compactifications with Fluxes and Wrapped D-Branes
1935-6 Spring School on Superstring Theory and Related Topics 27 March - 4 April, 2008 Inflation in String Theory: - Towards Inflation in String Theory - On D3-brane Potentials in Compactifications with Fluxes and Wrapped D-branes Liam McAllister Department of Physics, Stanford University, Stanford, CA 94305, USA hep-th/0308055 SLAC-PUB-9669 SU-ITP-03/18 TIFR/TH/03-06 Towards Inflation in String Theory Shamit Kachru,a,b Renata Kallosh,a Andrei Linde,a Juan Maldacena,c Liam McAllister,a and Sandip P. Trivedid a Department of Physics, Stanford University, Stanford, CA 94305, USA b SLAC, Stanford University, Stanford, CA 94309, USA c Institute for Advanced Study, Princeton, NJ 08540, USA d Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, INDIA We investigate the embedding of brane inflation into stable compactifications of string theory. At first sight a warped compactification geometry seems to produce a naturally flat inflaton potential, evading one well-known difficulty of brane-antibrane scenarios. Care- arXiv:hep-th/0308055v2 23 Sep 2003 ful consideration of the closed string moduli reveals a further obstacle: superpotential stabilization of the compactification volume typically modifies the inflaton potential and renders it too steep for inflation. We discuss the non-generic conditions under which this problem does not arise. We conclude that brane inflation models can only work if restric- tive assumptions about the method of volume stabilization, the warping of the internal space, and the source of inflationary energy are satisfied. We argue that this may not be a real problem, given the large range of available fluxes and background geometries in string theory. -
Some Comments on Equivariant Gromov-Witten Theory and 3D Gravity (A Talk in Two Parts) This Theory Has Appeared in Various Interesting Contexts
Some comments on equivariant Gromov-Witten theory and 3d gravity (a talk in two parts) This theory has appeared in various interesting contexts. For instance, it is a candidate dual to (chiral?) supergravity with deep negative cosmologicalShamit constant. Kachru Witten (Stanford & SLAC) Sunday, April 12, 15 Tuesday, August 11, 15 Much of the talk will be review of things well known to various parts of the audience. To the extent anything very new appears, it is based on two recent collaborative papers: * arXiv : 1507.00004 with Benjamin, Dyer, Fitzpatrick * arXiv : 1508.02047 with Cheng, Duncan, Harrison Some slightly older work with other (also wonderful) collaborators makes brief appearances. Tuesday, August 11, 15 Today, I’d like to talk about two distinct topics. Each is related to the general subjects of this symposium, but neither has been central to any of the talks we’ve heard yet. 1. Extremal CFTs and quantum gravity ...where we see how special chiral CFTs with sparse spectrum may be important in gravity... II. Equivariant Gromov-Witten & K3 ...where we see how certain enumerative invariants of K3 may be related to subjects we’ve heard about... Tuesday, August 11, 15 I. Extremal CFTs and quantum gravity A fundamental role in our understanding of quantum gravity is played by the holographic correspondence between conformal field theories and AdS gravity. In the basic dictionary between these subjects conformal symmetry AdS isometries $ primary field of dimension ∆ bulk quantum field of mass m(∆) $ ...... Tuesday, August 11, 15 -
Tao Awarded Nemmers Prize
Tao Awarded Nemmers Prize Northwestern University has announced that numerous other awards, including the Terence Chi-Shen Tao has received the 2010 Salem Prize (2000), the Bôcher Prize Frederic Esser Nemmers Prize in Mathematics, be- (2002), the Clay Research Award of the lieved to be one of the largest monetary awards in Clay Mathematics Institute (2003), the mathematics in the United States, for outstanding SASTRA Ramanujan Prize (2006), the achievements in the discipline. Awarded to schol- Ostrowski Prize (2007), the Waterman ars who made major contributions to new knowl- Award (2008), and the King Faisal Prize edge or to the development of significant new (cowinner, 2010). He is a Fellow of the modes of analysis, the prize carries a US$175,000 Royal Society, the Australian Academy stipend. of Sciences (corresponding member), Tao, a professor of mathematics at University the U.S. National Academy of Sciences of California, Los Angeles, was honored “for math- (foreign member), and the American ematics of astonishing breadth, depth and original- Academy of Arts and Sciences. ity”. In connection with the award, Tao will deliver Tao’s research interests include Terence Tao public lectures and participate in other scholarly harmonic analysis, partial dif- activities at Northwestern during the 2010–2011 ferential equations, combinatorics, and num- and 2011–2012 academic years. ber theory. He is an associate editor of the Tao, who has been dubbed the “Mozart of American Journal of Mathematics (2002–) and Math”, was born in Adelaide, Australia, in 1975. of Dynamics of Partial Differential Equations He started to learn calculus when he was seven (2003–) and an editor of the Journal of the Ameri- years old. -
Is String Theory Holographic? 1 Introduction
Holography and large-N Dualities Is String Theory Holographic? Lukas Hahn 1 Introduction1 2 Classical Strings and Black Holes2 3 The Strominger-Vafa Construction3 3.1 AdS/CFT for the D1/D5 System......................3 3.2 The Instanton Moduli Space.........................6 3.3 The Elliptic Genus.............................. 10 1 Introduction The holographic principle [1] is based on the idea that there is a limit on information content of spacetime regions. For a given volume V bounded by an area A, the state of maximal entropy corresponds to the largest black hole that can fit inside V . This entropy bound is specified by the Bekenstein-Hawking entropy A S ≤ S = (1.1) BH 4G and the goings-on in the relevant spacetime region are encoded on "holographic screens". The aim of these notes is to discuss one of the many aspects of the question in the title, namely: "Is this feature of the holographic principle realized in string theory (and if so, how)?". In order to adress this question we start with an heuristic account of how string like objects are related to black holes and how to compare their entropies. This second section is exclusively based on [2] and will lead to a key insight, the need to consider BPS states, which allows for a more precise treatment. The most fully understood example is 1 a bound state of D-branes that appeared in the original article on the topic [3]. The third section is an attempt to review this construction from a point of view that highlights the role of AdS/CFT [4,5]. -
Non-Higgsable Clusters for 4D F-Theory Models
Non-Higgsable clusters for 4D F-theory models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Morrison, David R., and Washington Taylor. “Non-Higgsable Clusters for 4D F-Theory Models.” J. High Energ. Phys. 2015, no. 5 (May 2015). As Published http://dx.doi.org/10.1007/jhep05(2015)080 Publisher Springer-Verlag Version Final published version Citable link http://hdl.handle.net/1721.1/98237 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Published for SISSA by Springer Received: January 6, 2015 Accepted: April 18, 2015 Published: May 18, 2015 Non-Higgsable clusters for 4D F-theory models JHEP05(2015)080 David R. Morrisona and Washington Taylorb aDepartments of Mathematics and Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, U.S.A. bCenter for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A. E-mail: [email protected], [email protected] Abstract: We analyze non-Higgsable clusters of gauge groups and matter that can arise at the level of geometry in 4D F-theory models. Non-Higgsable clusters seem to be generic features of F-theory compactifications, and give rise naturally to structures that include the nonabelian part of the standard model gauge group and certain specific types of potential dark matter candidates. In particular, there are nine distinct single nonabelian gauge group factors, and only five distinct products of two nonabelian gauge group factors with matter, including SU(3) × SU(2), that can be realized through 4D non-Higgsable clusters. -
DENINGER COHOMOLOGY THEORIES Readers Who Know What the Standard Conjectures Are Should Skip to Section 0.6. 0.1. Schemes. We
DENINGER COHOMOLOGY THEORIES TAYLOR DUPUY Abstract. A brief explanation of Denninger's cohomological formalism which gives a conditional proof Riemann Hypothesis. These notes are based on a talk given in the University of New Mexico Geometry Seminar in Spring 2012. The notes are in the same spirit of Osserman and Ile's surveys of the Weil conjectures [Oss08] [Ile04]. Readers who know what the standard conjectures are should skip to section 0.6. 0.1. Schemes. We will use the following notation: CRing = Category of Commutative Rings with Unit; SchZ = Category of Schemes over Z; 2 Recall that there is a contravariant functor which assigns to every ring a space (scheme) CRing Sch A Spec A 2 Where Spec(A) = f primes ideals of A not including A where the closed sets are generated by the sets of the form V (f) = fP 2 Spec(A) : f(P) = 0g; f 2 A: By \f(P ) = 000 we means f ≡ 0 mod P . If X = Spec(A) we let jXj := closed points of X = maximal ideals of A i.e. x 2 jXj if and only if fxg = fxg. The overline here denote the closure of the set in the topology and a singleton in Spec(A) being closed is equivalent to x being a maximal ideal. 1 Another word for a closed point is a geometric point. If a point is not closed it is called generic, and the set of generic points are in one-to-one correspondence with closed subspaces where the associated closed subspace associated to a generic point x is fxg.