21.8 Commentary GA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physics Today - February 2003
Physics Today - February 2003 Rosalind Franklin and the Double Helix Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix. by Lynne Osman Elkin - California State University, Hayward In 1962, James Watson, then at Harvard University, and Cambridge University's Francis Crick stood next to Maurice Wilkins from King's College, London, to receive the Nobel Prize in Physiology or Medicine for their "discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." Watson and Crick could not have proposed their celebrated structure for DNA as early in 1953 as they did without access to experimental results obtained by King's College scientist Rosalind Franklin. Franklin had died of cancer in 1958 at age 37, and so was ineligible to share the honor. Her conspicuous absence from the awards ceremony--the dramatic culmination of the struggle to determine the structure of DNA--probably contributed to the neglect, for several decades, of Franklin's role in the DNA story. She most likely never knew how significantly her data influenced Watson and Crick's proposal. Franklin was born 25 July 1920 to Muriel Waley Franklin and merchant banker Ellis Franklin, both members of educated and socially conscious Jewish families. They were a close immediate family, prone to lively discussion and vigorous debates at which the politically liberal, logical, and determined Rosalind excelled: She would even argue with her assertive, conservative father. Early in life, Rosalind manifested the creativity and drive characteristic of the Franklin women, and some of the Waley women, who were expected to focus their education, talents, and skills on political, educational, and charitable forms of community service. -
Photograph 51, by Rosalind Franklin (1952) [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Photograph 51, by Rosalind Franklin (1952) [1] By: Hernandez, Victoria Keywords: X-ray crystallography [2] DNA [3] DNA Helix [4] On 6 May 1952, at King´s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA´s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes [5]. Maurice Wilkins, Franklin´s colleague showed James Watson [6] and Francis Crick [7] Photo 51 without Franklin´s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin´s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine [8] for their findings about DNA. Franklin´s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA´s role in heredity. X-ray crystallography, the technique Franklin used to produce Photo 51 of DNA, is a method scientists use to determine the three-dimensional structure of a crystal. Crystals are solids with regular, repeating units of atoms. Some biological macromolecules, such as DNA, can form fibers suitable for analysis using X-ray crystallography because their solid forms consist of atoms arranged in a regular pattern. Photo 51 used DNA fibers, DNA crystals first produced in the 1970s. To perform an X-ray crystallography, scientists mount a purified fiber or crystal in an X-ray tube. -
158273472.Pdf
ANNUAL .2003REPCOLD SPRING HARBOR LABORATORY .1; ANNUAL REPORT 2003 © 2004 by Cold Spring Harbor Laboratory Cold Spring Harbor Laboratory One Bungtown Road Cold Spring Harbor, New York 11724 Web Site: www.cshl.edu Managing Editors Jeff Picarello, Lisa Becker Production Editor Rena Steuer Copy Editor Dorothy Brown Development Manager Jan Argentine Project Coordinators Maria Falasca, Nora Rice Production Manager Denise Weiss Desktop Editor Susan Schaefer Nonscientific Photography Miriam Chua, Bill Geddes Cover Designer Denise Weiss Book Designer Emily Harste Front cover: McClintock Laboratory (right) and Carnegie Library (left) (photos by Miriam Chua) Back cover: Magnolia Kobus on grounds of Cold Spring Harbor Laboratory (photo by Bruce Stillman) Section title pages: Miriam Chua Contents Officers of the Corporation/Board of Trusteesiv-v Governancevi Committees vii Edwin Marks (1926-2003) viii PRESIDENT'S REPORT Highlights5 CHIEF OPERATING OFFICER'S REPORT 25 50TH ANNIVERSARY OF THE DOUBLE HELIX 29 RESEARCH 47 Cancer: Gene Expression 49 Cancer: Genetics 74 Cancer: Cell Biology 106 Bioinformatics and Genomics 134 Neuroscience152 Plant Development and Genetics 199 CSHL Fellows 212 Author Index 217 WATSON SCHOOL OF BIOLOGICAL SCIENCES 219 Dean's Report 221 Courses 238 Undergraduate Research Program245 Partners for the Future 248 Nature Study 249 COLD SPRING HARBOR LABORATORY MEETINGS AND COURSES 251 Academic Affairs253 Symposium on Quantitative Biology 255 Meetings 258 Postgraduate Courses295 Seminars 353 BANBURY CENTER 355 Director's Report357 Meetings 365 DOLAN DNA LEARNING CENTER 403 Director's Report 405 Workshops, Meetings, and Collaborations 418 COLD SPRING HARBOR LABORATORY PRESS 425 Publications 426 Executive Director's Report 427 FINANCE 431 History of the CSHL Endowment 433 Financial Statements 444 Financial Support448 Grants448 Institutional Advancement 457 Capital and Program Contributions 458 Watson School of Biological Sciences Capital Campaign 459 Annual Contributions 460 LABORATORY STAFF 474 III Officers of the Corporation William R. -
“Molecular Configuration in Sodium Thymonucleate” (1953), by Rosalind Franklin and Raymond Gosling [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) “Molecular Configuration in Sodium Thymonucleate” (1953), by Rosalind Franklin and Raymond Gosling [1] By: Hernandez, Victoria Keywords: DNA [2] DNA Configuration [3] X-ray diffraction [4] DNA fibers [5] In April 1953, Rosalind Franklin and Raymond Gosling, published "Molecular Configuration in Sodium Thymonucleate," in the scientific journal Nature. The article contained Franklin and Gosling´s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes [6], the heritable factors that control how organisms develop, contained DNA. However, at the time scientists had not determined how DNA functioned or its three- dimensional structure. In their 1953 paper, Franklin and Gosling interpret X-ray diffraction patterns of DNA fibers that they collected, which show the scattering of X-rays from the fibers. The patterns provided information about the three-dimensional structure of the molecule. "Molecular Configuration in Sodium Thymonucleate" shows the progress Franklin and Gosling made toward understanding the three-dimensional structure of DNA. Scientists worked to understand the three-dimensional structure of DNA since the 1930s. In the early to mid-1900s, scientists tried to determine the structures of many biological molecules, such as proteins, because the structure of those molecules indicated their function. By the 1930s, scientists had found that DNA consisted of a chain of building blocks called nucleotides. The nucleotides contained a ring-shaped structure called a sugar. On one side of the sugar, there is a phosphate group, consisting of phosphorus and oxygen and on the other side of the sugar, another ring-shaped structure called a base. -
Signer's Gift Œ Rudolf Signer And
HISTORY 735 CHIMIA 2003, 57, No.11 Chimia 57 (2003) 735–740 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Signer’s Gift – Rudolf Signer and DNA Matthias Meili* Abstract: In early May 1950, Bern chemistry professor Rudolf Signer traveled to a meeting of the Faraday Society in London with a few grams of DNA to report on his success in the isolation of nucleic acids from calf thymus glands. After the meeting, he distributed his DNA samples to interested parties amongst those present. One of the recipients was Maurice Wilkins, who worked intensively with nucleic acids at King’s College in London. The outstanding quality of Signer’s DNA – unique at that time – enabled Maurice Wilkins’ colleague Rosalind Franklin to make the famous X-ray fiber diagrams that were a decisive pre-requisite for the discovery of the DNA double helix by James Watson and Francis Crick in the year 1953. Rudolf Signer, however, had already measured the physical characteristics of native DNA in the late thirties. In an oft-quot- ed work which he published in Nature in 1938, he described the thymonucleic acid as a long, thread-like molecule with a molecular weight of 500,000 to 1,000,000, in which the base rings lie in planes perpendicular to the long axis of the molecule. Signer’s achievements and contributions to DNA research have, however, been forgotten even in Switzerland. Keywords: Bern · DNA · Double helix · History · Signer, Rudolf · Switzerland 1. Signer’s Early DNA Years With the advancement of research, Helix’, pointed out that Rudolf Signer made however, insight into the nature of macro- important contributions in two places: “It 1.1. -
“The Double Helix Is Indeed a Remarkable Molecule. Modern Man
“The double helix is indeed a remarkable molecule. Modern man is perhaps 50,000 years old, civilization has existed for scarcely 10,000 years and the United States for only just over 200 years; but DNA and RNA have been around for at least several billion years. All that time the double helix has been there, and active, and yet we are the first creatures on Earth to become aware of its existence.” Francis Crick (1916–2004) History of DNA and modern approaches to sequencing Konrad Paszkiewicz January 2017 Contents • A short history of DNA • Review of first generation sequencing techniques • Short-read second generation sequencing technology – Illumina • Third generation single molecule sequencing – PacBio – Oxford Nanopore “DNA is a stupid molecule” Max Delbruck “Never under-estimate the power of … stupidity” Robert Heinlein “It was believed that DNA was a stupid substance, a tetranucleotide which couldn't do anything specific” Max Delbruck The first person to isolate DNA • Friedrich Miescher – Born with poor hearing – Father was a doctor and refused to allow Friedrich to become a priest • Graduated as a doctor in 1868 – Persuaded by his uncle not to become a practising doctor and instead pursue natural science – But he was reluctant… Friedrich Miescher Biology PhD angst in the 1800s “I already had cause to regret that I had so little experience with mathematics and physics… For this reason many facts still remained obscure to me.” His uncle counselled: “I believe you overestimate the importance of special training…” Friedrich Miescher -
Initial Airway Management of Blunt Upper Airway Injuries: a Case Report and Literature Review
Errors in Medicine: A Human Factors Perspective GAYLENE HEARD, MB, BS, FANZCA Department of Anaesthesia, St Vincent’s Hospital, Melbourne Gaylene Heard is a Visiting Medical Officer at St Vincent’s Hospital and the Royal Victorian Eye and Ear Hospital, Melbourne. Her interests include simulation, patient safety and human factors. INTRODUCTION “The real problem isn’t how to stop bad doctors from harming, even killing, their patients. It’s how to prevent good doctors from doing so”.1 The past decade has seen an increasing focus on the issue of errors in medicine. In particular, errors made by doctors, nurses and para-medical staff in hospitals have received significant attention. The report by the Institute of Medicine in the USA, aptly titled “To Err is Human”, estimated that between 44,000 to 98,000 hospitalised patients die annually in the USA as a result of medical errors.2 The Quality in Australian Healthcare Study3 found adverse events (unintended injury or complication caused by healthcare) occurred in 16.6% of hospital admissions, with 51% of these adverse events judged to be “highly preventable”. Death occurred in 4.9% of patients suffering an adverse event, and permanent disability in 13.7%. In 2000, a report from the United Kingdom4 found that medical errors caused harm (death and injury) to in excess of 850,000 patients admitted to National Health Service Hospitals annually. This represents 10% of total admissions.4 Although there has been much discussion and controversy about the methodologies of some of these studies,5, 6, 7, 8 it is now widely accepted that the risks to patients from medical errors are significant. -
Commentthe College Newsletter Issue No 147 | May 2003
COMMENTTHE COLLEGE NEWSLETTER ISSUE NO 147 | MAY 2003 TOM WHIPPS DNA pioneers: The surviving members of the King’s team, who worked on the discovery of the structure of DNA 50 years ago, with James Watson, their Cambridge ‘rival’ at the time. From left Ray Gosling, Herbert Wilson, DNA at King’s: James Watson and Maurice Wilkins the continuing story Prize for his contribution – and their teams, but also to subse- A day of celebrations quent generations of scientists at King’s. ver 600 guests attended a cant scientific discovery of the Four Nobel Laureates – Mau- unique day of events celeb-rat- 20th century,’ in the words of rice Wilkins, James Watson, Sid- ing King’s role in the 50th Principal Professor Arthur Lucas, O ney Altman and Tim Hunt – anniversary of the discovery of the ‘and their research changed attended the event which was so double helix structure of DNA on the world’. oversubscribed that the proceed- 22 April. The day paid tribute not only to ings were relayed by video link to Scientists at King’s played a King’s DNA pioneers Rosalind the Chapel and lecture theatre 2C. fundamental role in this momen- Franklin and Maurice Wilkins – tous discovery – ‘the most signifi- who went onto win the Nobel continued on page 2 2 Funding news | 3 Peace Operations Review | 5 Widening participation | 8 25 years of Anglo-French law | 11 Margaret Atwood at King’s | 12 Susan Gibson wins Rosalind Franklin Award | 15 Focus: School of Law | 16 Research news | 18 Books | 19 KCLSU election results | 20 Arts News continued from page 1 myself alone, working below the level of the Thames and piping hydrogen into the camera. -
The Structure of DNA: Cooperation and Competition Sometimes, One Person Or a Few People Get All the Credit for a Scientific Discovery
The structure of DNA: Cooperation and competition Sometimes, one person or a few people get all the credit for a scientific discovery. But this doesn’t mean that they worked alone. Scientists share evidence and ideas with each other all the time, and this helps make new discover- ies possible. Here, we’ll learn how a whole community of scientists—and four in particular, James Watson, Rosalind Franklin, Francis Crick, and Maurice Wilkins—helped unlock one of the great secrets of life …. Scientists have always wanted to know how family traits are passed from parent to child. By the 1940s, they had dis- covered some important clues. They knew that family traits are carried on parts of the cell known as chromosomes. They knew that chromosomes are made up of two components: proteins and DNA. And they knew that the traits were carried by the DNA in chromosomes, not by the proteins. But how could DNA carry all the information needed to make a whole organism? The answer might be in the 3-D structure of the molecule. The scientists knew that DNA was built from sugars, phosphates, and bases. How did these building blocks fit together to store genetic information? Many different scientists wanted to answer this question, and there was a sense of competition over who would figure out the problem first. Maurice Wilkins, a nuclear physicist, and his student Raymond Gosling entered the race by try- ing out a new technology, called X-ray diffraction. They shot X-rays through DNA and then observed how the X-ray beams scattered. -
Crick, Watson & Franklin
READING 5.4.2 CRICK, WATSON & FRANKLIN THEORIES OF EVOLUTION & LIFE Macquarie University Big History School: Core Lexile® measure: 1100L MACQUARIE UNIVERSITY BIG HISTORY SCHOOL: CORE - READING 5.4.2. THEORIES OF EVOLUTION & LIFE: CRICK, WATSON & FRANKLIN - 1100L 2 DNA was discovered in 1869 by the Swiss doctor, Friedrich Miescher. He placed human eukaryotic cells under a microscope. Miescher saw DNA in the nucleus of the cells. CRICK, WATSON & FRANKLIN THEORIES OF EVOLUTION & LIFE By David Baker Fifteen years later, German scientist Albrecht Kossel discovered what made this nucleic acid. It was made out of the organic chemicals adenine, thymine, guanine, cytosine and uracil. In 1889, German Pathologist Richard Altmann created the term “nucleic acid.” This is the “N” and “A” in deoxyribonucleic acid (DNA). In 1919 American scientist Phoebus Levene figured out that phosphorus held these chemicals together. In 1943, biochemists Oswald Avery, Colin McLeod and Maclyn McCarty made a very important discovery. They found out that DNA is what programs the individual traits of an organism. At last, the mechanism that had alluded Darwin as to how exactly traits were transmitted from parents to offspring in evolution was being made clear. The question was: just how did DNA work? By the 1950s, the great task for biochemists was to create a fully functional model of this highly complex structure. Francis Crick and James Watson began working on their model at Cambridge in 1951. They built prototypes out of steel or paper. Meanwhile at King’s College London, Maurice Wilkins, Rosalind Franklin, and her PhD student Raymond Gosling were working on X-ray diffractions to get a better idea of the shape and structure of DNA. -
VOJNOSANITETSKI PREGLED ^Asopis Lekara I Farmaceuta Vojske Srbije
YU ISSN 0042-8450 VOJNOSANITETSKI PREGLED ^asopis lekara i farmaceuta Vojske Srbije Military Medical and Pharmaceutical Journal of Serbia Vojnosanitetski pregled Vojnosanit Pregl 2013; December Vol. 70 (No. 12): p. 1075-1180. YU ISSN 0042-8450 vol. 70, br. 12, 2013. VOJNOSANITETSKI PREGLED Prvi broj Vojnosanitetskog pregleda izašao je septembra meseca 1944. godine ýasopis nastavlja tradiciju Vojno-sanitetskog glasnika, koji je izlazio od 1930. do 1941. godine IZDAVAý Uprava za vojno zdravstvo MO Srbije IZDAVAýKI SAVET UREĈIVAýKI ODBOR prof. dr sc. med. Boris Ajdinoviü Glavni i odgovorni urednik prof. dr sc. pharm. Mirjana Antunoviü prof. dr sc. pharm. Silva Dobriü prof. dr sc. med. Dragan Dinþiü, puk. prof. dr sc. med. Zoran Hajdukoviü, puk. Urednici: prof. dr sc. med. Nebojša Joviü, puk. prof. dr sc. med. Bela Balint prof. dr sc. med. Marijan Novakoviü, brigadni general prof. dr sc. stom. Zlata Brkiü prof. dr sc. med. Zoran Popoviü, brigadni general (predsednik) prof. dr sc. med. Snežana Ceroviü prof. dr Sonja Radakoviü akademik Miodrag ýoliü, brigadni general akademik Radoje ýoloviü prof. dr sc. med. Predrag Romiü, puk. prof. dr sc. med. Aleksandar Ĉuroviü, puk. prim. dr Stevan Sikimiü, puk. prof. dr sc. med. Branka Ĉuroviü prof. dr sc. med. Borisav Jankoviü MEĈUNARODNI UREĈIVAýKI ODBOR prof. dr sc. med. Lidija Kandolf-Sekuloviü akademik Vladimir Kanjuh Prof. Andrej Aleksandrov (Russia) akademik Vladimir Kostiü Assoc. Prof. Kiyoshi Ameno (Japan) prof. dr sc. med. Zvonko Magiü prof. dr sc. med. Ĉoko Maksiü, puk. Prof. Rocco Bellantone (Italy) prof. dr sc. med. Gordana Mandiü-Gajiü Prof. Hanoch Hod (Israel) prof. dr sc. med. Dragan Mikiü, puk. -
Photography and the Discovery of the Double Helix Structure of DNA
Photography and the Discovery of the Double Helix Structure of DNA Author Information First author: Jose Cuevas, Ph. D. San Bernardo 89, 5 Izq., 28015 Madrid. Spain Visiting Professor of Film and Media Studies Complutense University of Madrid and Carlos III University of Madrid E-mail: [email protected] Jose Cuevas is a photographer and documentary filmmaker, author of numerous documentaries and photographic exhibitions. He has published articles and books related to his main subject of investigation: the role played by photography in the acquisition of scientific knowledge. Personal and academic interests are focused on the study of the relationship between art and science through the theory and practice of photography. His most recent book is Photography and Knowledge: Photography in the Age of Electronics: From its Origins to 1975 published by Complutense University of Madrid, Spain in 2009. Second author: Laurence E. Heglar, Ph.D. Juan de Urbieta 12, 3 B 28007 Madrid, Spain E-mail: [email protected] Laurence Heglar is Adjunct Professor of Psychology at Syracuse University, Madrid Spain Campus. His research interests include language development, methodological issues in the social sciences and the philosophy of science. He is presently working on a study of the American philosopher John Dewey. His most recent publication is ‘Cognition and the Argument from Design’, American Psychologist, 51(1), 1996, 57-58. 1 Photography and the Discovery of the Double Helix Structure of DNA The development of X-ray diffraction photography was central to the discovery of the helical structure of DNA in 1953. Unfortunately the story of how this technique was developed receded into the background as subsequent attention focused on the moment of discovery by Watson and Crick.