Hurricane Irene Case Study

Total Page:16

File Type:pdf, Size:1020Kb

Hurricane Irene Case Study Hurricane Irene and Tropical Storm Lee delivered a devastating one-two punch to The Verizon Wireless the eastern United States in late summer of response 2011. Making landfall over North Carolina’s • Bolstered cell sites and network Outer Banks on August 27, Irene swept along facilities with generators and the Northeast, causing more than 40 deaths. backup batteries Hundreds of thousands of people were • Ensured adequate fuel through evacuated along the coast in anticipation power outages of the storm. Nearly 8 million homes and • Activated six portable cell sites businesses lost power for multiple days. The in areas impacted by flooding next week, Tropical Storm Lee moved up • Deployed six Mobile Command Hurricane through southern and northeastern states, Centers and Wireless Experience causing 13 deaths. Both storms produced vehicles to multiple areas Irene case major flooding, devastating small towns that were impacted, from the and destroying homes and businesses, Carolinas to Pennsylvania study particularly in areas of Pennsylvania, New • Donated mobile devices to local, Jersey, New York and Vermont. Through hurricanes and state and federal agencies floods, the power to stay connected “Our wireless network performed very well throughout the storm, Mike Maiorana, president of the Washington/ outperforming our Baltimore/Virginia region. competitors in A powerful network stays powered several markets.” Case Study Hurricane preparation takes place long Dave Heverling, Northeast Network before hurricane season begins. During the Vice President past 10 years, Verizon Wireless has invested more than $65 billion nationwide in network coverage, capacity and reliability, including Verizon Wireless responded to the needs of the backup power systems that are critical customers and first responders, a multi-state during storms. Before Irene, Verizon Wireless effort that lasted long after the storms. “Our activated multiple crisis management teams network performed well when our customers in anticipation of the storm and the network needed it most, and our people were there teams staged mobile generators and other when our customers needed it most,” said Case Study 1 “From your leadership equipment in strategic locations. “We One particularly hard-hit area was northeast in restoring cell service made sure our fuel vendors were out there Pennsylvania. With grounds already saturated in affected areas to checking that our generators had full tanks and Tropical Storm Lee dumping even more your expansive support of fuel, including our cell sites,” says Network water, levees threatened to break and flood of our cleanup and Operations Coordinator Deirdre O’Brien. Wilkes Barre. Verizon Wireless contacted recovery efforts, your city officials and offered to dispatch a 53- dedicated involvement That preparation made the difference. “Our foot Mobile Command Center near the Red wireless network performed very well Cross shelter. A smaller 16-foot mobile has exemplified the throughout the storm, outperforming our satellite trailer was brought in through nearly commitment and competitors in several markets, with particular impassable mountain roads to Loyalsock, compassion we need to advantages in Connecticut, Rhode Island Pennsylvania, where landline communications rebuild and restore our and Vermont,” said Northeast Network Vice were down and National Guard personnel communities in these President Dave Heverling. needed communications support. When difficult times.” flooding prevented the Pennsylvania Supporting first responders, public Department of Transportation’s access to Governor Andrew Cuomo safety officials and communities their Mountoursville offices to get wireless When the North Carolina Emergency devices for their staff, Verizon located and Operations Center (EOC) in Kinston lost activated 30 available devices from its closest power and landline phone service the day communications store in Williamsport. “Our Hurricane Irene hit, Verizon Wireless stepped focus was making sure we responded to any in to provide and position five mobile hotspots type of issue. Our efforts were not only for so first responders could use their critical Web application to coordinate relief requests. Later, Verizon Wireless brought in 4G LTE Cells on Wheels to bolster wireless coverage “During emergencies for emergency workers, also providing 40 we run to a crisis; it’s 4G LTE mobile hotspots and 20 phones for built into our DNA. Our National Guard and other emergency workers. emergency response Verizon Wireless National Account Manager teams and program Earl Struble camped out in his truck outside performed very well.” the EOC headquarters for two nights to make sure workers received all the necessary Gabe Esposito, Corporate Security, Business Continuity/Disaster support. “We have an instinct to run to an Recovery Director emergency,” he said. “We can help save lives and that’s the bottom line.” 2 our customers, but for all who lived in the area,” said Christopher Robinson, associate director of sales operations. Parts of upstate New York were also severely flooded. A Cell on Light Truck (COLT) was activated in Prattsville, New York, within 24 hours of a request from Governor Andrew Cuomo’s office, as well as another COLT in nearby Margaretville. In a letter to Verizon Wireless, Governor Cuomo wrote, “From your leadership in restoring cell service in affected areas to your expansive support of our cleanup and recovery efforts, your dedicated involvement has exemplified the commitment and compassion we need to rebuild and restore our communities in these difficult times.” Learn more. For more information, contact your Network details & coverage maps at vzw.com. © 2015 Verizon. government account manager, or visit CS01161015 verizonwireless/contactrep.
Recommended publications
  • Significant Loss Report
    NATIONAL FLOOD INSURANCE PROGRAM Bureau and Statistical Agent W-01049 3019-01 MEMORANDUM TO: Write Your Own (WYO) Principal Coordinators and NFIP Servicing Agent FROM: WYO Clearinghouse DATE: July 18, 2001 SUBJECT: Significant Loss Report Enclosed is a listing of significant flooding events that occurred between February 1978 and October 2000. Only those events that had more than 1500 losses are included on the list. These data were compiled for WYO Companies and others to use to remind their customers of the impact of past flooding events. Please use this information in your marketing efforts as you feel it is appropriate. If you have any questions, please contact your WYO Program Coordinator. Enclosure cc: Vendors, IBHS, FIPNC, WYO Standards Committee, WYO Marketing Committee, ARCHIVEDGovernment Technical Representative APRIL 2018 Suggested Routing: Claims, Marketing, Underwriting 7700 HUBBLE DRIVE • LANHAM, MD 20706 • (301) 731-5300 COMPUTER SCIENCES CORPORATION, under contract to the FEDERAL EMERGENCY MANAGEMENT AGENCY, is the Bureau and Statistical Agent for the National Flood Insurance Program NATIONAL FLOOD INSURANCE PROGRAM SIGNIFICANT FLOOD EVENTS REPORT EVENT YEAR # PD LOSSES AMOUNT PD ($) AVG PD LOSS Massachusetts Flood Feb. 1978 Feb-78 2,195 $20,081,479 $9,149 Louisiana Flood May 1978 May-78 7,284 $43,288,709 $5,943 WV, IN, KY, OH Floods Dec 1978 Dec-78 1,879 $11,934,512 $6,352 PA, CT, MA, NJ, NY, RI Floods Jan-79 8,826 $31,487,015 $3,568 Texas Flood April 1979 Apr-79 1,897 $19,817,668 $10,447 Florida Flood April 1979 Apr-79
    [Show full text]
  • Impact of Hurricane Irene and Tropical Storm Lee on Watershed Hydrology and Biogeochemistry from North Carolina to Maine, USA
    Biogeochemistry https://doi.org/10.1007/s10533-018-0423-4 In the path of the Hurricane: impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA Philippe Vidon . Diana L. Karwan . A. Scott Andres . Shreeram Inamdar . Sujay Kaushal . Jonathan Morrison . John Mullaney . Donald S. Ross . Andrew W. Schroth . James B. Shanley . Byungman Yoon Received: 27 September 2017 / Accepted: 25 January 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Although many climate predictions sug- all cases, these storms generated unprecedented gest that the frequency and intensity of large storm changes in water quality (concentrations, loads), from events might increase in the coming decades, few tenfold increases in DOC and 100-fold increases in studies document the full impact of such events along POC in Maryland, to 100-fold increases in TSS their path. Here, we synthesize information on the concentrations in Pennsylvania. Overbank flooding impact of Hurricane Irene (formed August 21 2011) and up to 200-year streamflow events were recorded in and Tropical Storm Lee (formed August 30, 2011) on New York and Vermont. In many cases, particulate erosion and sediment transport, lake metabolism, loads (e.g. POC, PP, TSS) occurring during Irene and riparian hydrology and biogeochemistry, and stream Lee represented more than 30% of the annual load. water quality, from North Carolina to Maine. In almost The dominance of particulate exports over solutes during Irene and Lee is consistent with the mobiliza- tion of normally immobile sediment pools, and Responsible Editor: Arthur J. Gold. P.
    [Show full text]
  • Hurricane Irene Menaces Smaller Islands of Bahamas
    Deseret News Church News Print Subscriptions U . S . & W O R L D W O R L D & N AT I O N B U S I N E S S Hurricane Irene menaces smaller islands of Bahamas By Associated Press Aug 24, 2011, 4:56pm MDT This NOAA satellite image taken Wednesday, Aug. 24, 2011 at 1:45 a.m. EDT shows Hurricane Irene, a category 2 storm with winds up to 100 mph and located about 400 miles southeast of Nassau. The storm is expected to persist northwestward, over the Bahamas, remaining east of Florida, and heads towards the Carolina coast. US landfall is likely on Saturday as a category 3 storm over the Carolinas. Meanwhile, a frontal boundary moving through the Great Lakes and Midwest kick up a few more scattered showers and thunderstorms. Some of these storms turn severe with strong winds and hail. Hot temperatures return to the Plains as a ridge builds in behind this trough. | WEATHER UNDERGROUND, AP PHOTO NASSAU, Bahamas — A large and powerful Hurricane Irene was roaring its way Wednesday across the entire Bahamas archipelago, knocking down trees and tearing up roofs and posing the most severe threat to the smallest and least populated islands, ocials said. Bahamian Prime Minister Hubert Ingraham said there have been no major injuries or deaths according to preliminary reports he has been receiving from throughout the widely scattered islands. But he added that they would not know the full extent of damage from the Category 3 storm until it is clear of the country on Friday.
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • Richmond, VA Hurricanes
    Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Hurricane Dorian Hits Eastern NC by Chris Collins, Meteorologist
    National Weather Service, Newport/Morehead City, NC http://weather.gov/Newport —> Bookmark it!! Fall 2019 Edition Hurricane Dorian hits Eastern NC By Chris Collins, Meteorologist Hurricane Dorian was the fourth named storm, second hurricane, and first major hurri- cane of the 2019 Atlantic hurricane season. Dorian formed on August 24, 2019 from a tropical wave in the Central Atlantic and gradually strengthened as it moved toward the Lesser Antilles, becoming a hurricane on August 28. Rapid intensification occurred, and on August 31, Dorian became a Category 4 hurricane. On September 1, Dorian reached Category 5 intensity, with maximum sustained winds of 185 mph, and a minimum central pressure of 910 mb, while making landfall in Elbow Cay, Bahamas. The ridge of high pressure steering Dorian westward collapsed on September 2, causing Dorian to stall just north of Grand Bahama for about a day. It is the strongest known tropical system to impact the Bahamas. On the morning of September 3, Dorian began to move slowly to- wards the north-northwest. Dorian moved over warmer waters, regaining Category 3 in- tensity by midnight on September 5. In the early hours of September 6, Dorian weakened to Category 1 intensity as it picked up speed and turned northeast. Dorian would pick up speed and move northeast along the North Carolina coast September 6, moving just south of the Crystal Coast, clipping Cape Lookout and eventually making landfall at Cape Hat- teras. CONTENTS Hurricane Dorian 1-2 Skywarn Recognition Day 3 Summer Volunteer 2019 4 Saharan Dust 5 July Heat 6 Path of Hurricane Dorian, August 24-September 6, 2019.
    [Show full text]
  • Service Assessment Hurricane Irene, August
    Service Assessment Hurricane Irene, August 21–30, 2011 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photographs: Top Left - NOAA GOES 13 visible image of Hurricane Irene taken at 12:32 UTC (8:32 a.m. EDT) on August 27, 2011, as it was moving northward along the east coast. Map of total storm rainfall for Hurricane Irene (NCEP/HPC) overlaid with photos of Hurricane Irene’s impacts. Clockwise from top right: • Damage to bridge over the Pemigewasset River/East Branch in Lincoln, NH (NH DOT) • Trees across road and utility lines in Guilford, CT (CT DEP) • Damage to homes from storm surge at Cosey Beach, East Haven, CT (CT DEP) • Flooding of Delaware River closes Rt. 29 in Trenton, NJ (State of New Jersey, Office of the Governor) • Damage from storm surge on North Carolina’s Outer Banks (USGS) • Damage to home from an EF1 tornado in Lewes, DE (Sussex County, DE EOC) • River flooding on Schoharie Creek near Lexington, NY (USGS) • Flood damage to historic covered bridge and road in Quechee, VT (FEMA) ii Service Assessment Hurricane Irene, August 21–30, 2011 September 2012 National Oceanic and Atmospheric Administration Dr. Jane Lubchenco, Administrator National Weather Service Laura Furgione, Acting Assistant Administrator for Weather Services iii Preface On August 21-29, 2011, Hurricane Irene left a devastating imprint on the Caribbean and U.S. East Coast. The storm took the lives of more than 40 people, caused an estimated $6.5 billion in damages, unleashed major flooding, downed trees and power lines, and forced road closures, evacuations, and major rescue efforts.
    [Show full text]
  • Hydrologic Response of Forested Lands During The
    HYDROLOGICAND WATER-QUALITYRESPONSE OF FORESTED AND AGRICULTURALLANDS DURING THE 1999 EXTREME WEATHERCONDITIONS IN EASTERN NORTH CAROLINA J. D. Shelby, G. M. Chescheir, R. W. Skaggs, D. M. Amatya ABSTRACT. This study evaluated hydrologic and water-quality data collected on a coastal-plain research watershed during a series of hurricanes and tropical storms that hit coastal North Carolina in 1999, including hurricanes Dennis, Floyd, and Irene. DUring September and October 1999, the research watershed received approximately 555 mm of rainfall associated with hurricanes. This was the wettest such period in a 49-year historical weather record (1951 -1999). Prior to the hurricanes, the watershed experienced a dry late wintel; spring, and summer (565 cm for Feb.-Aug.). Tlzis was the third driest such period in the 49-year record Maximum daily flow rates measured across the research watershed were greater during hurricane Floyd than for any other time in a four-year (1996-1999) study of the watershed. Daily flows observed for an agricultural subwatershed were generally greater than for a forested subwatershed throughout the study, and during the hurricanes of 1999. Daily nutrient loads measured across the research watershed were greater during hurricane Floyd than for any other time in the study. In general, the two-month period of hurricanes produced total nitrogen and total phosphorus loads nearly equal to average loads for an entire year: Total annual nitrogen export from an agricultural subwatershed was 18 kghin 1999, with 11 kgh(61 %) lost during September and October: Total annual nitrogen export from a forested subwatershed was 15 kghin 1999, with 10 kgha (67%)lost during September and October: The nitrogen export observed in the forested subwatershed was high compared to other forested areas, likely due to the highly permeable organic soils in the watershed.
    [Show full text]
  • I. INTRODUCTION As Part of the Beaufort
    PAMLICO SOUND REGIONAL HAZARD MITIGATION PLAN SECTION 3. HAZARD IDENTIFICATION AND ANALYSIS I. INTRODUCTION As part of the Beaufort, Carteret, Craven, Hyde, and Pamlico counties hazard mitigation efforts and the preparation of this plan, the five-county region will need to decide on which specific hazards it should focus its attention and resources. To plan for hazards and to reduce losses, the Pamlico Sound Region needs to know: 1) the type of natural hazards that threaten the region, 2) the characteristics of each hazard, 3) the likelihood of occurrence (or probability) of each hazard, 4) the magnitude of the potential hazards, and 5) the possible impacts of the hazards on the community. The following section identifies each hazard that poses an elevated threat to the counties and municipalities located within the Pamlico Sound Region. A rating system that evaluates the potential for occurrence for each identified threat is provided (see Table 39). The following natural hazards were determined to be of concern for the five-county region: 1. Hurricanes 2. Nor’easters 3. Flooding 4. Severe Winter Storms 5. Thunderstorms/Windstorms 6. Tornados 7. Wildfire 8. Earthquakes 9. Dam/Levee Failure 10. Tsunamis 11. Droughts/Heat Waves 12. Coastal Hazards A detailed explanation of these hazards and how they have impacted the five-county region is provided on the following pages. The weather history summaries provided throughout this discussion have been compiled from the National Oceanic and Atmospheric Administration (NOAA) as provided through the National Climatic Data Center (NCDC). The NCDC compiles monthly reports that track weather events and any financial or life loss associated with a given occurrence.
    [Show full text]
  • Hurricane Sandy Event Analysis Report | January 4042014 -446-2560 | 1 of 36 ACCEPTED
    ACCEPTED FOR NERC PROCESSING NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION - 2019 Hurricane Sandy April 9 2:49 Event Analysis PM - SCPSC Report - ND-2019-3-E January 2014 - Page 1 of 36 RELIABILITY I ACCOUNTABILITY 3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 NERC | Hurricane Sandy Event Analysis Report | January 4042014 -446-2560 | www.nerc.com 1 of 36 ACCEPTED Table of Contents Table of Contents .......................................................................................................................................................2 FOR Objective .....................................................................................................................................................................4 PROCESSING Executive Summary ....................................................................................................................................................5 Background .................................................................................................................................................................6 Pre-existing System Conditions ..............................................................................................................................6 Affected Areas ........................................................................................................................................................6 Time Frame for Outage and Restoration ................................................................................................................6
    [Show full text]
  • Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure
    Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure Office of Electricity Delivery and Energy Reliability U.S. Department of Energy April 2013 1 For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific questions about this report may be directed to Alice Lippert, Acting Deputy Assistant Secretary, Energy Infrastructure Modeling and Analysis ([email protected]). Kevin DeCorla-Souza of ICF International contributed to this report. Cover: http://www.nasa.gov/images/content/701091main_20121028-SANDY-GOES-FULL.jpg i Contents Executive Summary ................................................................................................................... iv Storm Comparison ..................................................................................................................... 1 Irene ....................................................................................................................................... 1 Sandy ..................................................................................................................................... 2 Storm Surge and Tides ........................................................................................................... 4 Electricity Impacts ...................................................................................................................... 7 Power
    [Show full text]