Cosmological Models with Running Cosmological Constant

Total Page:16

File Type:pdf, Size:1020Kb

Cosmological Models with Running Cosmological Constant Jagiellonian U n iv e r s it y D o c t o r a l T h e s is Cosmological models with running cosmological constant Author: Aleksander Stachowski Supervisor: Prof. dr hab. Marek Szydłowski A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Physics, Astronomy and Applied Computer Science October 2018 iii Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński Oświadczenie Ja niżej podpisany Aleksander Stachowski (nr indeksu: 1016516) doktorant Wydziału Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego oświadczam, że przedłożona przeze mnie rozprawa doktorska pt. „Cosmological models with running cosmological constant" jest oryginalna i przedstawia wyniki badań wykonanych przeze mnie osobiście, pod kierunkiem prof. dr. hab. Marka Szydłowskiego. Pracę napisałem samodzielnie. Oświadczam, że moja rozprawa doktorska została opracowana zgodnie z Ustawą o prawie autorskim i prawach pokrewnych z dnia 4 lutego 1994 r. (Dziennik Ustaw 1994 nr 24 poz. 83 wraz z później­ szymi zmianami). Jestem świadom, że niezgodność niniejszego oświadczenia z prawdą ujawniona w dowolnym czasie, niezależnie od skutków prawnych wynikających z ww. ustawy, może spowodować unie­ ważnienie stopnia nabytego na podstawie tej rozprawy. Kraków, dnia v Abstract The thesis undertakes an attempt to solve the problems of cos­ mological constant as well as of coincidence in the models in which dark energy is described by a running cosmological con­ stant. Three reasons to possibly underlie the constant's change­ ability are considered: dark energy's decay, diffusion between dark energy and dark matter, and modified gravity. It aims also to pro­ vide a parametric form of density of dark energy for the models that involve a running cosmological constant, which would de­ scribe inftation in the early Universe. The principal method used in my investigations was the dy­ namical analysis. The cosmological equations were accordingly recast as a dynamical system, which enabled me to draw up the relevant phase portrait, much useful in considering the possible evolutionary paths of the Universe. The cosmological models were estimated by taking into ac­ count a number of astronomical data, such as observations of type la supernovae, cosmic microwave background, baryon acoustic oscillations, measurements of the Hubble function for galaxies, and the Alcock-Paczynski test. The results of my investigations have been published in eleven papers. Keywords: cosmology, dark energy, dark matter vii Streszczenie Rozprawa podejmuje próbę rozwiązania problemu stałej kos­ mologicznej i problemu koincydencji w modelach kosmologicz­ nych, gdzie ciemna energia jest opisywana zmienną stałą kosmo­ logiczną. Są rozważane trzy możliwe przyczyny zmienności stałej kosmologicznej: rozpadająca się ciemna energia, dyfuzja pomię­ dzy ciemną materią a ciemną energią oraz zmodyfikowana gra­ witacja. Celem jest także wprowadzenie parametryzacji gęstości ciemnej energii w podejściu ze zmienną stałą kosmologiczną, która opisuje inftację we wczesnym Wszechświecie. Najważniejszą metodą użytą w tych badaniach była analiza dy­ namiczna. Równania kosmologiczne były przepisane do postaci układu dynamicznego, który umożliwiał narysowanie odpowied­ niego portretu fazowego przydatnego przy badaniu możliwych ścieżek ewolucji Wszechświata. Modele kosmologiczne były estymowane z uwzględnieniem obserwacji astronomicznych takich jak: obserwacje supernowych typu la, mikrofalowego promieniowania tła, barionowych oscylacji akustycznych, pomiarów wartości funkcji Hubble'a dla galaktyk i testu Alcocka-Paczyńskiego. Wyniki badań zostały zamieszczone wjedenastu opublikowa­ nych pracach. Słowa kluczowe: kosmologia, ciemna energia, ciemna materia ix This dissertation has been based on the scientific results previ­ ously reported in the following articles: • Marek Szydłowski, Aleksander Stachowski, Cosmology with decaying cosmological constant - exact solutions and model testing, JCAP 1510 (2015) no. 10, 066, doi:10.1088/1475-7516/2015/10/0 66. • Marek Szydłowski, Aleksander Stachowski, Cosmological models with running cosmological term and decaying dark mat­ ter, Phys. Dark Univ. 15 (2017) 96-104, doi:10.1016/j.dark.2017.01.002. • Aleksander Stachowski, Marek Szydłowski, Krzysztof Urba­ nowski, Cosmological implications o f the transition from the false vacuum to the true vacuum state, Eur. Phys. J. C77 (2017) no. 6, 357, doi:10.1140/epjc/s10052-017-4 934-2. • Marek Szydłowski, Aleksander Stachowski, Krzysztof Urba­ nowski, Quantum mechanical look at the radioactive-like decay of metastable dark energy, Eur. Phys. J. C77 (2017) no. 12, 902, doi:10.1140/epjc/s10052-017-5471-8. • Zbigniew Haba, Aleksander Stachowski, Marek Szydłowski, Dynamics o f the difusive DM-DE interaction - Dynamical system approach, JCAP 1607 (2016) no. 07, 024, doi:10.1088/1475-7516/2016/07/024. • Marek Szydłowski, Aleksander Stachowski, Does the difusion dark matter-dark energy interaction model solve cosmological puzzles?, Phys. Rev. D94 (2016) no. 4, 043521, doi:10.1103/PhysRevD.94.043521. • Aleksander Stachowski, Marek Szydłowski, Dynamical system approach to running A cosmological models, Eur. Phys. J. C76 (2016) no. 11, 606, doi:10.1140/epjc/s10052-016-4439-4. x • Aleksander Stachowski, Marek Szydłowski, Andrzej Borowiec, Starobinsky cosmological model in Palatini formalism, Eur. Phys. J. C77 (2017) no. 6, 406, doi:10.1140/epjc/s10052-017-4981-8. • Marek Szydłowski, Aleksander Stachowski, Andrzej Borowiec, Emergence o f running dark energy from polynomial f(R) theory in Palatini formalism, Eur. Phys. J. C77 (2017) no. 9, 603, doi:10.1140/epjc/s10052-017-5181-2. • Marek Szydłowski, Aleksander Stachowski, Simple cosmologi­ cal model with inûation and late times acceleration, Eur. Phys. J. C78 (2018) no. 3, 249, doi:10.1140/epjc/s10052-018-5722-3. • Marek Szydłowski, Aleksander Stachowski, Polynomial f (R) Palatini cosmology: Dynamical system approach, Phys. Rev. D97 (2018) 103524, doi:10.1103/PhysRevD.97.103524. xi Acknowledgements I am most grateful to my Supervisor, Prof. Marek Szydłowski, for his help and support during preparation of this thesis as well as careful supervision over the past years. I would like to thank Adam Krawiec, Marek Krośniak, and Aleksander Kurek for remarks, comments and stimulating discussion. 1 Contents 1 Introduction 3 2 Statistical analysis of cosmological models 7 3 Cosmology with decay of metastable dark energy 11 3.1 Decay of metastable dark energy from quantum vac­ uum ................................................................................. 11 3.2 Late-time approximation of decaying metastable dark energy .................................................................... 13 3.3 Model te s tin g ................................................................. 16 3.4 Modified scaling law of matter density....................... 17 3.5 Cosmological implications of transition from false to true vacuum state ......................................................... 18 3.6 Radioactive-like decay of metastable dark energy . 20 3.7 Main results ................................................................... 21 4 Diffusion dark matter-dark energy interaction model 23 4.1 Relativistic diffusion interacting of dark matter with dark energy .................................................................... 23 4.2 Diffusive DM-DE interaction: coincidence problem . 25 4.3 Diffusive DM-DE interaction: non-relativistic case and statistical analysis ......................................................... 27 5 Dynamical system approach to running A cosmological models 29 5.1 A(H)CDM cosmologies.............................................. 29 5.2 A(R)CDM cosmologies.............................................. 31 5.3 Non-canonical scalar field cosmology....................... 32 5.4 Cosmology with emergent A(a) relation .................. 33 6 Starobinsky cosmological model in Palatini formalism 37 6.1 Palatini formalism in Jordan frame ............................ 37 6.2 Palatini formalism in Einstein frame ............................ 39 6.3 Starobinsky cosmological model in Palatini formal­ ism: dynamical system approach ............................... 41 6.4 Extended Starobinsky cosmological model in Palatini formalism ...................................................................... 43 2 6.5 Inftation in Starobinsky cosmological model in Pala­ tini fo rm a lism ................................................................... 44 6.6 Einstein frame vs Jordan frame .................................... 45 7 Conclusions 47 Bibliography 51 Appendix 59 A.1 Cosmology with decaying cosmological constant - exact solutions and model testing ............................... 61 A.2 Cosmological models with running cosmologicalterm and decaying dark matter .............................................. 85 A.3 Cosmological implications of the transition from the false vacuum to the true vacuum sta te ........................ 95 A.4 Quantum mechanical look at the radioactive-like de­ cay of metastable dark energy.......................................109 A.5 Dynamics of the diffusive DM-DE interaction - Dy­ namical system approach...............................................123 A.6 Does the diffusion dark matter-dark energy interac­ tion model solve cosmological puzzles? .....................147 A.7 Dynamical system approach to running A cosmolog­ ical models ....................................................................
Recommended publications
  • Durham E-Theses
    Durham E-Theses Black holes, vacuum decay and thermodynamics CUSPINERA-CONTRERAS, JUAN,LEOPOLDO How to cite: CUSPINERA-CONTRERAS, JUAN,LEOPOLDO (2020) Black holes, vacuum decay and thermodynamics, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13421/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England September 2019 To my family Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras Submitted for the degree of Doctor of Philosophy September 2019 Abstract In this thesis we study two fairly different aspects of gravity: vacuum decay seeded by black holes and black hole thermodynamics. The first part of this work is devoted to the study of black holes within the (higher dimensional) Randall- Sundrum braneworld scenario and their effect on vacuum decay rates.
    [Show full text]
  • Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
    Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics .
    [Show full text]
  • From Space, a New View of Doomsday
    Past 30 Days Welcome, kamion This page is print-ready, and this article will remain available for 90 days. Instructions for Saving | About this Service | Purchase History February 17, 2004, Tuesday SCIENCE DESK From Space, A New View Of Doomsday By DENNIS OVERBYE (NYT) 2646 words Once upon a time, if you wanted to talk about the end of the universe you had a choice, as Robert Frost put it, between fire and ice. Either the universe would collapse under its own weight one day, in a fiery ''big crunch,'' or the galaxies, now flying outward from each other, would go on coasting outward forever, forever slowing, but never stopping while the cosmos grew darker and darker, colder and colder, as the stars gradually burned out like tired bulbs. Now there is the Big Rip. Recent astronomical measurements, scientists say, cannot rule out the possibility that in a few billion years a mysterious force permeating space-time will be strong enough to blow everything apart, shred rocks, animals, molecules and finally even atoms in a last seemingly mad instant of cosmic self-abnegation. ''In some ways it sounds more like science fiction than fact,'' said Dr. Robert Caldwell, a Dartmouth physicist who described this apocalyptic possibility in a paper with Dr. Marc Kamionkowski and Dr. Nevin Weinberg, from the California Institute of Technology, last year. The Big Rip is only one of a constellation of doomsday possibilities resulting from the discovery by two teams of astronomers six years ago that a mysterious force called dark energy seems to be wrenching the universe apart.
    [Show full text]
  • Dark Energy with W < Ÿ1 Causes a Cosmic Doomsday
    PHYSICAL REVIEW LETTERS week ending VOLUME 91, N UMBER 7 15 AUGUST 2003 Phantom Energy: Dark Energy with w<ÿ1 Causes a Cosmic Doomsday Robert R. Caldwell,1 Marc Kamionkowski,2 and Nevin N. Weinberg2 1Department of Physics & Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA 2Mail Code 130-33, California Institute of Technology, Pasadena, California 91125, USA (Received 20 February 2003; published 13 August 2003) We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a ‘‘big rip.’’ DOI: 10.1103/PhysRevLett.91.071301 PACS numbers: 98.80.Cq Hubble’s discovery of the cosmological expansion, But what about w<ÿ1? Might the convergence to crossed with the mathematical predictions of Friedmann w ÿ1 actually be indicating that w<ÿ1? Why re- and others within Einstein’s general theory of relativity, strict our attention exclusively to w 1? Matter with has long sparked speculation on the ultimate fate of the w<ÿ1, dubbed ‘‘phantom energy’’ [19], has received Universe. In particular, it has been shown that if the increased attention among theorists recently. It certainly matter that fills the Universe can be treated as a pressure- has some strange properties.
    [Show full text]
  • The End of Nuclear Warfighting: Moving to a Deterrence-Only Posture
    THE END OF NUCLEAR WARFIGHTING MOVING TO A W E I DETERRENCE-ONLY V E R POSTURE E R U T S O P R A E L C U N . S . U E V I T A N September 2018 R E T L A Dr. Bruce G. Blair N Jessica Sleight A Emma Claire Foley In Collaboration with the Program on Science and Global Security, Princeton University The End of Nuclear Warfighting: Moving to a Deterrence-Only Posture an alternative u.s. nuclear posture review Bruce G. Blair with Jessica Sleight and Emma Claire Foley Program on Science and Global Security, Princeton University Global Zero, Washington, DC September 2018 Copyright © 2018 Bruce G. Blair published by the program on science and global security, princeton university This work is licensed under the Creative Commons Attribution-Noncommercial License; to view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 typesetting in LATEX with tufte document class First printing, September 2018 Contents Abstract 5 Executive Summary 6 I. Introduction 15 II. The Value of U.S. Nuclear Capabilities and Enduring National Objectives 21 III. Maximizing Strategic Stability 23 IV. U.S. Objectives if Deterrence Fails 32 V. Modernization of Nuclear C3 40 VI. Near-Term Guidance for Reducing the Risks of Prompt Launch 49 VII. Moving the U.S. Strategic Force Toward a Deterrence-Only Strategy 53 VIII.Nuclear Modernization Program 70 IX. Nuclear-Weapon Infrastructure: The “Complex” 86 X. Countering Nuclear Terrorism 89 XI. Nonproliferation and Strategic-Arms Control 91 XII. Conclusion 106 Authors 109 Abstract The United States should adopt a deterrence-only policy based on no first use of nuclear weapons, no counterforce against opposing nuclear forces in second use, and no hair-trigger response.
    [Show full text]
  • Aspects of False Vacuum Decay
    Technische Universität München Physik Department T70 Aspects of False Vacuum Decay Wenyuan Ai Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Wilhelm Auwärter Prüfer der Dissertation: 1. Prof. Dr. Björn Garbrecht 2. Prof. Dr. Andreas Weiler Die Dissertation wurde am 22.03.2019 bei der Technischen Universität München ein- gereicht und durch die Fakultät für Physik am 02.04.2019 angenommen. Abstract False vacuum decay is the first-order phase transition of fundamental fields. Vacuum instability plays a very important role in particle physics and cosmology. Theoretically, any consistent theory beyond the Standard Model must have a lifetime of the electroweak vacuum longer than the age of the Universe. Phenomenologically, first-order cosmological phase transitions can be relevant for baryogenesis and gravitational wave production. In this thesis, we give a detailed study on several aspects of false vacuum decay, including correspondence between thermal and quantum transitions of vacuum in flat or curved spacetime, radiative corrections to false vacuum decay and, the real-time formalism of vacuum transitions. Zusammenfassung Falscher Vakuumzerfall ist ein Phasenübergang erster Ordnung fundamentaler Felder. Vakuuminstabilität spielt in der Teilchenphysik und Kosmologie eine sehr wichtige Rolle. Theoretisch muss für jede konsistente Theorie, die über das Standardmodell
    [Show full text]
  • 12Th Annual Dodd-Walls Centre Symposium University of Otago 28Th January – 1St February 2019 Page 1 Dodd-Walls Centre 12Th Annual Symposium 2019
    12th Annual Dodd-Walls Centre Symposium University of Otago 28th January – 1st February 2019 Page 1 Dodd-Walls Centre 12th Annual Symposium 2019 12th Annual Dodd-Walls Centre Symposium 27th January – 1st February 2019 – University of Otago Programme……………………………………………………………………………………………………………………………………………. 1 Table of Contents…………………………………………………………………………………………………………………………………… 2 Abstracts ………………………………………………………………………………………………………………………………………………. 7 Presentations – Monday 28th January 2019 Recent Developments in Photonic Crystal Fibres – Professor Philip Russell (Invited Speaker) ………………… 7 Efficient and Tunable Spectral Compression Using Frequency-Domain Nonlinear Optics – Kai Chen……... 8 Octave-Spanning Tunable Optical Parametric Oscillation in Magnesium Fluoride Microresonators – Noel Sayson …………………………………………………………………………………………………………………………………………….…….. 9 Advances in High Resolution Sagnac Interferometry – Professor Ulrich Schreiber (Invited Speaker) ….… 10 Initial Gyroscopic Operation of A Large Multi-Oscillator Ring Laser for Earth Rotation SENSING – Dian Zou………………………………………………………………………………………………………………………………………………………. 11 Applications of High-Pressure Laser Ultrasound to Rock Physics MeasurementS - Jonathan Simpson…. 12 Biomedical Imaging and Sensing with Light and Sound - Jami L Johnson………………………………………….…… 13 Near-Infrared Spectroscopy for Kiwifruit Water-Soaked Tissue Detection - Mark Z. Wang………………….. 15 Rare Earth Doped Nanoparticles for Quantum Technologies – Professor Philippe Goldner (Invited Speaker) ……………………………………………………………………………………………………………………………………………….
    [Show full text]
  • The Physics of Cosmic Acceleration
    ANRV391-NS59-18 ARI 16 September 2009 14:37 The Physics of Cosmic Acceleration Robert R. Caldwell1 and Marc Kamionkowski2 1Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755; email: [email protected] 2Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125; email: [email protected] Annu. Rev. Nucl. Part. Sci. 2009. 59:397–429 Key Words First published online as a Review in Advance on cosmology, dark energy, particle theory, gravitational theory June 23, 2009 The Annual Review of Nuclear and Particle Science Abstract is online at nucl.annualreviews.org The discovery that the cosmic expansion is accelerating has been followed by by California Institute of Technology on 10/28/09. For personal use only. This article’s doi: an intense theoretical and experimental response in physics and astronomy. 10.1146/annurev-nucl-010709-151330 The discovery implies that our most basic notions about how gravity works Copyright c 2009 by Annual Reviews. are violated on cosmological distance scales. A simple fix is to introduce Annu. Rev. Nucl. Part. Sci. 2009.59:397-429. Downloaded from arjournals.annualreviews.org All rights reserved a cosmological constant into the field equations for general relativity. 0163-8998/09/1123-0397$20.00 However, the extremely small value of the cosmological constant, relative to theoretical expectations, has led theorists to explore numerous alter- native explanations that involve the introduction of an exotic negative- pressure fluid or a modification of general relativity. Here we review the evidence for cosmic acceleration. We then survey some of the theoretical at- tempts to account for it, including the cosmological constant, quintessence and its variants, mass-varying neutrinos, and modifications of general relativity.
    [Show full text]
  • Phantom Dark Energy and Cosmological Solutions Without the Big Bang Singularity
    Phantom dark energy and cosmological solutions without the Big Bang singularity A. N. Baushev Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research 141980 Dubna, Moscow Region, Russia TAUP 2009, Italy, July, 2009. Introduction Equations of state p = ®½ Possible variants 1 ® = 3 Relativistic matter ® = 0 Non-relativistic matter 1 ¡ 3 > ® > ¡1 Quintessence ® = ¡1 Cosmological constant ® < ¡1 Phantom energy Figure: Caldwell, Kamionkowski, & Weinberg, 2003 Phantom energy models @ Á@»Á L = ¡ » ¡ V (Á) 2 ½ = ¡Á_2=2 + V (Á); p = ¡Á_2=2 ¡ V (Á) ³ ´ _2 p ¡Á =2 ¡ V (Á) ® ´ = ³ ´ ½ ¡Á_2=2 + V (Á) Phantom energy properties for various V (Á) I If the potential is not very steep (grows slower than V (Á) / Á4), then ® tends to ¡1, and the density becomes in¯nite only when t ! 1. I For steeper potentials a big rip singularity appears even if ® !¡1. I Even the parameter ® can tend to ¡1 for a very steep V (Á). I A very steep potential is necessary to provide a constant ® < ¡1: for any polynomial potential, for instance, ® tends to ¡1. The case of V (Á) = m2Á2=2 ÁÄ + 3HÁ_ ¡ m2Á = 0 r 2 m Á Á_ ' mMp ; H ' p 3 Mp 6 The inevitability of the phantom ¯eld decay Particle production in the cosmological gravitational ¯eld Batista, Fabris, & Houndjo, 2007 I The universe is ¯lled with a perfect fluid with ® = const < ¡1 I The influence of the 'normal' matter on the universe expansion was neglected. I the conformal time ´ is chosen so that ´ < 0, and the density becomes in¯nitive when ´ !¡0 4 ½ = C´¯; where ¯ = norm 1 + 3® The system of cosmological equations for ® = ¡4=3 We denote the phantom energy density by $ and its initial value by $0 ¡ 2 $ / ´ 3 µ ¶2 1 da 1 4 ¡ 3 2 = 2 ($ + C´ ) (1) a d´ 3Mp ¡ 4 d($ + C´ 3 ) 1 da ¡ 4 = ($ ¡ 4C´ 3 ) (2) d´ a d´ dt = ad´ (3) 1 da 1 da H ´ = a dt a2 d´ Time dependence of the Hubble constant H Time dependence of the Hubble of ® The universe properties after the phantom ¯eld decay I It has just passed through the stage of very rapid (at least, exponential) expansion.
    [Show full text]
  • Bounds on Extra Dimensions from Micro Black Holes in the Context of the Metastable Higgs Vacuum
    Bounds on extra dimensions from micro black holes in the context of the metastable Higgs vacuum Katherine J. Mack∗ North Carolina State University, Department of Physics, Raleigh, NC 27695-8202, USA Robert McNeesy Loyola University Chicago, Department of Physics, Chicago, IL 60660, USA. We estimate the rate at which collisions between ultra-high energy cosmic rays can form small black holes in models with extra dimensions. If recent conjectures about false vacuum decay catalyzed by black hole evaporation apply, the lack of vacuum decay events in our past light cone places tight bounds on the black hole formation rate and thus on the fundamental scale of gravity in these models. Conservatively, we find that the lower bound on the fundamental scale E∗ must be within about an order of magnitude of the energy where the cosmic ray spectrum begins to show suppression from the GZK effect, in order to avoid the abundant formation of semiclassical black holes with short lifetimes. Our bound, which assumes a Higgs vacuum instability scale at the low 18:8 end of the range compatible with experimental data, ranges from E∗ ≥ 10 eV for n = 1 extra 18:1 dimension down to E∗ ≥ 10 eV for n = 6. These bounds are many orders of magnitude higher than the previous most stringent bounds, which derive from collider experiments or from estimates of Kaluza-Klein processes in neutron stars and supernovae. I. INTRODUCTION that evaporating black holes formed in theories with ex- tra dimensions are capable of seeding vacuum decay. The decay of the false vacuum is a dramatic consequence that In models with extra dimensions, the fundamental scale presents an unmistakable (and fatal) observational sig- of gravity may be lower than the four-dimensional Planck nature of microscopic black hole production.
    [Show full text]
  • Where the Complications Start
    4 P. Grang´eet al.: The fine-tuning problem revisited in the light of the Taylor-Lagrange renormalization scheme the necessary (ultra-soft) cut-o in the calculation of the integral. After an evident change of variable, we get 3M 4 X M 2 ⇥ = H dX f H X (16) 1b,H 32⌅2v2 X +1 Λ2 ↵0 ⌃ ⌥ 3M 4 1 M 2 = H dX 1 f H X . 32⌅2v2 − X +1 Λ2 ↵0 ⌃ ⌥ ⌃ ⌥ The first term under the integral can be reduced to a pseudo-function, using (11). Indeed, with Z =1/X,we have dZ M 2 1 dXf(X)= f H (17) Z2 Λ2 Z ↵0 ↵0 ⌃ ⌥ 1 = dZ Pf Z2 ↵0 ⌃ ⌥ 1 = =0. −Z ⇧ where the complications start ⇧ a ⇧ one explicit mass scale of the Standard Model is a mass-squared parameter The notation f(u) simply indicates⇧ that f(u) should be taken at the value |u = a, the lower limit of integration be- defining the leading orderFig. shape 1. Radiativeof the Mexican corrections Hat to the Higgs mass in the Stan- dard Model in second order of perturbation theory. For simplic- ing taken care of by the definition of the pseudo-function. V()ϕ D 2 n mass. The “cancellation” of massless bosons to give ity, we have not shown contributions from ghosts or Goldstone This result is reminiscent of the property d p(p ) = 0, a massive boson, as anticipated by Anderson and • to get the correct shape for electroweak developed in the 1964 papers, is the famous Higgs for any n, in DR [15].
    [Show full text]
  • Supergravity Domain Walls in Basic Theory 64 8.1 Connection to Topological Defects in Superstring Theory
    IASSNS-HEP-96/25 CERN-TH/96-97 Supergravity Domain Walls Mirjam Cvetiˇc Institute for Advanced Study, School of Natural Sciences Olden Lane, Princeton, NJ 80540. U.S.A. Phone: (+1) 609 734 8176 FAX: (+1) 609 924 8399 e-mail: [email protected] and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396, U.S.A. Phone: (+1) 215 898 8153 FAX: (+1) 215 898 8512 e-mail: [email protected] Harald H. Soleng CERN, Theory Division, CH-1211 Geneva 23, Switzerland Phone: (+41) 22–767 2139 FAX: (+41) 22–768 3914 arXiv:hep-th/9604090v1 16 Apr 1996 e-mail: [email protected] April 16, 1996 1 Contents 1 Introduction 5 1.1 Classesofdomainwalls ....................... 5 1.2 Walls in N =1supergravity..................... 6 2 Supergravity theory 9 2.1 Field content of N =1supergravity ................ 9 2.2 BosonicpartoftheLagrangian . 10 2.3 Bosonic Lagrangianand topological defects . .. 12 2.4 Supersymmetrytransformations. 13 3 Topological defects and tunneling bubbles 14 3.1 Overview ............................... 14 3.1.1 Topologicaldefectsinphysics . 14 3.1.2 Cosmological implications of topological defects . .... 15 3.2 Thekink................................ 16 3.2.1 Topologicalcharge . 17 3.2.2 Higher-dimensionaldefects . 19 3.3 Homotopy groupsand defect classification . 19 3.4 Formationoftopologicaldefects. 20 3.4.1 TheKibblemechanism. 20 3.4.2 Quantumcreation . 21 3.4.3 Falsevacuumdecay . 21 3.5 Domain walls as a particular type of topological defect . ..... 21 4 Isotropic domain walls 24 4.1 Domainwallsymmetries. 24 4.2 Inducedspace–timesymmetries . 24 4.2.1 Metricansatz......................... 24 4.3 Thethinwallformalism . 27 4.3.1 Lagrangianandfieldequations .
    [Show full text]