Jhep05(2020)154
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Durham E-Theses
Durham E-Theses Black holes, vacuum decay and thermodynamics CUSPINERA-CONTRERAS, JUAN,LEOPOLDO How to cite: CUSPINERA-CONTRERAS, JUAN,LEOPOLDO (2020) Black holes, vacuum decay and thermodynamics, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/13421/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras A Thesis presented for the degree of Doctor of Philosophy Institute for Particle Physics Phenomenology Department of Physics University of Durham England September 2019 To my family Black holes, vacuum decay and thermodynamics Juan Leopoldo Cuspinera Contreras Submitted for the degree of Doctor of Philosophy September 2019 Abstract In this thesis we study two fairly different aspects of gravity: vacuum decay seeded by black holes and black hole thermodynamics. The first part of this work is devoted to the study of black holes within the (higher dimensional) Randall- Sundrum braneworld scenario and their effect on vacuum decay rates. -
10. Electroweak Model and Constraints on New Physics
1 10. Electroweak Model and Constraints on New Physics 10. Electroweak Model and Constraints on New Physics Revised March 2020 by J. Erler (IF-UNAM; U. of Mainz) and A. Freitas (Pittsburg U.). 10.1 Introduction ....................................... 1 10.2 Renormalization and radiative corrections....................... 3 10.2.1 The Fermi constant ................................ 3 10.2.2 The electromagnetic coupling........................... 3 10.2.3 Quark masses.................................... 5 10.2.4 The weak mixing angle .............................. 6 10.2.5 Radiative corrections................................ 8 10.3 Low energy electroweak observables .......................... 9 10.3.1 Neutrino scattering................................. 9 10.3.2 Parity violating lepton scattering......................... 12 10.3.3 Atomic parity violation .............................. 13 10.4 Precision flavor physics ................................. 15 10.4.1 The τ lifetime.................................... 15 10.4.2 The muon anomalous magnetic moment..................... 17 10.5 Physics of the massive electroweak bosons....................... 18 10.5.1 Electroweak physics off the Z pole........................ 19 10.5.2 Z pole physics ................................... 21 10.5.3 W and Z decays .................................. 25 10.6 Global fit results..................................... 26 10.7 Constraints on new physics............................... 30 10.1 Introduction The standard model of the electroweak interactions (SM) [1–4] is based on the gauge group i SU(2)×U(1), with gauge bosons Wµ, i = 1, 2, 3, and Bµ for the SU(2) and U(1) factors, respectively, and the corresponding gauge coupling constants g and g0. The left-handed fermion fields of the th νi ui 0 P i fermion family transform as doublets Ψi = − and d0 under SU(2), where d ≡ Vij dj, `i i i j and V is the Cabibbo-Kobayashi-Maskawa mixing [5,6] matrix1. -
Basics of Thermal Field Theory
September 2021 Basics of Thermal Field Theory A Tutorial on Perturbative Computations 1 Mikko Lainea and Aleksi Vuorinenb aAEC, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland bDepartment of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki, Finland Abstract These lecture notes, suitable for a two-semester introductory course or self-study, offer an elemen- tary and self-contained exposition of the basic tools and concepts that are encountered in practical computations in perturbative thermal field theory. Selected applications to heavy ion collision physics and cosmology are outlined in the last chapter. 1An earlier version of these notes is available as an ebook (Springer Lecture Notes in Physics 925) at dx.doi.org/10.1007/978-3-319-31933-9; a citable eprint can be found at arxiv.org/abs/1701.01554; the very latest version is kept up to date at www.laine.itp.unibe.ch/basics.pdf. Contents Foreword ........................................... i Notation............................................ ii Generaloutline....................................... iii 1 Quantummechanics ................................... 1 1.1 Path integral representation of the partition function . ....... 1 1.2 Evaluation of the path integral for the harmonic oscillator . ..... 6 2 Freescalarfields ..................................... 13 2.1 Path integral for the partition function . ... 13 2.2 Evaluation of thermal sums and their low-temperature limit . .... 16 2.3 High-temperatureexpansion. 23 3 Interactingscalarfields............................... ... 30 3.1 Principles of the weak-coupling expansion . 30 3.2 Problems of the naive weak-coupling expansion . .. 38 3.3 Proper free energy density to (λ): ultraviolet renormalization . 40 O 3 3.4 Proper free energy density to (λ 2 ): infraredresummation . -
Arxiv:1407.4336V2 [Hep-Ph] 10 May 2016 I.Laigtrelo Orcin Otehgsmass Higgs the to Corrections Three-Loop Leading III
Higgs boson mass in the Standard Model at two-loop order and beyond Stephen P. Martin1,2 and David G. Robertson3 1Department of Physics, Northern Illinois University, DeKalb IL 60115 2Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 3Department of Physics, Otterbein University, Westerville OH 43081 We calculate the mass of the Higgs boson in the Standard Model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the Standard Model effective po- tential in Landau gauge at 2-loop order with leading 3-loop corrections. Contents I. Introduction 1 II. Higgs pole mass at 2-loop order 2 III. Leading three-loop corrections to the Higgs mass 11 IV. Computer code implementation and numerical results 13 V. Outlook 19 arXiv:1407.4336v2 [hep-ph] 10 May 2016 Appendix: Some loop integral identities 20 References 22 I. INTRODUCTION The Large Hadron Collider (LHC) has discovered [1] a Higgs scalar boson h with mass Mh near 125.5 GeV [2] and properties consistent with the predictions of the minimal Standard Model. At the present time, there are no signals or hints of other new elementary particles. In the case of supersymmetry, the limits on strongly interacting superpartners are model dependent, but typically extend to over an order of magnitude above Mh. It is therefore quite possible, if not likely, that the Standard Model with a minimal Higgs sector exists 2 as an effective theory below 1 TeV, with all other fundamental physics decoupled from it to a very good approximation. -
Relation Between the Pole and the Minimally Subtracted Mass in Dimensional Regularization and Dimensional Reduction to Three-Loop Order
SFB/CPP-07-04 TTP07-04 DESY07-016 hep-ph/0702185 Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order P. Marquard(a), L. Mihaila(a), J.H. Piclum(a,b) and M. Steinhauser(a) (a) Institut f¨ur Theoretische Teilchenphysik, Universit¨at Karlsruhe (TH) 76128 Karlsruhe, Germany (b) II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg 22761 Hamburg, Germany Abstract We compute the relation between the pole quark mass and the minimally sub- tracted quark mass in the framework of QCD applying dimensional reduction as a regularization scheme. Special emphasis is put on the evanescent couplings and the renormalization of the ε-scalar mass. As a by-product we obtain the three-loop ZOS ZOS on-shell renormalization constants m and 2 in dimensional regularization and thus provide the first independent check of the analytical results computed several years ago. arXiv:hep-ph/0702185v1 19 Feb 2007 PACS numbers: 12.38.-t 14.65.-q 14.65.Fy 14.65.Ha 1 Introduction In quantum chromodynamics (QCD), like in any other renormalizeable quantum field theory, it is crucial to specify the precise meaning of the parameters appearing in the underlying Lagrangian — in particular when higher order quantum corrections are con- sidered. The canonical choice for the coupling constant of QCD, αs, is the so-called modified minimal subtraction (MS) scheme [1] which has the advantage that the beta function, ruling the scale dependence of the coupling, is mass-independent. On the other hand, for a heavy quark besides the MS scheme also other definitions are important — first and foremost the pole mass. -
Quark Mass Renormalization in the MS and RI Schemes up To
ROME1-1198/98 Quark Mass Renormalization in the MS and RI schemes up to the NNLO order Enrico Francoa and Vittorio Lubiczb a Dip. di Fisica, Universit`adegli Studi di Roma “La Sapienza” and INFN, Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy. b Dip. di Fisica, Universit`adi Roma Tre and INFN, Sezione di Roma, Via della Vasca Navale 84, I-00146 Roma, Italy Abstract We compute the relation between the quark mass defined in the min- imal modified MS scheme and the mass defined in the “Regularization Invariant” scheme (RI), up to the NNLO order. The RI scheme is conve- niently adopted in lattice QCD calculations of the quark mass, since the relevant renormalization constants in this scheme can be evaluated in a non-perturbative way. The NNLO contribution to the conversion factor between the quark mass in the two schemes is found to be large, typically of the same order of the NLO correction at a scale µ ∼ 2 GeV. We also give the NNLO relation between the quark mass in the RI scheme and the arXiv:hep-ph/9803491v1 30 Mar 1998 renormalization group-invariant mass. 1 Introduction The values of quark masses are of great importance in the phenomenology of the Standard Model and beyond. For instance, bottom and charm quark masses enter significantly in the theoretical expressions of inclusive decay rates of heavy mesons, while the strange quark mass plays a crucial role in the evaluation of the K → ππ, ∆I = 1/2, decay amplitude and of the CP-violation parameter ǫ′/ǫ. -
The End of Nuclear Warfighting: Moving to a Deterrence-Only Posture
THE END OF NUCLEAR WARFIGHTING MOVING TO A W E I DETERRENCE-ONLY V E R POSTURE E R U T S O P R A E L C U N . S . U E V I T A N September 2018 R E T L A Dr. Bruce G. Blair N Jessica Sleight A Emma Claire Foley In Collaboration with the Program on Science and Global Security, Princeton University The End of Nuclear Warfighting: Moving to a Deterrence-Only Posture an alternative u.s. nuclear posture review Bruce G. Blair with Jessica Sleight and Emma Claire Foley Program on Science and Global Security, Princeton University Global Zero, Washington, DC September 2018 Copyright © 2018 Bruce G. Blair published by the program on science and global security, princeton university This work is licensed under the Creative Commons Attribution-Noncommercial License; to view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 typesetting in LATEX with tufte document class First printing, September 2018 Contents Abstract 5 Executive Summary 6 I. Introduction 15 II. The Value of U.S. Nuclear Capabilities and Enduring National Objectives 21 III. Maximizing Strategic Stability 23 IV. U.S. Objectives if Deterrence Fails 32 V. Modernization of Nuclear C3 40 VI. Near-Term Guidance for Reducing the Risks of Prompt Launch 49 VII. Moving the U.S. Strategic Force Toward a Deterrence-Only Strategy 53 VIII.Nuclear Modernization Program 70 IX. Nuclear-Weapon Infrastructure: The “Complex” 86 X. Countering Nuclear Terrorism 89 XI. Nonproliferation and Strategic-Arms Control 91 XII. Conclusion 106 Authors 109 Abstract The United States should adopt a deterrence-only policy based on no first use of nuclear weapons, no counterforce against opposing nuclear forces in second use, and no hair-trigger response. -
Aspects of False Vacuum Decay
Technische Universität München Physik Department T70 Aspects of False Vacuum Decay Wenyuan Ai Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Wilhelm Auwärter Prüfer der Dissertation: 1. Prof. Dr. Björn Garbrecht 2. Prof. Dr. Andreas Weiler Die Dissertation wurde am 22.03.2019 bei der Technischen Universität München ein- gereicht und durch die Fakultät für Physik am 02.04.2019 angenommen. Abstract False vacuum decay is the first-order phase transition of fundamental fields. Vacuum instability plays a very important role in particle physics and cosmology. Theoretically, any consistent theory beyond the Standard Model must have a lifetime of the electroweak vacuum longer than the age of the Universe. Phenomenologically, first-order cosmological phase transitions can be relevant for baryogenesis and gravitational wave production. In this thesis, we give a detailed study on several aspects of false vacuum decay, including correspondence between thermal and quantum transitions of vacuum in flat or curved spacetime, radiative corrections to false vacuum decay and, the real-time formalism of vacuum transitions. Zusammenfassung Falscher Vakuumzerfall ist ein Phasenübergang erster Ordnung fundamentaler Felder. Vakuuminstabilität spielt in der Teilchenphysik und Kosmologie eine sehr wichtige Rolle. Theoretisch muss für jede konsistente Theorie, die über das Standardmodell -
MS-On-Shell Quark Mass Relation up to Four Loops in QCD and a General SU
DESY 16-106, TTP16-023 MS-on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group Peter Marquarda, Alexander V. Smirnovb, Vladimir A. Smirnovc, Matthias Steinhauserd, David Wellmannd (a) Deutsches Elektronen-Synchrotron, DESY 15738 Zeuthen, Germany (b) Research Computing Center, Moscow State University 119991, Moscow, Russia (c) Skobeltsyn Institute of Nuclear Physics of Moscow State University 119991, Moscow, Russia (d) Institut f¨ur Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe, Germany Abstract We compute the relation between heavy quark masses defined in the modified minimal subtraction and the on-shell schemes. Detailed results are presented for all coefficients of the SU(Nc) colour factors. The reduction of the four-loop on- shell integrals is performed for a general QCD gauge parameter. Altogether there are about 380 master integrals. Some of them are computed analytically, others with high numerical precision using Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various arXiv:1606.06754v2 [hep-ph] 14 Nov 2016 short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quarks. We discuss the dependence on the renormalization and factorization scale. PACS numbers: 12.38.Bx, 12.38.Cy, 14.65.Fy, 14.65.Ha 1 Introduction Quark masses are fundamental parameters of Quantum Chromodynamics (QCD) and thus it is mandatory to determine their numerical values as precisely as possible. -
Higgs Boson Mass and New Physics Arxiv:1205.2893V1
Higgs boson mass and new physics Fedor Bezrukov∗ Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA Mikhail Yu. Kalmykovy Bernd A. Kniehlz II. Institut f¨urTheoretische Physik, Universit¨atHamburg, Luruper Chaussee 149, 22761, Hamburg, Germany Mikhail Shaposhnikovx Institut de Th´eoriedes Ph´enom`enesPhysiques, Ecole´ Polytechnique F´ed´eralede Lausanne, CH-1015 Lausanne, Switzerland May 15, 2012 Abstract We discuss the lower Higgs boson mass bounds which come from the absolute stability of the Standard Model (SM) vacuum and from the Higgs inflation, as well as the prediction of the Higgs boson mass coming from asymptotic safety of the SM. We account for the 3-loop renormalization group evolution of the couplings of the Standard Model and for a part of two-loop corrections that involve the QCD coupling αs to initial conditions for their running. This is one step above the current state of the art procedure (\one-loop matching{two-loop running"). This results in reduction of the theoretical uncertainties in the Higgs boson mass bounds and predictions, associated with the Standard Model physics, to 1−2 GeV. We find that with the account of existing experimental uncertainties in the mass of the top quark and αs (taken at 2σ level) the bound reads MH ≥ Mmin (equality corresponds to the asymptotic safety prediction), where Mmin = 129 ± 6 GeV. We argue that the discovery of the SM Higgs boson in this range would be in arXiv:1205.2893v1 [hep-ph] 13 May 2012 agreement with the hypothesis of the absence of new energy scales between the Fermi and Planck scales, whereas the coincidence of MH with Mmin would suggest that the electroweak scale is determined by Planck physics. -
12Th Annual Dodd-Walls Centre Symposium University of Otago 28Th January – 1St February 2019 Page 1 Dodd-Walls Centre 12Th Annual Symposium 2019
12th Annual Dodd-Walls Centre Symposium University of Otago 28th January – 1st February 2019 Page 1 Dodd-Walls Centre 12th Annual Symposium 2019 12th Annual Dodd-Walls Centre Symposium 27th January – 1st February 2019 – University of Otago Programme……………………………………………………………………………………………………………………………………………. 1 Table of Contents…………………………………………………………………………………………………………………………………… 2 Abstracts ………………………………………………………………………………………………………………………………………………. 7 Presentations – Monday 28th January 2019 Recent Developments in Photonic Crystal Fibres – Professor Philip Russell (Invited Speaker) ………………… 7 Efficient and Tunable Spectral Compression Using Frequency-Domain Nonlinear Optics – Kai Chen……... 8 Octave-Spanning Tunable Optical Parametric Oscillation in Magnesium Fluoride Microresonators – Noel Sayson …………………………………………………………………………………………………………………………………………….…….. 9 Advances in High Resolution Sagnac Interferometry – Professor Ulrich Schreiber (Invited Speaker) ….… 10 Initial Gyroscopic Operation of A Large Multi-Oscillator Ring Laser for Earth Rotation SENSING – Dian Zou………………………………………………………………………………………………………………………………………………………. 11 Applications of High-Pressure Laser Ultrasound to Rock Physics MeasurementS - Jonathan Simpson…. 12 Biomedical Imaging and Sensing with Light and Sound - Jami L Johnson………………………………………….…… 13 Near-Infrared Spectroscopy for Kiwifruit Water-Soaked Tissue Detection - Mark Z. Wang………………….. 15 Rare Earth Doped Nanoparticles for Quantum Technologies – Professor Philippe Goldner (Invited Speaker) ………………………………………………………………………………………………………………………………………………. -
Pole Mass, Width, and Propagators of Unstable Fermions
DESY 08-001 ISSN 0418-9833 NYU-TH/08/01/04 January 2008 Pole Mass, Width, and Propagators of Unstable Fermions Bernd A. Kniehl∗ II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Alberto Sirlin† Department of Physics, New York University, 4 Washington Place, New York, New York 10003, USA Abstract The concepts of pole mass and width are extended to unstable fermions in the general framework of parity-nonconserving gauge theories, such as the Standard Model. In contrast with the conventional on-shell definitions, these concepts are gauge independent and avoid severe unphysical singularities, properties of great importance since most fundamental fermions in nature are unstable particles. Gen- eral expressions for the unrenormalized and renormalized dressed propagators of unstable fermions and their field-renormalization constants are presented. PACS: 11.10.Gh, 11.15.-q, 11.30.Er, 12.15.Ff arXiv:0801.0669v1 [hep-th] 4 Jan 2008 ∗Electronic address: [email protected]. †Electronic address: [email protected]. 1 The conventional definitions of mass and width of unstable bosons are 2 2 2 mos = m0 + Re A(mos), (1) 2 Im A(mos) mosΓos = − ′ 2 , (2) 1 − Re A (mos) where m0 is the bare mass and A(s) is the self-energy in the scalar case and the transverse self-energy in the vector boson case. The subscript os means that Eqs. (1) and (2) define the on-shell mass and the on-shell width, respectively. However, it was shown in Ref. [1] that, in the context of gauge theories, mos and Γos are gauge dependent in next-to-next-to-leading order.