ILPAC Unit P1: the Gaseous State 1

Total Page:16

File Type:pdf, Size:1020Kb

ILPAC Unit P1: the Gaseous State 1 UNIT ~ 1] The Gaseous State 11I~~llltrl]nl Pl-A N27913 c Inner London Education Authority 1963 First published 1963 by John Murray (Publishers) Ltd 50 Albemarle Street, London W1X 4BD All rights reserved. Unauthorised duplication contravenes applicable laws Printed and bound in Great Britain by Martin's of Berwick British Library Cataloguing in Publication Data ILPAC Unit P1: The gaseous state 1. Science 500 Q161.2 ISBN 0 7195 4039 9 ii CONTENTS PREFACE v Acknowledgements vi Key to ILPAC activity symbols and hazard symbols vii INTRODUCTION 1 Pre-knowledge 2 PRE-TEST 3 LEVEL ONE STATES OF MATTER 5 Translation, rotation and vibration 6 THE GAS LAWS 7 Boyle's law and Charles' law 7 The combined gas law 10 Gay-Lussac's law of combining volumes 10 AVOGADRO'S THEORY AND ITS APPLICATIONS 11 Avogadro's theory 11 Using Avogadro's theory to calculate reacting volumes 11 Determining the formula of a gaseous hydrocarbon 13 Molar volume of gases 15 Another method for determining the Avogadro constant 1B THE IDEAL GAS EQUATION 19 Deriving the ideal gas equation 19 The gas constant, R 20 Calculations using the ideal gas equation 21 Determination of molar mass of a gas 23 Experiment 1 - determining the molar mass of a gas 23 Determination of molar mass of a volatile liquid 26 Experiment 2 - determining the molar mass of a volatile liquid 27 LEVEL ONE CHECKLIST 31 LEVEL ONE TEST 33 LEVEL TWO TWO MORE GAS LAWS 37 Graham's law of effusion 37 Experiment 3 - determining the molar mass of a gas by effusion 3B Dalton's law of partial pressures 41 THE KINETIC THEORY OF GASES 44 A theoretical model of a gas 44 Deriving the gas laws from kinetic theory 46 DEVIATIONS FROM IDEAL BEHAVIOUR 49 Non-ideal behaviour 49 The van der Waals equation 51 iii THE VARIATION OF MOLECULAR SPEEDS 53 The Maxwell distribution 54 Use of the Maxwell distribution curve 55 Measuring molecular speeds - the Zartman experiment 58 The root-mean-square speed of gas molecules 59 LEVEL TWO CHECKLIST 60 END-OF-UNIT TEST 61 APPENDIX ONE THE LIQUEFACTION OF GASES 65 Andrews' isotherms and the critical point 65 Cooling of gases by expansion 66 APPENDIX TWO ADDITIONAL EXERCISES 69 ANSWERS TO EXERCISES 74 iv PREFACE This volume is one of twenty Units produced by ILPAC, the Independent Learning Project for Advanced Chemistry, written for students preparing for the Advanced Level examinations of the G.C.E. The Project has been sponsored by the Inner London Education Authority and the materials have been extensively tested in London schools and colleges. In its present revised form, however, it is intended for a wider audience; the syllabuses of all the major Examination Boards have been taken into account and questions set by these boards have been included. Although ILPAC was initially conceived as a way of overcoming some of the difficulties presented by uneconomically small sixth forms, it has frequently been adopted because its approach to learning has certain advantages over more traditional teaching methods. Students assume a greater responsibility for their own learning and can work, to some extent, at their own pace, while teachers can devote more time to guiding individual students and to managing resources. By providing personal guidance, and detailed solutions to the many exercises, supported by the optional use of video-cassettes, the Project allows students to study A-level chemistry with less teacher-contact time than a conventional course demands. The extent to which this is possible must be determined locally; potentially hazardous practical work must, of course, be supervised. Nevertheless, flexibility in time-tabling makes ILPAC an attractive propo- sition in situations where classes are small or suitably-qualified teachers are scarce. In addition, ILPAC can provide at least a partial solution to other problems. Students with only limited access to laboratories, for example, those studying at evening classes, can concentrate upon ILPAC practical work in the laboratory, in the confidence that related theory can be systematically studied elsewhere. Teachers of A-level chemistry who are inexperienced, or whose main discipline is another science, will find ILPAC very supportive. The materials can be used effectively where upper and lower sixth form classes are timetabled together. ILPAC can provide 'remedial' material for students in higher education. Schools operating sixth form consortia can benefit from the cohesion that ILPAC can provide in a fragmented situation. The project can be adapted for use in parts of the world where there is a severe shortage of qualified chemistry teachers. And so on. A more detailed introduction to ILPAC, with specific advice both to students and to teachers, is included in the first volume only. Details of the Project Team and Trial Schools appear inside the back cover. LONDON 1983 v ACKNOWLEDGEMENTS Thanks are due to the following examination boards for permission to reproduce questions from past A-level papers: Oxford Delegacy of Local Examinations End-of-Unit Test 10(1977), 11(1977) Southern Universities Joint Board Level One Test 9(1976) The Associated Examining Board Teacher-marked exercise, p6S(1977) Level One Test 6(1975) University of London Entrance and Schools Examinations Council Exercise 24(L1976) Teacher-marked Exercise, p53(L19S1) Level One Test 1(N1976), 2(L19S0), 3(N197S), 4(N1974), 5(L19S0), S(N197S) End-of-Unit Test 1(N19S0), 4,5&6(N1974), 9(L19S1), 12(L1977) Where answers to these questions are included, they are provided by ILPAC and not by the examination boards. Questions from papers of other examining boards appear in other Units. Photographs are included by permission as follows: Explo8ion, p 22 - Popperfoto Snooker table, p 53 - Colorsport Photographs of students - Tony Langham vi SYMBOLS USED IN ILPAC UNITS 0 W Reading Revealing exercises Exercise Discussion ~ ® ~\;lTest ~ Computer programme ~ Experiment 'A' Level question I[ 11 Video programme 'A' Level part question 00 [Q8 Film loop 'A' Level question Special paper Model-making Worked example Teacher-marKed exercise INTERNATIONAL HAZARD SYMBOLS Harmful Toxic Radioactive ~ ~ [iJ Flammable II Explosive ~ ,:v J!t Corrosive Oxidising -- ~ vii INTRO DUCTION In this Unit. we look first at the properties which distinguish gases from liquids and solids. Then we examine some of the experimental laws which describe the behaviour of gases. The most important of these laws is expressed by what is known as the ideal gas equation: pV == nRT Only hypothetical 'ideal' gases observe these laws precisely under all conditions, but we often apply them successfully to real gases. Level One ends with the application of the ideal gas equation to methods for deter- mining molar mass. In Level Two we first consider two more gas laws and then we develop the simple kinetic theory of gases to explain their behaviour. We show how the gas laws can be derived from the theory by making some assumptions about the nature of molecules in gases. We then explain how the approximate truth of these assumptions accounts for the observed deviations from the gas laws. Finally we consider the measurement and calculation of molecular speeds and the way molecular speeds vary in a sample of gas. In Appendix One we consider the liquefaction of gases, and in Appendix Two we give some additional numerical exercises. There are three experiments in this Unit; two are in Level One and one is in Level Two. There are two ILPAC video-programmes designed to accompany this Unit. They are not essential, but you should try to see them at the appropriate times if they are available. Volumes of reacting gases The distribution of molecular speeds 1 PRE-KNOWLEDGE Before you start work on this Unitl you should be able to: (1) obtain a value of temperature in K from one in °C; 3 (2) obtain a value of volume in dm from one in cm3; (3) obtain a value of pressure in atm from one in mmHg; (4) explain the abbreviation s.t.p; (5) calculate the relative molecular mass and the molar mass of a substance from its chemical formula; (6) calculate the amount of a substanc? from its mass and molar massl using the correct symbols and units; (7) calculate the density of a substance from its mass and volumel using the correct symbols and units; (8) define the Avogadro constant I L. PRE-TEST To find out whether you are ready to start Level Onel try the following testl which is based 011 the pre-knowledge items. You should not spend more than 30 minutes on this test. Hand your answers to your teacher for marking. 2 PRE-TEST 1. Express the following quantities in different units as indicated: (a) 23 DC (in K), (b) 59.0 cm3 (in dm3), (c) 758 mmHg (in atrn l. (3 ) 2. Explain the terms: (a) s.t.p., (b) the Avogadro constant. (4 ) 3. (a) Calculate the relative molecular mass of chloroethane, C2H5Cl. (1) (b) 25.0 cm3 of liquid chloroethane weighs 22.5 g. What amount of chloroethane is this? Use correct symbols and units. (2) (c) What is the density, p, of chloroethane? Use correct symbols and units. (C = 12.0, H = 1.0, Cl = 35.5) (2) (Total 12 marks) 3- LEVEL ONE STATES OF MATTER Gases have properties which enable us to distinguish them easily from solids and liquids, and these distinctive properties can be simply explained in terms of the spacing and movement of molecules. Objectives. When you have finished this section, you should be able to: (1) state the properties which distinguish gases from liquids and solids; (2) explain these distinctive properties in terms of the spacing and movement of molecules.
Recommended publications
  • Atomic Layer Deposition on Dispersed Materials in Liquid Phase by Stoichiometrically Limited Injections
    COMMUNICATION www.advmat.de Atomic Layer Deposition on Dispersed Materials in Liquid Phase by Stoichiometrically Limited Injections Benjamin P. Le Monnier, Frederick Wells, Farzaneh Talebkeikhah, and Jeremy S. Luterbacher* deposition.[2] Since then, processes for Atomic layer deposition (ALD) is a well-established vapor-phase technique depositing a range of materials including for depositing thin films with high conformality and atomically precise oxides, nitrides, hybrids and even metals [3–5] control over thickness. Its industrial development has been largely confined have been developed. This wide to wafers and low-surface-area materials because deposition on high-surface- variety of materials combined with its atomic-level precision has made ALD area materials and powders remains extremely challenging. Challenges with a formidable tool for the fabrication of such materials include long deposition times, extensive purging cycles, and nanostructured materials such as transis- requirements for large excesses of precursors and expensive low-pressure tors, solar cells and fuel cells.[6] equipment. Here, a simple solution-phase deposition process based on More recently, processes have been subsequent injections of stoichiometric quantities of precursor is performed developed to apply ALD to high-surface- area materials (>10 m2 g−1), including using common laboratory synthesis equipment. Precisely measured precursor powders for various applications, from stoichiometries avoid any unwanted reactions in solution and ensure layer-by- passivation of photoactive material to cata- layer growth with the same precision as gas-phase ALD, without any excess lyst preparation.[7,8] With such materials, precursor or purging required. Identical coating qualities are achieved when long exposure time (minutes vs millisec- onds for wafers), both for purge and reac- comparing this technique to Al2O3 deposition by fluidized-bed reactor ALD tion cycles, must be coupled with effec- (FBR-ALD).
    [Show full text]
  • Inquiry-Based Laboratory Work in Chemistry
    INQUIRY-BASED LABORATORY WORK IN CHEMISTRY TEACHER’S GUIDE Derek Cheung Department of Curriculum and Instruction The Chinese University of Hong Kong Inquiry-based Laboratory Work in Chemistry: Teacher’s Guide / Derek Cheung Copyright © 2006 by Quality Education Fund, Hong Kong All rights reserved. Published by the Department of Curriculum and Instruction, The Chinese University of Hong Kong. No part of this book may be reproduced in any manner whatsoever without written permission, except in the case of use as instructional material in a school by a teacher. Note: The material in this teacher’s guide is for information only. No matter which inquiry-based lab activity teachers choose to try out, they should always conduct risks assessment in advance and highlight safety awareness before the lab begins. While every effort has been made in the preparation of this teacher’s guide to assure its accuracy, the Chinese University of Hong Kong and Quality Education Fund assume no liability resulting from errors or omissions in this teacher’s guide. In no event will the Chinese University of Hong Kong or Quality Education Fund be liable to users for any incidental, consequential or indirect damages resulting from the use of the information contained in the teacher’s guide. ISBN 962-85523-0-9 Printed and bound by Potential Technology and Internet Ltd. Contents Preface iv Teachers’ Concerns about Inquiry-based Laboratory Work 1 Secondary 4 – 5 Guided Inquiries 1. How much sodium bicarbonate is in one effervescent tablet? 4 2. What is the rate of a lightstick reaction? 18 3. Does toothpaste protect teeth? 29 4.
    [Show full text]
  • Chm 204 F-14 Expt 13 Gases
    Small-scale Preparation of CO2, H2, and O2. In this experiment you will learn a general method for generation of gases inside a large syringe. In addition to the three gases prepared today, the same method can be used to prepare a variety of other gases. Microscale Gas Chemistry Kits. Each pair of students will need certain equipment in order to prepare gases and perform experiments with the gases. We recommend organizing this equipment in 8-cup plastic food storage containers. Each kit should contain: v two 60 mL plastic syringes with a LuerLOK fitting v two Latex LuerLOK syringe caps v two plastic vial caps v one 15 cm length of Latex tubing v one 3 cm length of Latex tubing v one clear plastic beverage cup (250 mL/9 oz) v two small plastic weighing dishes v two small test tubes (12 x 100 mm) v glass pipet filled with copper wool v wooden splint v matches v wide-mouth beverage bottle (student supplied) v plastic pipet The In-Syringe Method for Preparing Gas Samples. The general strategy of the method is to react two substances in a 60 mL syringe. The limiting reagent is always used in solid form and is placed in a small vial cap. The second reagent is prepared as an aqueous solution. For example, one could generate CO2(g) from excess aqueous acetic acid and solid NaHCO3, as the limiting reagent. The solid reagent. The solid reagent is placed in the vial cap that is then lowered into the syringe barrel by water flotation.
    [Show full text]
  • 5070 S17 Qp 12.Pdf
    Cambridge International Examinations Cambridge Ordinary Level CHEMISTRY 5070/12 Paper 1 Multiple Choice May/June 2017 1 hour Additional Materials: Multiple Choice Answer Sheet *8111012495 Soft clean eraser Soft pencil (type B or HB is recommended) READ THESE INSTRUCTIONS FIRST Write in soft pencil. Do not use staples, paper clips, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided * unless this has been done for you. DO NOT WRITE IN ANY BARCODES. There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet. Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 16. Electronic calculators may be used. This document consists of 14 printed pages and 2 blank pages. IB17 06_5070_12/3RP © UCLES 2017 [Turn over 2 1 The diagram shows four pieces of apparatus that are used to measure the volume of a gas or liquid. Which piece of apparatus should always be filled to the same level? A B C D burette gas syringe measuring cylinder pipette 2 The diagrams show the structures of two forms of carbon. XY Which of X and Y conduct electricity? X Y A B C D © UCLES 2017 5070/12/M/J/17 3 3 An aqueous solution of zinc chloride is tested by adding reagents.
    [Show full text]
  • Hydrogen Peroxide Decomposition by Baker's Yeast
    Hydrogen peroxide decomposition by Baker’s yeast Kinetic studies of a biocatalyst in action! 2021 Introduction Baker’s yeast (Saccharomyces cerevisiae) is the most well-known member of the yeast family of microorganisms, and has lately also become of great importance in biotechnological research due to its simplicity and large variety of purposes. Yeast is mostly used for baking and fermentation processes, and according to archaeological findings this has been the case for at least 4000 years now. But yeast has in the last decades also become very important to scientists, not only for understanding and optimizing those long-known processes, but also for obtaining better insight in the biological processes that make yeast to the simple yet extremely useful microfactory as it is today. Baker’s yeast was therefore chosen by the Genome Project as the first eukaryotic1 organism to have its complete genome (approx. 12 million base pairs) unravelled. The simplicity and importance of yeasts lies in the fact that they are unicellular organisms with a rather high variety of useful enzymes (i.e. biocatalysts). Since they are eukaryotic and thus have a cell nucleus, they are more complex than bacteriae, but at the same time they are not as complex as cells from multicellular organisms like plants, mammals and other fungi, making them extremely suitable as model organisms for studying multicellular organisms. Yeast has learned us much about, amongst others, how microorganisms reproduce, how they defend themselves to harsh conditions by special combinations of protective enzymes in and on their cell walls and how they handle toxic and waste products formed during the transformation of nutrients.
    [Show full text]
  • Signature of Authon. Signtureof Athor I J -- Department of Chemistry 61/- May 15, 2007
    The Development of Palladium-Catalysts for Organic Synthesis By Joseph R. Martinelli B.S. Chemical Engineering University of Wisconsin - Madison, 2002 Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology June 2007 © 2007 Massachusetts Institute of Technology All Rights Reserved -J o% - / Signature of Authon. Signtureof Athor I J -- Department of Chemistry 61/- May 15, 2007 Certified by: , , .- ..... Stephen L. Buchwald Camille Dreyfus Professor of Chemistry Thesis Supervisor Accepted by: Robert W. Field MASSACHUSETTS INSTITUTEr Haslam and Dewey Professor of Chemistry OF TECHNOLOGY Chairman, Departmental Committee on Graduate Students JULBRARIES1 12007 LIBRARI ES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Timothy F. Jamison: L' -_m it t is CommitteeChair Professor Stephen L. Buchwald: T,-S Thesis Supervisor Professor Sarah E. O'Connor: The Development of Palladium-Catalysts for Organic Synthesis By Joseph R. Martinelli Submitted to the Department of Chemistry on May 15, 2007 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT Chapter 1. Suzuki-Miyaura coupling reactions of aryl and heteroaryl halides with aryl-, heteroaryl and vinyl boronic acids proceed in very good to excellent yield with the use of 2-(2',6'-dimethoxybiphenyl)- dicyclohexylphosphine, SPhos. Additionally, a comparison of the reactions with SPhos and with 2- (2',4',6'-triisoprocpylbiphenyl)-diphenylphosphine is presented that is informative in determining the relative importance of ligand bulk and electron-donating ability in the high activity of catalysts derived from ligands of this type.
    [Show full text]
  • AP Chemistry Course Planning and Pacing Guide by Jamie Benigna 2012
    AP® Chemistry Course Planning and Pacing Guide 2 Jamie Benigna The Roeper School Birmingham, Michigan © 2012 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT and the acorn logo are registered trademarks of the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of over 6,000 of the world’s leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success — including the SAT® and the Advanced Placement Program®. The organization also serves the education community through research and advocacy on behalf of students, educators and schools. For further information, visit www.collegeboard.org. AP Equity and Access Policy The College Board strongly encourages educators to make equitable access a guiding principle for their AP programs by giving all willing and academically prepared students the opportunity to participate in AP. We encourage the elimination of barriers that restrict access to AP for students from ethnic, racial and socioeconomic groups that have been traditionally underserved. Schools should make every effort to ensure their AP classes reflect the diversity of their student population.
    [Show full text]
  • General and Inorganic Chemistry
    GeneralEquipment. and inorganic LD chemistry Chemistry Air and other gases Leaflets C1.4.2.1 Production of gases Production of gases with a Kipp’s apparatus Aims of the experiment To learn a method for producing gases. To work with the Kipp's apparatus. To follow a reaction. To observe the various aggregate states of substances. passes through to the zinc, both substances can react with one Principles another and hydrogen is generated. The gaseous state is one of the three states of aggregation in The following reaction occurs: addition to the solid and liquid state. The particles contained in + 2+ a gas move freely at a large distance from one another. Thus, Zn+ H → Zn + H2 ↑ there is no solid structure in gases. They use the entire space The special feature of the Kipp's apparatus is that the reaction made available to them and are limited only by the walls of a can be stopped by closing the stopcock, and it can be restarted storage container, for example. by reopening it. The reason for this is that when the stopcock Many gases are generated through the reaction of various sub- is closed, gas being generated can no longer escape. This stances, such as a liquid and a solid substance. This includes causes the pressure to increase inside the apparatus and the hydrogen, oxygen, chlorine gas, nitrogen dioxide or carbon liquid is pushed back through the insert tube with the frit into monoxide, for example. the flask. The reaction stops as soon as the liquid, in this case hydrochloric acid, can no longer reach the zinc granules.
    [Show full text]
  • IN SITU Resources from Water-Rock Interactions for Human Exploration of Mars
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1665.pdf IN SITU Resources from water-rock interactions for human exploration of Mars. C. T. Adcock1, E. M. Hausrath1, E. B. Rampe2, R. D. Panduro-Allanson1 and S. M. Steinberg3, 1University of Nevada Las Vegas, Department of Geoscience, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, 2NASA Johnson Space Center, Houston, TX 77058, University of Nevada Las Vegas, Department of Chemistry and Biochemistry, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154. Correspondence: [email protected] Introduction: Modern space exploration has on the Moon, iron is generally more reduced than on entered a phase where we seek to expand further into Earth [15]. This suggests that hydrogen released in this our solar system and establish a sustainable presence manner could be a valuable resource on both bodies. on bodies such as the Moon and Mars [1]. Among the However, development of methods for generating H2 challenges of these new endeavors is the requirement by this means with martian or lunar relevant materials for In Situ Resource Utilization (ISRU) to supplement or under martian or lunar deployable conditions has or replace materials transported from Earth. The received little attention. energy required to escape a planetary gravity well is Methods: Thirty-eight water-rock interaction immense. Deliverable payloads from rockets to the experiments were conducted at 25°C and 4°C using Moon or Mars make up <3% of the launch vehicle four martian regolith simulants and four Mars-relevant mass [2, 3], and propellant (oxidizer + fuel) is minerals as solids (Table 1).
    [Show full text]
  • Empirical Gas Laws (Parts 1 and 2) Pressure-Volume and Pressure-Temperature Relationships in Gases
    Bellevue College | Chemistry 162 Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases Some of the earliest experiments in chemistry and physics involved the study of gases. The invention of the barometer and improved thermometers in the 17th century permitted the measurement of macroscopic properties such as temperature, pressure, and volume. Scientific laws were developed to describe the relationships between these properties. These laws allowed the prediction of how gases behave under certain conditions, but an explanation or model of how gases operate on a microscopic level was yet to be discovered. After Dalton’s atomic theory was proposed in the early 1800’s (that matter was composed of atoms) a framework for visualizing the motion of these particles followed. The kinetic molecular theory, developed by Maxwell and Boltzmann in the mid 19th century, describes gas molecules in constant random motion. Molecules collide resulting in changes in their velocities. These collisions exert pressure against the container walls. The frequency of collisions and the speed distribution of these molecules depend on the temperature and volume of the container. Hence, the pressure of a gas is affected by changes in temperature and volume. Figure 1. The Kinetic Theory considers gas molecules as particles that collide in random motion. You may already think that the relationships between pressure, volume, temperature, and number of gas molecules are intuitive, based on your ability to visualize molecular motion and a basic understanding of the kinetic theory. The simple experiments that follow will allow you the opportunity to confirm these relationships empirically, in a qualitative and quantitative manner.
    [Show full text]
  • Practical Guide OCR
    Practical Guide OCR This guide includes details about the PAGs for A-level chemistry. It also contains information about other experiments that often occur in A-level examinations. You may be asked to describe these experiments in details or be asked about reasons for doing individual steps. You may be asked about other unfamiliar experiments but these will be using the skills and techniques that are described in the following experiments. Safety and hazards Irritant - dilute acid and alkalis- wear googles Hazardous substances in low Corrosive- stronger acids and alkalis wear goggles concentrations or amounts will Flammable – keep away from naked flames not pose the same risks as the Toxic – wear gloves- avoid skin contact- wash hands after use pure substance. Oxidising- Keep away from flammable / easily oxidised materials N Goalby chemrevise.org 1 PAG1 Heating in a crucible This method could be used for measuring mass loss in various thermal decomposition reactions and also for mass gain when reacting magnesium in oxygen. The mass gain by reacting magnesium in Oxidation reaction. The lid improves the accuracy of the oxygen can be measured by the following method experiment as it prevents loss of solid Mg (s) + O (g) → MgO(s) 2 from the crucible but should be loose Method. fitting to allow gas to escape/enter. •Weigh an empty clean dry crucible and lid . •Add 2g of coiled magnesium ribbon (that has been cleaned with emery paper) to the crucible and weigh again •Heat strongly with a Bunsen for a couple of minutes •Occasionally lift lid with tongs to allow in some oxygen but taking care not to let magnesium oxide powder escape •Allow to cool •Weigh the crucible and contents again •Heat crucible again and reweigh until you reach a constant mass ( do this to ensure reaction is complete).
    [Show full text]
  • Chapter 5 Experimental
    Chapter 5 Chapter 5 Experimental 5.1. Chemicals and analysis techniques Chemicals and materials All chemicals were purchased from Sigma-Aldrich and used as received without further purification unless stated otherwise. Bisnitroxide disulfide ‘DIS3’ was synthesized by lab colleagues. TEMPO oxoammonium chloride was obtained from Nufarm Ltd. The gas-permeable Teflon tube was obtained from Zeus Industrial Products. Distilled organic monomers (styrene, acrylic acid, methyl methacrylate and acrylonitrile) were supplied by Nufarm Ltd. NMR 1H and 13C NMR spectra were recorded in the deuterated solvent as indicated, on JEOL ECX 270 MHz, ECX 400 MHz or ECS 400 MHz spectrometers. Chemical shifts are reported in parts per million using the deuterated solvent as an internal reference. Spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quartet), qu (quintet), sx (sextet), sept (septet), m (multiplet), br (broad). IR Infra-red spectra were recorded on a JASCO FT/IR-400 spectrometer. For the gas- phase IR measurements, gas samples were obtained from a sealed system. The systems were degassed using vacuum and freeze-thaw method and re-filled with N2. Gas formation can be observed from the readings of an injected gas syringe. The obtained gas samples were injected into a gas-tight IR cuvette cell (KBr) for measurements. UV-vis 203 Chapter 5 UV-vis spectra were recorded on a double beam Hitachi U3000 spectrophotometer. In order to ensure the absorbance falls between 0.1-1 range, typical concentrations used for gold nanoparticles and oxoammonium salt are 5×10-7 M and 0.037 M, respectively.
    [Show full text]