Anatomical and Phytochemical Investigation of Embelia Tsjeriam-Cottam (Roem

Total Page:16

File Type:pdf, Size:1020Kb

Anatomical and Phytochemical Investigation of Embelia Tsjeriam-Cottam (Roem International Journal of Pharmacy and Biological Sciences TM ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBSTM | Volume 8 | Issue 3 | JUL-SEPT | 2018 | 710-717 Research Article | Biological Sciences | Open Access | MCI Approved| |UGC Approved Journal | ANATOMICAL AND PHYTOCHEMICAL INVESTIGATION OF EMBELIA TSJERIAM-COTTAM (ROEM. & SCHULT.) A.DC. Ananth V*, Anand Gideon V and John Britto S Research Scholar, Department of Botany, Bishop Heber College (Autonomous), Tiruchirappalli - 620 017. The Rapinat Herbarium and Centre for Molecular Systematics, St. Joseph’s College (Autonomous), Tiruchirappalli - 620 002. *Corresponding Author Email: [email protected] ABSTRACT Embelia tsjeriam-cottam (Roem. & Schult.) A. DC. is a valuable medicinal plant, used in Indian system of medicine. This article presents results of gross morphology, anatomy and phytochemical investigations on the selected species. KEY WORDS E. tsjeriam-cottam, Microscope, FT-IR, Preliminary phytochemistry. INTRODUCTION Family: Primulaceae India is one of the 12 mega-biodiversity countries in the Genus: Embelia world. It is well known for its varied flora thus reflecting Species: tsjeriam-cottam diverse habitats. The habit wise distribution of Botanical Name medicinal plants of the country indicates that the Embelia tsjeriam-cottam (Roem. & Schult.) A. DC. climbers constitute only 15% of the total population, Vernacular Name while erect or non-climbing forms (herbs, shrubs and Tamil: Vaivilangam, Malayalam: Basaal, trees) constitute 85%. Medicinal plants face a high Cheriyannattam, Kannada:Vaivalig, Choladhanna, Hindi: degree of threat because of unsustainable harvesting Babrang, Baibrang, Bayabrang, Marathi: Ambati, Kokla, methods and commercial exploitation. Waiwaraung, Sanskrit: Bidanga, Krimighnam, Vellah, Embelia tsjeriam-cottam (Roem. & Schult.) A. DC. Vidanga. belongs to Primulaceae. (APG IV 2016). The Primulaceae Geography are a family of herbaceous and woody flowering plants The distribution range of this species extends from India with about 53 genera and 2790 species. It is commonly to Sri Lanka, Myanmar and Malaysia. Within India it is known as the primrose family and has been variously seen in southern states of Tamilnadu, Kerala, Karnataka, circumscribed but it is now accepted in the broad sense Andhra Pradesh and Maharastra. including the former families Myrsinaceae and Theoprastaceae because of recent molecular analysis MATERIALS AND METHODS and phylogenetic findings Collection and Authentication Taxonomical Classification Plant materials of E. tsjeriam-cottam (Roem. & Schult.) Kingdom: Plantae A. DC. (Leaves and Stem) were collected from the Phylum : Angiosperms Western Ghats of Tamilnadu and Kerala. They were Order: Ericales authenticated Dr. S. John Britto, Director, The Rapinat International Journal of Pharmacy and Biological Sciences Ananth V* et al 710 www.ijpbs.com or www.ijpbsonline.com ISSN: 2230-7605 (Online); ISSN: 2321-3272 (Print) Int J Pharm Biol Sci. Herbarium and Centre for Molecular Systematics, St. carried out for all the extracts by the method described Joseph’s College (Autonomous) Tiruchirappalli, by Mukherjee (2002). Tamilnadu, S. India. Leaves and stems were cut into Detection of Alkaloids small pieces separately shade dried and powdered. Solvent free extract 50 mg was stirred with few ml of dil. Preparation of Extract HCl and filtered. The filtrate was tested carefully with The powdered plant parts (leaves and stem) 10 g of each various alkaloidal reagents as given below. were extracted in 100 ml of acetone, ethanol, methanol, a) Mayer’s Test aqueous with continuous shaking on mechanical shaker To a few ml of filtrate, one or two drops of Mayer’s for 24/hrs at room temperature. The extracts were then reagent were added by the side of the test tube. A white filtered through Whatmann No.1 filter paper and stored creamy precipitate indicated the test as positive. airtight. b) Wagner’s Test Macroscopic Studies To a few ml of filtrate, few drops of Wagner’s reagent The macroscopic study of plants provides the were added by the side of the test tube. A reddish- morphological description of the plant and the simplest brown precipitate confirmed the test as positive. as well as quickest means to establish the identity and c) Hager’s Test purity to ensure quality of a particular drug. To a few ml of filtrate 1 or 2 ml of Hager’s reagent Microscopic Studies (Saturated aqueous Solution of picric acid) was added. Microscopic study involves anatomy and is done by A prominent yellow precipitate indicated the test as taking appropriate section of the plant parts under positive. study. Detailed microscopic characters were studied by Detection of Carbohydrates and Glycosides taking free hand thin transverse sections of leaf, petiole The extract (100mg) was dissolved in 5 ml water and and stem Surface preparation of the leaves done by filtered. The filtrate was subjected to the following peeling method to observe epidermal cells. The leaf was tests: examined transversely through lamina and midrib. a) Molish’s Test Microphotographs were taken in digital microscope To 2 ml of filtrate two drops of alcoholic solution of α- attached with computer system. napthol was added, the mixture was shaken well and 1 Phytochemical Screening ml of con H2SO4 was added slowly along the sides of the Preliminary phytochemical screening involves the test tube and allowed to stand. A violet ring indicated identification of the bioactive components present in the presence of carbohydrates. the samples by using the standard method. The b) Benedict’s Test components then were separated from the co- To 0.5 ml of filtrate, 1 ml of Bendict’s reagent was extractives. added. The mixture was heated on a boiling water bath Qualitative Phytochemical tests were conducted to test for 2 mins. A characteristic coloured precipitate the powdered form of the plant samples (methanol, indicated the presence of sugar. ethanol, acetone and aqueous) using standard methods Detection of Glycosides of Harborne (1978) and Edeoga et al., (2005). 50 mg of extract was hydrolysed with concentrated HCl FT-IR Spectrometric Analysis for 2 hours on a water bath, filtered and the hydrolysate Fixed amount of plant specimen was mixed with KBr was subjected to the following tests: salt, using a mortar and pestle, and compressed into a a) Borntrage’s Test thin pellet. Infrared spectra were recorded as KBr pellets To 2 ml of filtered hydrolysate, 3 ml of chloroform is on a Thermo scientific Nicot iS5 iD1 transmission, added and shaken, chloroform layer was separated and between 4000-400 cm-1 21. The powdered sample of 10% ammonia solution was added to it. Pink colour the plant extract was treated for FT-IR spectroscopy. indicated the presence of glycosides. The result was analyzed based on peak obtained. b) Legal’s Test Preliminary Phytochemical Analysis 50 mg of the extract was dissolved in pyridine. Sodium Qualitative phytochemical tests for the identification of nitro prusside solution was added and made alkaline alkaloids, flavonoids, steroids and terpenoids were using 10% NaOH. Presence of glycosides was indicated by pink colour. International Journal of Pharmacy and Biological Sciences Ananth V* et al 711 www.ijpbs.com or www.ijpbsonline.com ISSN: 2230-7605 (Online); ISSN: 2321-3272 (Print) Int J Pharm Biol Sci. Detection of Saponins solution was added. A dark green colour indicated the To 1ml of extract, add 2ml of distilled water and shaken presence of phenolic compounds. vigorously and allowed to stand for 10 min. There is the b) Lead Acetate Test development of foam on the surface of the mixture. The extract (50 mg) was dissolved in distilled water and Then shake for 10 minutes, it indicates the presence of to this 3 ml of 10% lead acetate solution was added. A saponins. bulky white precipitate indicates the presence of Detection of Proteins and Amino Acids phenolic compounds. The extract (100 mg) was dissolved in 10 ml of distilled c) Gelatin Test water and filtered through whatmann no: 1 filter paper The extract (50 mg) was dissolved in 50 ml of distilled and filtrate was subjected to tests for proteins and water 2 ml of 1% solution of gelation containing 10% amino acids. sodium chloride was added to it. White precipitate a) Millon’s Test indicated the presence of phenolic compounds. To 2 ml filtrate, few drops of millon’s reagent were d) Alkaline Reagent Test added. A white precipitate indicated the presence of An aqueous solution of the extract was heated with 10% proteins. NH4OH solution. Yellow fluorescence indicated the b) Biuret Test presence of flavonoids. An aliquot of 2 ml of filtrate was heated with 1 drop of e) Magnesium and Hydrochloric Test 2 % CuSO4 solution. To this 1 ml of ethanol (95%) was The extract (50 mg) was dissolved in 5 ml of alcohol and added, followed by excess of KOH Pellets. Pink colour in few fragments of magnesium ribbon and concentrated the ethanolic layers indicated the presence of proteins. HCl were added (dropioire). If any pink to crimson c) Ninhydrin Test developed, presence of flavanol glycoside was inferred. 2 drops of Ninhydrin solution (10 mg of Ninhydrin in 200 Detection of Gum and Mucilages ml of acetone) was added to 2 ml of aqueous filtrate. A The extract (100 mg) was dissolved in 10ml of distilled characteristics purple colour indicated the presence of water and to this 25 ml of absolute alcohol was added amino acids. with constant stirring. White or cloudy precipitate Detection of Phytosterols indicated the presence of gums mucilages. a) Libermann – Burchard’s Test Detection of Volatile Oil The extract (50mg) was dissolved in 2ml acetic In volatile oil estimation apparatus, 50 g of powdered anhydride. To these one or two drops of concentrated material (crude drug) was taken and subjected to hydro H2SO4 were added slowly along the sides of the test distillation. The distillate was collected in graduated tube. An array of colour change showed the presence of tube of the assembly wherein the aqueous portion phytosterols.
Recommended publications
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Pharmacognostical and Preliminary Phytochemical Profile of the Leaf
    Journal of Pharmacognosy and Phytochemistry 2019; 8(1): 1861-1864 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Pharmacognostical and preliminary JPP 2019; 8(1): 1861-1864 Received: 08-11-2018 phytochemical profile of the leaf extracts of Accepted: 12-12-2018 Embelia ribes Burm. F. Ananth V Research Scholar, Department of Botany, Bishop Heber College Ananth V, Anand Gideon V and John Britto S Autonomous, Tiruchirappalli, Tamil Nadu, India Abstract Embelia ribes Burm. f. is a valuable medicinal plant used in Indian system of medicine. This article deals Anand Gideon V with gross morphology, anatomy and preliminary phytochemicals presence of alkaloids, flavonoids, Associate professor and Head, amino acids, proteins and carbohydrates. Department of Botany, Bishop Heber College, (Autonomous), Tiruchirapalli, Keywords: Embelia ribes, microscope, preliminary phytochemical Tamil Nadu, India Introduction John Britto S Plants are the invaluable sources of medicines, especially in traditional systems of health care. The Rapinat Herbarium and The recent global resurgence of interest in herbal medicines has led to an increase in the Centre for Molecular Systematics, St Joseph’s College demand for them. The research on the analysis and quality control of herbal medicines now is Autonomous, Tiruchirappalli, in the direction of an integrative and comprehensive approach, in order to better address the Tamil Nadu, India inherent holistic nature of herbal medicines. Embelia ribes Burm. f. of family Primulaceae. (APG IV 2016) is seen in hills of India up to 1500m elevation extending from outer Himalayas to Western Ghats. It is an endangered medicinal plant. Due to its over exploitation it is reported in red list data book as vulnerable [Ravikumar & Ved 2000].
    [Show full text]
  • 5Th Annual Botany-Zoology Postgraduate Symposium 14 April 2016
    5th Annual Botany-Zoology Postgraduate Symposium 14 April 2016 Programme and Abstracts Trinity College Dublin: Botany-Zoology Postgraduate Symposium 2016 WELCOME Dear friends and colleagues, It is with great pleasure we welcome you all to the Fifth Botany-Zoology Postgraduate Research Symposium in Trinity College Dublin. Following on from successful previous Symposia the Departments of Botany and Zoology have come together again to present and discuss the wide variety of postgraduate research taking place within the School of Natural Sciences. This symposium is an important medium in which postgraduates are encouraged to share their research, ideas and techniques, as well as an opportunity to gain invaluable presentation experience. The ethos of the symposium is to provide each postgraduate student with a presentation platform that is open to constructive analysis from the audience. Therefore, for each presentation, HDFKDXGLHQFHPHPEHULVLQYLWHGDQGHQFRXUDJHGWR¿OORXWIHHGEDFNIRUPVZKLFKZLOODLG each student in the development of their presentation skills. Guidelines for completion of evaluation forms can be found in the end of this booklet. We would like to express our gratitude to Dr. Nina Alphey and Dr. Rob Thomas for kindly offering up their time to adjudicate the symposium. Furthermore, we would like to thank them in advance for the plenary talks they have prepared. We would also like to thank the staff of the Department of Botany and Zoology, especially Prof. Andrew Jackson, Martyn Linnie, Fiona Moloney and Aisling O’Mahony for their assistance
    [Show full text]
  • Embelin: an HPTLC Method for Quantitative Estimation in Five Species of Genus Embelia Burm
    Vijayan and Raghu Future Journal of Pharmaceutical Sciences (2021) 7:55 Future Journal of https://doi.org/10.1186/s43094-021-00210-w Pharmaceutical Sciences RESEARCH Open Access Embelin: an HPTLC method for quantitative estimation in five species of genus Embelia Burm. f. K. P. Rini Vijayan and A. V. Raghu* Abstract Background: The plants belonging to the genus Embelia, a significant tropical genus with many biological activities, are benefiting because of their robust medicinal properties. Embelin is one of the principal bioactive molecules responsible for the medicinal properties of the genus Embelia. The quantification of the embelin compound among different species in this genus has not yet been investigated, so still uncertain which species and which part should be accepted. The present study was intended to establish a speedy and precise high- performance thin-layer chromatographic (HPTLC) method for quantitative study of embelin in various plant parts of Embelia ribes, Embelia tsjeriam-cottam, Embelia basaal, Embelia adnata, and Embelia gardneriana. Result: This research confirmed the method as per the International Conference on Harmonization (ICH) guidelines. We achieved separation on silica gel 60 F254 HPTLC plates using propanol: butanol: ammonia (7:3:7 v/v/v) as a mobile phase. Densitometry scanning performed for detection and quantification at 254 nm and 366 nm. Among the species investigated, the highest amount of embelin was found in E. ribes fruits. Conclusion: Embelia ribes fruits are the best source of embelin. Embelin was first described in the endemic species, such as E. adnata and E. gardneriana. The method illustrated in this research may be applied for quantification of embelin and fingerprint analysis of other species within Embelia genus or described genera and chemo taxonomic studies of this genus.
    [Show full text]
  • Medicinal Plants of India
    www.asiabiotech.com Special Feature Medicinal Plants of India Dr Robin Mitra1, Associate Professor Brad Mitchell2, Sebastian Agricola3, Professor Chris Gray4, Associate Professor Kanagaratnam Baskaran5 and Dr Morley Somasundaram Muralitharan6 Introduction Crude extracts of fruits, herbs, vegetables, cereals and other plant materials rich in phenolics and antioxidant activity are of prime interest to the food industry because of their ability to retard oxidative degradation of lipids and hence improve the quality and nutritional value of functional food. Concomitantly, the importance of antioxidant constituents of plant materials in the maintenance of health and protection from coronary heart disease and cancer is also raising interest among scientists, food manufacturers and consumers as part of the current trend towards the use of herbal medicine. In addition, the use of complementary alternative medicine (CAM) by patients suffering from chronic disorders, such as cancers, heart, stroke and immune disorders has been well documented. CAMs are either used on their own (alternative treatments) or in addition to conventional medicine (complementary treatments). CAMs can be grouped into herbal medicines derived from medicinal plants, food supplements that include vitamin preparations, trace elements and other substances such as omega-3 fatty acids (Zimmerman and Thompson, 2002). Prior to undertaking an introduction to Indian medicinal plants, it is essential to mention that both Ayurveda, the traditional Indian medicine, and traditional Chinese medicine (TCM) have remained by far the most ancient surviving traditions that are not only pragmatic in its approach but at the same token philosophically sound (Patwardhan et al., 2005). The essence of the Ayurveda system (from “ayus” or life, and “veda” or knowledge, and thus meaning the “science of life”) lies in the Atharva-Veda (Fernando 1 Lecturer in Biotechnology, Monash University Malaysia.
    [Show full text]
  • A Comprehensive Review on Embelia Tsjeriam- Cottam A.DC A* B C a Department of Saidla, Ajmal Khan Tibbiya College, Aligarh Muslim University, Aligarh, India
    Science Letters (2020) 1-3 Contents list available at Science Letters journal homepage:Science http://www.scienceletters.org/ Letters A comprehensive review on Embelia tsjeriam- cottam A.DC a* b c a Department of Saidla, Ajmal Khan Tibbiya College, Aligarh Muslim University, Aligarh, India. b HudaDepartment Nafees of Biochemistry,, Sana AllNafees India Institute, S. Nizamudeen of Medical Sciences, New Delhi, India. c Government Unani Medical College, Chennai, India. ArticleA R T History: I C L E I N F O EmbeliaA B S T tsjeriam- R A C cottamT A.DC is found in most of the parts of south India. It is commonly named as false black pepper because it look a lot like black pepper and that’s why mostly used adulterant for black pepper. It belongs to the family Myrsinaceae, the commonly used medicinal Received 27 December 2019 plant in the name of vidang, in local it is called red vidang. But irony is, it is not the true plant Revised 28 January 2020 of vidang, the true vidang is Embelia ribes Burm f. which is mentioned in ayurvedic manu- Accepted 2 February 2020 script being first identified by Susruta. Its fruit which is globosein shape and is used medicinally Available Online 5 February 2020 Keywords: and possesses similar actions & chemical constituents of Embelia ribes Burm f. Embelin is the major alkaloid present in it with other chemical components like cardiac glycosides, phenols, flavonoids etc. Few studies have revealed that it possess several pharmacological activities such Embelia tsjeriam- cottam, Antidiabetic, anti-tubercular, antibacterial, anti-inflammatoryetc. Many pharmacognostical Embelin, and pharmacological studies have been done on Embelia ribes Burm f.
    [Show full text]
  • Floristic Survey of Vascular Plant in the Submontane Forest of Mt
    BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 8, August 2019 E-ISSN: 2085-4722 Pages: 2197-2205 DOI: 10.13057/biodiv/d200813 Short Communication: Floristic survey of vascular plant in the submontane forest of Mt. Burangrang Nature Reserve, West Java, Indonesia TRI CAHYANTO1,♥, MUHAMMAD EFENDI2,♥♥, RICKY MUSHOFFA SHOFARA1, MUNA DZAKIYYAH1, NURLAELA1, PRIMA G. SATRIA1 1Department of Biology, Faculty of Science and Technology,Universitas Islam Negeri Sunan Gunung Djati Bandung. Jl. A.H. Nasution No. 105, Cibiru,Bandung 40614, West Java, Indonesia. Tel./fax.: +62-22-7800525, email: [email protected] 2Cibodas Botanic Gardens, Indonesian Institute of Sciences. Jl. Kebun Raya Cibodas, Sindanglaya, Cipanas, Cianjur 43253, West Java, Indonesia. Tel./fax.: +62-263-512233, email: [email protected] Manuscript received: 1 July 2019. Revision accepted: 18 July 2019. Abstract. Cahyanto T, Efendi M, Shofara RM. 2019. Short Communication: Floristic survey of vascular plant in the submontane forest of Mt. Burangrang Nature Reserve, West Java, Indonesia. Biodiversitas 20: 2197-2205. A floristic survey was conducted in submontane forest of Block Pulus Mount Burangrang West Java. The objectives of the study were to inventory vascular plant and do quantitative measurements of floristic composition as well as their structure vegetation in the submontane forest of Nature Reserves Mt. Burangrang, Purwakarta West Java. Samples were recorded using exploration methods, in the hiking traill of Mt. Burangrang, from 946 to 1110 m asl. Vegetation analysis was done using sampling plots methods, with plot size of 500 m2 in four locations. Result was that 208 species of vascular plant consisting of basal family of angiosperm (1 species), magnoliids (21 species), monocots (33 species), eudicots (1 species), superrosids (1 species), rosids (74 species), superasterids (5 species), and asterids (47), added with 25 species of pterydophytes were found in the area.
    [Show full text]
  • Chloroplast Genomes and Comparative Analyses Among Thirteen Taxa Within Myrsinaceae S.Str
    International Journal of Molecular Sciences Article Chloroplast Genomes and Comparative Analyses among Thirteen Taxa within Myrsinaceae s.str. Clade (Myrsinoideae, Primulaceae) Xiaokai Yan 1, Tongjian Liu 2, Xun Yuan 1, Yuan Xu 2, Haifei Yan 2,3,* and Gang Hao 1,* 1 College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; [email protected] (X.Y.); [email protected] (X.Y.) 2 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] (T.L.); [email protected] (Y.X.) 3 Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China * Correspondence: [email protected] (H.Y.); [email protected] (G.H.) Received: 21 July 2019; Accepted: 10 September 2019; Published: 13 September 2019 Abstract: The Myrsinaceae s.str. clade is a tropical woody representative in Myrsinoideae of Primulaceae and has ca. 1300 species. The generic limits and alignments of this clade are unclear due to the limited number of genetic markers and/or taxon samplings in previous studies. Here, the chloroplast (cp) genomes of 13 taxa within the Myrsinaceae s.str. clade are sequenced and characterized. These cp genomes are typical quadripartite circle molecules and are highly conserved in size and gene content. Three pseudogenes are identified, of which ycf15 is totally absent from five taxa. Noncoding and large single copy region (LSC) exhibit higher levels of nucleotide diversity (Pi) than other regions. A total of ten hotspot fragments and 796 chloroplast simple sequence repeats (SSR) loci are found across all cp genomes.
    [Show full text]
  • Genetic Diversity of Embelia Species, Maesa Indica and Ardisia
    Bajpe et al RJLBPCS 2018 www.rjlbpcs.com Life Science Informatics Publications Original Research Article DOI: 10.26479/2018.0406.36 GENETIC DIVERSITY OF EMBELIA SPECIES, MAESA INDICA AND ARDISIA SOLANACEA SAMPLED FROM WESTERN GHATS OF KARNATAKA USING DNA MARKERS Shrisha Naik Bajpe1, Kigga Kadappa Sampath Kumara2, Ramachandra Kukkundoor Kini2* 1.Shri Dharmasthala Manjunatheshwara College (Autonomous) Ujire, Mangalore. 2.Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore. ABSTRACT: Genetic diversity of three Embelia species, Maesa indica, and Ardisia solanacea were assessed using RAPD and ISSR markers. Twenty-five sample was collected from various parts of Western Ghats of Karnataka. Nine RAPD primer and five ISSR primer produced a total of 48 and 40 loci respectively. Overall percentage polymorphism of RAPD and ISSR was 44.17%±13.13, 36.5±13.57% respectively. Polymorphic information content for RAPD and ISSR analysis had a range of 0.629-0.884, and 0.524-0.783 respectively. Resolving power of RAPD primers ranged from 1.6 to 6.24, while for ISSR primer the range was 4.64-10.16. UPGMA dendrogram of RAPD and ISSR revealed two and three clusters respectively. Within the population, E. tsjeriam-cottam had the highest polymorphism (>80%). Three principal coordinates accounted for 62.66% and 73.2% cumulative variation for RAPD and ISSR respectively. Marker index of ISSR primer (5.568) was higher than the RAPD primers (3.54), hence ISSR was the efficient marker in the current analysis. KEYWORDS: Primulaceae, DNA Marker, Genetic Diversity, Polymorphism. Corresponding Author: Dr. Ramachandra K Kini* Ph.D. Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore.
    [Show full text]
  • Supergene Evolution Via Stepwise Duplications and Neofunctionalization of a Floral-Organ Identity Gene
    Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene Cuong Nguyen Huua, Barbara Kellerb, Elena Contib, Christian Kappela, and Michael Lenharda,1 aInstitute for Biochemistry and Biology, University of Potsdam, D-14476 Potsdam-Golm, Germany; and bDepartment of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland Edited by June B. Nasrallah, Cornell University, Ithaca, NY, and approved August 5, 2020 (received for review April 7, 2020) Heterostyly represents a fascinating adaptation to promote out- addition, self-incompatibility is present in many distylous species breeding in plants that evolved multiple times independently. (9). In all examined cases, distyly is under simple Mendelian While L-morph individuals form flowers with long styles, short genetic control, with a dominant and a recessive haplotype at the anthers, and small pollen grains, S-morph individuals have flowers single S locus determining the morphs (10). With a few excep- with short styles, long anthers, and large pollen grains. The differ- tions, the dominant S haplotype causes S-morph and the reces- ence between the morphs is controlled by an S-locus “supergene” sive s haplotype L-morph flowers. Rather than a single gene, the consisting of several distinct genes that determine different traits S locus represents a supergene, that is, a chromosomal region of the syndrome and are held together, because recombination with at least two tightly linked genes that determine the different between them is suppressed. In Primula, the S locus is a roughly aspects of a coadapted set of phenotypes (10–12). Similar su- 300-kb hemizygous region containing five predicted genes.
    [Show full text]
  • Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific
    Plant Biodiversity Science, Discovery, and Conservation: Case Studies from Australasia and the Pacific Craig Costion School of Earth and Environmental Sciences Department of Ecology and Evolutionary Biology University of Adelaide Adelaide, SA 5005 Thesis by publication submitted for the degree of Doctor of Philosophy in Ecology and Evolutionary Biology July 2011 ABSTRACT This thesis advances plant biodiversity knowledge in three separate bioregions, Micronesia, the Queensland Wet Tropics, and South Australia. A systematic treatment of the endemic flora of Micronesia is presented for the first time thus advancing alpha taxonomy for the Micronesia-Polynesia biodiversity hotspot region. The recognized species boundaries are used in combination with all known botanical collections as a basis for assessing the degree of threat for the endemic plants of the Palau archipelago located at the western most edge of Micronesia’s Caroline Islands. A preliminary assessment is conducted utilizing the IUCN red list Criteria followed by a new proposed alternative methodology that enables a degree of threat to be established utilizing existing data. Historical records and archaeological evidence are reviewed to establish the minimum extent of deforestation on the islands of Palau since the arrival of humans. This enabled a quantification of population declines of the majority of plants endemic to the archipelago. In the state of South Australia, the importance of establishing concepts of endemism is emphasized even further. A thorough scientific assessment is presented on the state’s proposed biological corridor reserve network. The report highlights the exclusion from the reserve system of one of the state’s most important hotspots of plant endemism that is highly threatened from habitat fragmentation and promotes the use of biodiversity indices to guide conservation priorities in setting up reserve networks.
    [Show full text]